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Abstract 

Human-centred approaches within the design cycle are crucial to enhance usability and inclusivity of products. 

However, the qualitative nature of traditional human factors evaluation can create bottle necks, prompting the 

need for more data driven methods. A framework for data-driven human factors is presented, looking to 

integrate mixed-method approaches. Case studies illustrate its usage in real-world scenarios and challenges 

are summarised, calling for robust data collection methods, balancing of mixed methods, a need for 

explainable systems, and interdisciplinary expertise. 
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1. Introduction 
Human-centred design is a well-recognised philosophy, that aims to make interactive systems more 

usable for the intended user population  (Giacomin, 2015). Working with users to define their needs, the 

tasks at hand and the environment in which activities will take place is crucial to this process. To 

understand the potential interpretations of designed technology, product development teams should be 

interdisciplinary, considering the involvement of users throughout each stage, iteratively moving 

towards the best available solution (ISO 9241-210:2019). As the landscape of computational systems 

and sensing technologies expands, the ways we manufacture and explore parameterised design spaces 

have been enhanced, speeding up design iterations. However, the lengthy qualitative techniques 

currently used to incorporate human factors (HF), create bottlenecks when aiming to create inclusive 

designs (Whitefield et al., 1991). This presents a need to shift how we evaluate HFE, and an opportunity 

to integrate quantitative data driven approaches into human factors evaluation (HFE). Employing these 

techniques, more data to objectively analyse human interaction can be generated, whilst keeping up with 

the need for rapid design iteration. 

HF is a vital part of the design process, utilising human psychology and physiology to understand human 

understanding and limitations when interacting with interfaces (Thales Group, 2023). Without this, 

systems can be designed that are unusable, and potentially dangerous systems for the people that are 

designed for. This is especially true within the context of medical products e.g. syringes and inhalers, 

where designers are commonly designing for user groups with limited dexterity or cognitive 

understanding. In the case of injection devices, complex and dextrous user steps to ensure sterility, as 

well as fatal consequences if operated incorrectly, mean that rigid due diligence is needed to identify 

risks and ensure safe and effective use (ISO 13485:2016, p.13). Similarly, assessments of HF and 

ergonomics within the workplace is legislatively enforced (HSE, 2013). This covers the design of 

equipment and devices, such as control boards and manual handling equipment, to the available 

ventilation and lighting within a space, that may otherwise induce unnecessary stress to the working 

environment. This occurs on an individual basis, helping to optimise work setups for individuals and 

ensure their safety and comfort (HSE, 2023). In contrast, leveraging HF to understand what contributes 
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to enhanced performance can lead to superior product development. This is shown through the evolution 

of professional sports gear, where the evaluation and comprehension of crucial performance indicators 

and specific user needs across the years has led to groundbreaking records (Caine et al., 2012). 

However, traditional HFE has evaded the usage of sensors to measure or quantify our responses in 

relation to how we feel interacting with everyday products (Kanis, 1998). This interpretation has 

permeated the methods in which we explore human-centred design, typically incorporating minimal 

quantitative methods (ISO 13485:2016). Traditional quantitative metrics such as anthropometric 

measurements or assessments of static body positioning and loading are often far removed from the 

problem at hand (Whitefield et al., 1991), limiting their applicability. However, since the development 

of these techniques, sensor technology and AI techniques have rapidly expanded the scope of user data 

that could be utilised in HFE. Exploring the potential of these systems in a systematic way and 

integrating this with qualitative insight to ensure a human in the loop approach, could lead to a more 

succinct process to help design inclusive and specialised products. 

This point in time marks an opportune moment to redefine our perspective on HF. Advances in 

manufacturing, notably 3D printing, enable quicker, cost-effective, and flexible prototyping. 

Concurrently, AI-driven design techniques accelerate ideation cycles, yet without parametrisation will 

struggle to integrate human needs (Valdez et al., 2021). Leveraging insights from AI systems to deepen 

understanding of simple sensor outputs presents a significant opportunity to enhance our understanding 

of HF in design. 

Within this paper, a proposed operational framework for data-driven HF approaches is presented. 

Firstly, current HFE methods are examined, highlighting the potential of quantifiable data in modelling 

human error. Current HFE techniques are reviewed, revealing limitations in providing rapid and detailed 

insights simultaneously. Utilising these findings, the framework is presented, looking to shift HFE 

towards a condition-based monitoring strategy, while balancing input from stakeholders and qualitative 

approaches. Validated through two case studies, the framework underscores the importance of including 

experts in data collection, synthesis, and HF. The prospects and challenges that were drawn out of this 

are discussed, addressing the difficulties with interoperability of data, and developing transparent and 

explainable systems. 

2. Background 
Within this section, current HFE procedures and the tensions integrating these into the design cycle are 

discussed. Alongside this, an overview of inclusive design principles is given, showcasing the key 

human abilities that should be mapped against product demands, helping to direct potential future 

development. While we typically image human behaviour as unpredictable, this is juxtaposed by the 

succinct way human error is modelled, showcasing the potential for quantifying these interactions. Next, 

the methods we currently use to identify error and conduct ergonomic assessments are examined. Gaps 

in how we're relaying relevant information back to decision makers are found, and that real-time sensing 

could provide detail that is currently unattainable.  

2.1. Current HFE procedure 

HF is an all-incorporating term that refers to the application of psychological and physiological 

principles to engineering to the design of products, processes and systems (Wickens et al., 2002). Within 

(Reason, 1990), it states that in order to analyse potential human errors, both the conditions in which an 

error may occur in and the particular form it might take should be investigated. These authors discuss 3 

main areas that are important when evaluating the usability of a product, relating to the environment, 

task, and user base. For example, the environment will affect several things that relate to usability, such 

as clinically controlled settings compared to a busy, noisy, moving vehicle which can make a task much 

more difficult to complete. The user interface incorporates all aspects of the product the user will interact 

with, including installation, operation, and maintenance. A non-exhaustive list of these interrelating 

factors is displayed in Figure 1a).  

The individual factors displayed showcase a multitude of potentially measurable physical capabilities 

and specific skill sets that must be considered for successful product interaction. In (University of 

Cambridge, 2023), the cycle of product interaction is summarised, illustrating that inclusive design 
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principles can guide what useful physiological data can be captured that is pertinent to product 

interaction. This firstly involves sensory capabilities (perceive stimuli), followed by the ability to 

process information (think about the intended action), and then utilise their motor skills (carry out the 

intended action). For a successful product interaction, these combined capabilities of individuals within 

the given environment must be considered. As further demonstrated in (Fletcher, 2023), there are still a  

number of individual factors that will not be able to be captured by measurement of physical capabilities 

such as cultural differences, economic situation and social factors. 

In (Reason, 1990), it discusses that while the intricacies of human actions make it seem unlikely for all  

error varieties to be captured, error can be modelled in a limited number of forms. Their interpretation 

first evaluates user intention, if user's actions proceed as planned, and if they achieved their desired end. 

This gives form to two error types, slips: where actions are mis-performed, and mistakes: where the plan 

to execute an action is inadequate. A more detailed summary is displayed in Figure 1b).  

 
Figure 1. a) Inter-relating factors that influence product interaction adapted from (HSE, 2007) 

and (Imam, 2023); b) Human failure modes adapted from (Reason, 1990) and (HSE, 2007) 

This modelling of human error underpins current theory, utilised in government guidance of the design 

of safe working conditions (HSE, 2007) and medical product design (ISO 13485:2016). While there is 

overlap between the inter-relating factors, the ways we model human error is succinct, suggesting 

viability of quantification and categorisation of human error. Considering the product and the 

environment, data driven techniques that explore an individual's perception of stimuli, processing 

abilities and motor skills are the most likely to enable better product interaction. However, analysing 

human error and integrating user needs into the design cycle is currently a challenging process. 

2.2. Incorporating HF into the design cycle 

In (Maher and Poon, 1996), the concept of the design cycle is described as a traverse between the 

'problem space' and the 'solution space'. Over time, these two spaces converge with problems leading to 

a solution or solutions refocussing the problem. This creates tensions between both spaces. This is 

particularly true for integrating HF into the design cycle. In (Steen, 2011), the conflict between project-

team members and users is described, where methods to communicate at different stages of the design 

stage must be done effectively, and must adapt to the problem presented. Additionally, this must be done 

in a timely manner. In (Knott, 2001), the speed and frequency of the design cycle is equated with better 

outcomes. Within a given time frame, if more product interactions can occur, the closer the convergence 

of the design and problem spaces.  In the context of human-centred design, this means that methods to 

obtain user feedback must be quick and retain detail, reducing the speed and increasing the depth of 

knowledge gained in each design iteration. To evaluate and improve how this is currently being achieved 

within HFE, we must first understand the shortcomings of modern practice. 

2.3. HFE tools 

To facilitate an understanding of current HFE limitations, an assessment of techniques was conducted. 

Techniques gathered focus on occupational health and medical device design, two areas where user-

centred design is mandated by regulatory bodies (ISO 13485:2016, ISO 6385:2016, ISO 9241-210:2019, 

ISO 11228-1:2021), calling for systematic exploration of user and worker needs throughout the design 
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process.  Based on the constraints of the design process as summarised in section 2.2, techniques were 

assessed based on their level of insight and the time of implementation. This approach is an adaptation 

of the framework presented by (Whitefield et al., 1991), which states that observational HF techniques 

tend to tension experiment time and expertise needed. Figure 2 maps the relationship across techniques, 

as well as showing if techniques are qualitative or quantitative. 

In general, the qualitative techniques provide an in-depth view of the user groups, their potential 

interpretations and the errors that could occur. In order to gain deep insight, detailed prototypes are often 

required, to allow for the assessment of haptics and complexity of user steps (Scherer and Rose, 2023). 

Obtaining insight from users is restricted by the techniques and feedback available with lower fidelity 

prototype and a lengthy analysis procedure that occurs in user trials. Therefore, other methods tend to 

incorporate some empirical evidence, but similarly struggle to collate findings in a timely manner.  

The qualitative tools assessed are generally used to evaluate the risks of long-term injury (work-related 

muscular skeletal disorders). It was found while these tools are intuitive to implement, in many cases 

there is large variation in scores and outputs even when applied to the same task (Joshi and Deshpande, 

2019). These tools tend to consist of surveys and questionnaires, utilising check boxes and Likert scales 

to interpret user preferences reducing their fidelity and the user feedback possible. Ergo-simulation tools 

(Blanchonette, 2010) and Digital Human Modelling (DHM) (Wolf et al., 2020) have the potential to 

monitor human positioning, incorporate static human muscular skeletal modelling, and fields of vision 

into a simulated space, but requires accurate modelling of the user and environment , tending to simplify 

the problem limiting their applicability 

 
Figure 2. A mapping of HFE techniques based on level of insights and implementation time 

This analysis shows there are few techniques that fulfil the need for rapid and detailed insights. 

Qualitative tools are more time consuming but benefit from detailed user feedback and inclusion of 

experts in user experiment design, HF, and mechanical designers. The logistics of user trials, synthesis 

of data and findings, interpreting potential failures, and modifying products, all iteratively repeated, 

lends itself for a lengthy product cycle. The quantitative tools discussed are generally used as quick 

exercises to assess risk, and do not always involve experts in HF, meaning insights ayre on the side of 

oversimplification. The abstraction from the problem at hand and lack of interdisciplinary team lowers 

the amount of insight available.  

By exploring techniques that monitor individual users and incorporating expert opinions, a large amount 

of objective data may quickly be produced and interpreted effectively. The development of real-time 

sensing, combined with novel manufacturing could lead to in-situ product changes, deepening product 

understanding and reducing the number of iterations. In-situ testing could help isolate the understanding 

of additional environment factors that are relevant to product interaction. In Figure 1a), the potential 

factors that influence user's abilities to interact with products are stated. Recognizing the multitude of 

influencing factors, pinpointing the most relevant is vital for inclusive design, especially regarding 

vulnerable user groups. Focusing efforts on this identification allows for strategic prioritization in 

research and development. 
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2.4. Reflection 

The research above highlights that error modelling can be succinct and potentially quantifiable. To 

optimize product development, iteration cycles should yield rapid and detailed insights. While current 

HF methods face challenges in achieving this balance, assessing their strengths and weaknesses can 

inform the development of methods that provide faster and more objective data. Qualitative techniques, 

despite requiring time and expert interpretation, offer rich data for informed decision-making and 

relevant product changes. In contrast, quantitative data, though quicker to analyse, may lack the depth 

of user insights. Both approaches contribute strengths, that can be utilised to provide a more well-

rounded HFE approach. Additional insight into inclusive design approaches show us that different 

processes are required to interpret a product, which will change based on the interface and environment. 

3. Proposed data driven human factors framework 
Current HFE practices struggle to contribute both quick and insightful product iteration cycles, leaving 

the field at an impasse. Qualitative techniques are detailed but struggle with timely information 

synthesis, and while quantitative techniques offer quick and objective feedback, current assessments 

yield latent results lacking depth and stakeholder involvement. Whilst knowing what could be measured 

to enhance HF insights, these techniques are underutilised and underdeveloped. Addressing the 

following questions is hence crucial for driving a shift in HFE. 

1. What should be measured to understand the product interaction at hand? 

2. What is this data's relevance to the scenario?  

o Is this data from a reliable source or supported by theory? 

o Are there interplaying factors?  

o If the interaction changes how does the data change? 

3. How should data from different sources be synthesised? 

4. How can I use the data to understand what features are detrimental or beneficial for users? 

5. Can this information provided be used to make an informed decision on a product modification? 

These questions act as a structural outline to the different steps of a revised data driven HFE approach. 

To develop an appropriate framework, analogies were pulled from other fields, in particular, condition-

based monitoring. The OSA-CBM framework is a standard architecture aiming to foster a proactive 

approach to machine health, incorporating information from multi-modal data streams to achieve this 

(Mimosa, 2023). This information is utilised to make assessments of machine state, their current 

condition and what changes to the manufacturing procedure should be made, aiming to better incorporate 

design changes and improve interoperability of systems. The complexity of human behaviour requires 

adapting the comparison. Firstly, the behavioural complexity, along with the conclusions drawn from 

Section 2, demonstrate that a mixed-methods approach will be most effective when capturing insights as 

is often necessary when instigating archetypal changes in research methods (Abowitz and Toole, 2010). 

To do this effectively, teams with broader, interdisciplinary skill sets are required demonstrating, the need 

to include designers, users, experts, and other stakeholders at all stages. The developed framework, shown 

in Figure 3, aims to prompt exploration, questioning the appropriateness of posed questions, identifying 

additional factors, and addressing potential developmental challenges in implementation. Section 3.1 

describes the considerations of the framework in further detail.  

 
Figure 3. The data driven human factors framework 
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3.1. Framework overview 

Data suitability: Here, we must consider whether the direct quantitative measurement of a construct 

influencing product interaction is feasible and assess its importance. If not, a suitable proxy must be 

identified to formulate a hypothesis, based on established guidance where viable (ISO 6385:2016). This 

may evaluate the impact on motor skills, sensory capability, and processing skills, considering their 

overlap and quantitative capture feasibility in the given scenario.  This is likely to be an iterative 

procedure, that persists as more information is revealed through synthesis. Challenges to implementation 

should be considered, including data privacy concerns and the potential for in-situ experimentation. 

Data acquisition: This step looks to explore the methods by which a construct could be measured, and 

the level of abstraction they might hold to the construct (Jarecki et al., 2020). This involves exploring 

the compatibility of the data (Is this data from a reliable source or supported by theory?) the separability 

(Are there interplaying factors?) and testability (In the interaction changes, how does the measurement 

change?). To determine these, preliminary experimentation and a review of current techniques should 

be conducted. There are many potential technological prospects of techniques currently utilised in 

behavioural sciences and human computer interaction (HCI) that could be utilised in the context of 

product design as mentioned in Section 5.  

Data manipulation: This stage aims to build a system so that higher level information can be inferred 

from data inputs, for example the creation of a multimodal analysis model or visual simulation. The use 

of multimodal data has shown to improve performance within classification tasks and triangulation of 

multiple methods has shown to increase experiment rigor, validity of results, reduce bias and error (Lee 

et al., 2015; Steinert and Jablokow, 2013). It is likely that synthesis of other measurement types will 

need to be completed, such as behavioural and subjective measurements. 

State detection: This refers to the interpretation of system features, identifying what may be detrimental 

or beneficial to user groups. For complex data inputs, this may involve the creation of a learning network 

to find trends within the data presented or the need to define what an acceptable performance level may 

be. It's important to consider how much information is displayed back to designers and engineers, and 

what a useful level of insight will be. 

Prognosis management: This stage looks at how we go about implementing changes based of what is 

detected in the previous stage. For example, how might a product look if it's dexterity demand were 

lowered? Throughout the operational stages, communication of information in the appropriate format, 

with the needed level of insight needed for learning or decision making should be considered. 

4. Case studies 
Within this section the descriptive value of the framework will be demonstrated and evaluated through 

case studies. The generalisability to different usage cases will be examined, leading to the identification 

of potential challenges to be discussed in Section 5, presented alongside technological prospects. The 

applicability of the framework within the context of the cast studies is displayed in Figure 4. 

 
Figure 4. Illustration of case studies 1 & 2 within the context of the proposed framework 

Case 1 - Outrigger ski equipment for paralympic alpine skiers: In Paralympic alpine skiing, several 

studies used data-driven methods to refine outrigger ski designs for better balance, speed control, and 
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turning techniques. Modified outrigger skis, equipped to track orientation and force, revealed variations 

in athletes' techniques and identified efficiency losses. (Eikevåg et al., 2022; Silseth et al., 2021; Sletten 

et al., 2021). Similarly, adjustable outrigger skis, with varying angles of contact and length, were utilised 

to measure skier acceleration along a training track. Performance was then mapped against user 

preferences, finding that not only were the adjusted skis more comfortable for athlete's, but the 

performance improved by an average of 42% compared to the benchmark design.  

Case 2: User-adaptive information visualisation: This project investigated what characteristics 

impact 2D information visualisation, utilising eye tracking data to monitor user attention patterns 

(Conati et al., 2015). The studies consisted of monitoring performance in graph-based tasks (simple bar, 

line, and radar charts), where users were asked to extract information from different information formats, 

equating performance with perceptual speed, visual and verbal working memory. It was found that users 

with low verbal working memory exhibited longer processing times, lower efficiency, and preference 

for text-based interfaces, suggesting that adaptive personalisation may consist of more graphical based 

interfaces, and vice versa for users with lower visual working memory. Additional work has been carried 

out to help identify when this support would be needed, suggesting that user confusion may be a possible 

indicator (Sims and Conati, 2020). 

4.1. Evaluation of framework 

As shown in Figure 4, both case studies showcase the distinct steps of the framework, providing insights 

into individual performances, allowing for more inclusive and improved design outcomes in case 1, with 

these outcomes yet to be determined in case 2. Both utilise simple data measurements to build up more 

complex understandings of user behaviour to adapt the interfaces as necessary, both expressing the value 

of real-time evaluation. The inclusion of HF specialists, experts in user experimentation, the interfaces 

and tools at hand and the users proved an essential element within both processes (See Challenge 2). 

Both examples exhibit different balancing of qualitative and quantitative data inputs and varying 

complexity of data streams. In case 2, the multi modal data streams mean state detection required deep 

learning, potentially limiting the transparency and interpretability of results. In both cases, while the 

inclusion of qualitative data is difficult to include, the current interpretation of these inputs is somewhat 

simplistic (Likert scales of preferences). These inputs could potentially remove details from user 

interpretations of the interfaces and raises concerns about integrating qualitative and quantitative data 

streams (See Challenge 1). Finally, while both cases state the intentions to realise the prognosis 

management stage, the implementation is relatively simplistic within case 1 and yet to be implemented 

within case 2. Further development of these projects, and knowledge about the technologies available 

to help implement this step is needed. 

5. Prospect and challenges 
Within this section, a non-exhaustive discussion of future technological prospects and challenges that 

are likely to arise during future implementation of the framework , as drawn out from the aforementioned 

case studies in Section 4, are discussed. Both are displayed in Figure 5, indicating the steps to which 

they are applicable. 

 
Figure 5. The technological prospects and challenges of the data driven HF framework 
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Technological prospect 1 - Hand tracking: Gesture recognition and hand tracking are mature research 

areas, mainly aiming to advance how we interact with VR interfaces. Camera based systems such as 

Media Pipe1 can provide hand landmark tracking in real time. In addition to this, wrist mounted gesture 

recognition systems are a promising development for the context of product interaction. These can detect 

hand position and even muscle activity without compromising a user's dexterity or being affected by 

occlusion. Common techniques include EMG (Electrical myography), arrays of infrared sensors, 

electrical impedance tomography (EIT), ultrasound and pressure sensors (Mcintosh, 2016). 

Technological prospect 2 - Cognitive load monitoring: To evaluate human recognition of stimuli, 

several techniques have been developed over the last decade. As discussed in Section 4,  eye gaze 

patterns have been utilised to recognise user cognitive capabilities as well as adapt to user's in real time 

for 2D interfaces (Steichen et al., 2013) and realisation of this for 3D interfaces could be realised using 

wearable eye tracking equipment2. Alternatively, portable neural imaging techniques, such as 

electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have shown to 

correlate brain activity to stimuli presence and the associated cognitive load, potentially helping to 

understand the intuitiveness of user steps (Dybvik et al., 2021). 

Technological prospect 3 - User modelling: As demonstrated in Section 4, 2D and 3D visualisation of 

the modelling environment can help with further inspection of relevant parameters and determining 

those that have the biggest influence - enabled by the creation of deep learning toolkits such as WEKA3. 

The modelling of 3D environments and interaction tends to be bespoke, but the development of contact 

rich simulation modelling environments could help to address this. Myosuite utilises reinforcement 

learning and adapts hand grasps to manipulate an object with a given trajectory (Caggiano et al., 2022), 

considering factors such as muscle sarcopenia and fatigue. Implementation requires specialist 

knowledge, is computationally expensive and still requires further development to enable further 

dextrous operations. 

Technological prospect 4 - Mixed prototyping: The incorporation of user feedback into the design 

cycle typically requires feedback of a few prototypes by users, adjusting based on feedback and iterating 

this procedure. The use of mixed-reality prototypes, created in a virtual space, streamlines the process, 

enabling quicker evaluation, model modification, and prototype creation, thus increasing the number of 

iterations within a given timeframe (Kent et al., 2021). This approach allows real-time alteration of the 

physical, functional, and psychological aspects of a product, facilitating systematic exploration of key 

interaction features (Cox et al., 2022). While mixed prototyping supports some product changes, re-

imagining haptic feedback, especially in altering product interaction steps, remains challenging. 

Challenge 1 - Interoperability of Data: Within several stages of the framework, the interpretation of 

multiple data streams in mixed formats is pivotal. The effectiveness of this will rely on the ability to 

interpret the data streams, which will rely on the expertise at hand, the computational resource available, 

data storage facilities, the data stream quality, applicability, and suitability to the problem amongst other 

factors. This also plays into the balancing of a mixed-method approach. As illustrated in Section 4, the 

quantification of human preferences could potentially remove the nuances, and the incorporation of 

qualitative feedback in a computational space is challenging. There is potential to involve text-based 

tools to enable creation of prototypes within a simulated space, such as DALL-E4 or GPT Blender Add-

ons5, although tools that allow for alteration whilst still enable parametric design are limited. 

Challenge 2 - Explainable systems and interdisciplinary teams: To maintain a human-in-the-loop 

approach, automated decisions and processes require explainability across stakeholders. The level of 

detail must be tailored to their needs: detailed insights for engineers and designers, and a clearer 

understanding of cost-benefit and high-level information for decision-makers and business owners. The 

development of explainable AI (XAI) systems in this context is pivotal, and the managing of over-

reliance on AI systems must be carefully considered to ensure the sensible decisions are being made 

(Chen et al., 2023).  Additionally, updated training of HF specialists and engineers to understand the 

 
1 Media Pipe: https://developers.google.com/mediapipe 
2 Tobii Pro Glasses 3: https://www.tobii.com/products/eye-trackers/wearables/tobii-pro-glasses-3 
3 WEKA: https://www.weka.io/ 
4 DALL·E-3: https://openai.com/dall-e-3 
5 GPT Blender Add-on: https://www.blendermarket.com/products/blender-gpt 

https://doi.org/10.1017/pds.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2024.11


 
DESIGN THEORY AND RESEARCH METHODS  93 

potential limitations of these systems (Demirel et al., 2023) and the inclusion of machine learning 

expertise and electronic systems on HFE teams . This is intertwined with ensuring the efficacy of a 

mixed-method approach. Experts in the methods must be involved in product development to interpret 

and understand the best indicators, appropriate synthesis, and time scales. 

6. Conclusions 
In conclusion, the work presented advocates for a paradigm shift in HFE, moving towards a more data-

driven and interdisciplinary approach. This proposition aims to address the need for faster product 

innovation and fostering of inclusive and user-centric outcomes. The proposed framework aims to 

integrate qualitative and quantitative methods in an age of automated decision making, addressing data 

suitability, data acquisition, data manipulation, state detection, and prognosis management. Case studies 

where this process is already being implemented in the early stages were summarised, showing the 

potential in both physical and digital systems. Throughout the framework, the need for expert 

involvement in both HFE, electronic systems and machine learning is essential to ensure robust data 

collection, decision making and incorporation of qualitative assessments. The assessment of this 

framework's advantages should be continuous, aiming to examine the ease with which it can be 

implemented alongside generative systems and simulation techniques, as well as the feasibility of 

integrating these mentioned technologies into a product design process. 
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