
RIGHT BOL QUASI-FIELDS 

MICHAEL J. KALLAHER 

1. Introduction. We shall consider quasi-fields which satisfy the multi
plicative identity 

(1.1) (xy - z)y = x(yz • y). 

(1.1) will be called the right Bol law and a quasi-field satisfying it will be 
called a right Bol quasi-held. Moufang quasi-fields, i.e., those satisfying the 
Moufang identity 

(1.2) (xy) (zx) = (x • yz)x 

were studied in (5). Quasi-fields satisfying the left Bol identity 

(1.3) y(x-yz) = (y • xy)z 

were studied by Burn (3) and the author (6). Such quasi-fields are called 
Bol quasi-fields. 

Our investigation will parallel the investigations in (5; 6). In § 2 we derive 
necessary and sufficient conditions for a right Bol quasi-field to be an alter
native division ring and also criteria for it to be a near-field. With this informa
tion we derive in §§ 3 and 4 new characterizations of Moufang planes similar 
to those in (5; 6). 

Loops satisfying (1.1) have been studied by Robinson (10). He calls such 
loops Bol loops. 

We refer the reader to either (4) or (9) for the principal definitions and con
cepts of quasi-fields and projective planes. In particular, we shall assume a 
familiarity with the notions of coordinatizing a projective plane using a 
ternary ring. The symbol (R, F) will be used to denote the ternary ring in 
which R is the set of symbols and F is the ternary function defined on R. 

I wish to thank the referee for many helpful suggestions in the final prepara
tion of this paper. 

2. Right Bol quasi-fields. A right Bol quasi-field is a ternary ring (Q, F) 
which satisfies 

(i) F(a, b, c) = ab + c for all a, b, c £ Q; 
(ii) Q is an abelian group under addition ( + ) ; 

(iii) a(b + c) = ab + ac for all a, b, c 6 Q\ 
(iv) (ab • c)b = a(bc • b) for all a, b, c £ Q. 
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Thus a right Bol quasi-field is a quasi-field whose multiplicative loop satisfies 
the right Bol law (iv). Robinson (10) proved that such loops are power-
associative, and every element of such a loop has a unique inverse. Also he 
showed that the right inverse property holds and that the mapping of each 
element into its inverse is a semi-automorphism. Thus we have the following 
property. 

LEMMA 2.1. Let (Q, F) be a right Bol quasi-field. For a G Q, a 9* 0, there 
exists an element a~~l G Q such that aa~l = a~la = 1 and 

(2.1) ba-a-1 = b, 

(2.2) iba • b)-1 = b~la~l • b~\ 

for allb £ Q,b j* 0. 

Remark. The power associativity of loops satisfying the right Bol law was 
first proven by Bol (2). I t also follows immediately from a result of Pickert 
(9, pp. 244-245). 

Definition. If (Q, F) is a quasi-field, then the right nucleus of Q is the set 
NT(Q) = {n\ n G Q, xy • n = x • yn for all x, y G Q}. The middle nucleus 
Nm(Q) and the left nucleus N\(Q) are similarly defined. The nucleus of (Q, F) 
is the set N(Q) = Nt(Q) H Nm(Q) H Nr(Q). The kernel of (Q, F) is the set 
K(Q) = {k\ k 6 Nr(Q), (x + y)k = xk + yk for all x, y £ Q}, and the centre 
of (Q, F) is C(<2) = {c\ c e Nr(Q), ex = xc for all x Ç (?}. 

Remark. In general, Nr(Q) is a near-field and -£((?) is an (associative) 
division ring, but Ni(Q), Nm(Q), and C(Q) need not be closed under addition, 
even though they form groups under multiplication. Note also that 
C(Q) C K(Q). Finally, any quasi-field can be regarded in a natural way as a 
(right) vector space over its kernel (1). 

LEMMA 2.2. / / (Q, F) is a right Bol quasi-field, then Nm(Q) = Nr(Q), and 
C(Q)CN(Q). 

Proof. Let n G Nr(Q), n ^ 0. Then for any x, y 6 Q we have 

x - ny = x(n - zn) = (xn • z)n = xn - zn = xn • y, 

where z is defined by y = zn. Thus Nr(Q) C Nm(Q). 
If n G NmiQ), n ^ 0, then for any x, y G Q, choosing 2 such that nz = y, 

we have 

x - yn = x(ws • w) = (xw • g)w = (x • nz)n = xy - n. 

Hence Nr(Q) = Nn(Q). 
For the second statement, let c G C(Q). Then for all x and 

c G NT(Q) = Nm(Q). Thus c • x^ = xy • c = x • yc = x • cy = xc - y = ex • y, 
for all x, y. Hence C(Q) C iV(Ç). 
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LEMMA 2.3. In a right Bol quasi-field (Q, F) we have —1 G N(Q) and hence 

(2.3) (—%)y = x(—y) = —xy. 

Proof. Assume that 1 ^ — 1 . Then, since xy + x(—y) = x[y + (—y)] = 0, 
x( — y) = —xy, and in particular x( — 1) = —x for all x. Hence 

x • y( — 1) = x(—3>) = — ry = x;y • ( — 1), 

and - 1 G iVr((?) = i\fTO((?). Hence x- (-l)y = x(-l) -y for all x, y G Q. 
In particular, ( — 1) • (-l)y = y, since ( —1)( —1) = 1. Therefore 

(-l)[x + ( -1 )* ] = ( - 1 ) * + x, 

which implies that ( — l)x = — x, since — 1 = ^ 1 . Then 

( — 1) - xy = —xy = xy • ( — 1) = x • y( — 1 ) = x • ( — 1 )y 

= x( — 1) • 3/ = ( — l)x - y 
and - 1 G #,((?). 

Our first two theorems give necessary and sufficient conditions for a right 
Bol quasi-held to be an alternative division ring. In (5; 6) the first theorem 
was proven for Moufang and Bol quasi-fields, respectively. 

THEOREM 2.1. If (Q, F) is a right Bol quasi-field, then (Q, F) is an alternative 
division ring if and only if 

(2.4) {a + l)b = ab + b 

for all a, b G Q. 

Proof. If Q is an alternative division ring, then (2.4) holds. Hence we need 
only prove the sufficiency. We first prove that 

(ab + a)b~l = a + ab'1 

for all a, b, with M O . For if c is defined by a = cb-1, then 

(ab + a)b~l = a(b + 1) • b~l = [cb-1 • (b + l)]b~l = c[b~l(b + 1) • b~l] 

= c(b~l + b~lb~l) = cb-1 + cb-1 • b~l = a + ab~\ 

Next we prove that for all a, b G Q, 

(2.5) (ab + a)a = ab • a + a2. 

li b = 0 or a = 0 there is nothing to prove; thus assume that b ^ 0 and 
a 9^ 0. Then 

(ab + a)a = (a + ab~l)b • a = [(1 + ab'1 • or1)a • 6]a = (1 + ab~l-a~l) (ab -a) 

= ab - a + (ab~l • a~l) (ab - a) = ab • a + a2„ 

For the proof of the theorem, let a, b, c G (X Then 

[ca - (b + l)]a = (ca • 6 + £a)a. 
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But also 

[ca - (b + l)]a = c[a(b + 1) • a] = c(ab • a + a2) = c(ab • a) + ca2, 

using (2.5). Hence 

(ca • b + ca)a = (ca • b)a + c - a2 

for all a, b, c Ç. Q. Let x, y, z G Q, x =̂  0 and s 3̂  0. Choose c, d £ Q such that 
£3 = x, dx = y. Then 

(y + x)z = (xd + x)z = (cz • d + cz)z = (cz • d)s + cz • z = 3/2 + xz. 

I fx = 0 o r z = 0, this holds trivially; hence Q is a division ring satisfying the 
right Bol law. Thus Q is an alternative division ring (11; 12). 

THEOREM 2.2. Let (Q, F) be a right Bol quasi-field. Q is an alternative division 
ring if and only if for all a, b £ Q, a ^ 0, 

(2.6) (1 - a + ba)a~1 = a"1 - 1 + b. 

Proof. Again we need only prove that (2.6) implies Q is an alternative 
division ring. We will do this by showing that (Q, F) satisfies (2.4). We first 
prove two lemmas. 

LEMMA 2.4. For any a, b G Q, a ^ 0, we have: 

(2.7) (1 - a + b)a~l = a"1 - 1 + bar1, 

(2.8) (a - a2 + ba)a~l = 1 - a + 6, 

(2.9) (1 - a + b)a = a - a2 + ba. 

Proof. Pick c such that b = ca. Then applying (2.6) yields (2.7). Thus 

(a — a2 + ba)a~l = [aa~1 • (a — a2 + &a)]a~1 = ^ [ a " 1 ^ — a2 + &a) • a - 1] 

= afa"1 - 1 + (a"1 • ba)a~1] = 1 - a + 6. 

(2.9) is obtained from (2.8) by multiplying both sides by a. 

LEMMA 2.5. For any a £ Q, a ^ 0, 1, we have a(l — a)~l = (1 — a)~la 
and (a~l — 1)_ 1 = a(l — a ) - 1 . 

Proof. For the first equation we have, using (2.7) with b = 0, 

•a(l - a ) - 1 = [1 - (1 - a)] ( l - a ) - 1 = (1 - a ) " 1 - 1 

= (1 - a)- i [ l - (1 - a)] = (1 - a)~xa. 
For the second we have 

[a(l - a )" 1 • (a-1 - l)]a = [(1 - a)~la - (a"1 - l)]a 

= (1 - a ) - 1 [«(a -1 - 1) • a] = (1 - a ) " 1 • (1 - a)a = a. 

Hence a ( l - a ) " 1 • (a"1 - 1) = 1 or (a"1 - l ) - 1 = a ( l - a ) - 1 . 
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W e now turn to the proof of Theorem 2.2. Let a, b 6 Q, b ^ 0, 1, and choose 
c such t h a t (Tr-1 — l ) _ 1 c = a. Then 

(1 + a)b = (6- 1 - l ) - 1 ^ - 1 - 1 + c) • b. 

If d is given by (b~l — 1 ) _ 1 = db, we have, applying (2.9), 

(1 + a)b = [d& • (fr"1 - 1 + c)]b = d[b(b~l - 1 + c) • 6] = d(b - b2 + be • b) 

= db - db-b + (db- c)b = (b-1 - l ) - 1 - (fr"1 - l ) " 1 • b + ab 

= (ô- 1 - l ) - ^ ! - b) + ab = b + ab, 

(and using the second equation of Lemma 2.5 in the last s tep) . Hence Q 
satisfies (2.4) and is therefore an al ternat ive division ring. 

W e tu rn now to the question of when a right Bol quasi-held is a near-field. 
Our two results in this direction are in terms of the ' ' s t ruc tu re" of the quasi-
held. In (5), i t was shown t h a t a Moufang quasi-field is a near-field if i t was of 
dimension two over i ts kernel and its kernel coincided with i ts centre. Th i s 
also holds for r ight Bol quasi-fields as we shall now see. However, this does 
no t hold for Bol quasi-fields. Burn (3) gave an infinite class of Bol quasi-fields 
which are neither near-fields nor division rings. In each of these quasi-fields, 
the kernel equals the centre and the quasi-field has dimension two over i ts 
kernel. 

T H E O R E M 2.3. Let (Q, F) be a right Bol quasi-field of dimension two over its 
kernel K(Q). If K(Q) = C(Q), then (Q, F) is a near-field. 

Proof. In the proof of the analogous theorem in (5), the only facts used were 
(1) K(Q) = C(Q) C N(Q) and _ 
(2) Q satisfies the right a l ternat ive law. 

(1) follows from L e m m a 2.2 and (2) follows from the r ight Bol law. 
André (1) defined a class of quasi-fields as follows: Le t F be a field and a an 

automorphism of F having finite order n. Le t K be the fixed field of a and 
define the multiplicative homomorphism v\ F —> K by v(x) = x xa . . . x^'1. 
Finally, let /JL be any mapping of K into the set | 0 , 1, . . . , n — 1} subject 
only to the condition t h a t /x(0) = /x(l) = 0. T h e elements of the quasi-
field are the elements of F with addit ion " © " and multiplication " o " defined 
as follows: 

x © y = x + y, x o y = x - ya(^x\ 

where " + " and " • " are the addit ion and multiplication, respectively, of F 
and <J(X) = a^x). 

Burn (3) proved t h a t an André quasi-field is a near-field if (1) it is Moufang 
and (2) i t satisfies the following reflexive law: (x o y) o x = x o (y ox), or if 
(3) it is finite and satisfies the left Bol law. H e did, however, construct infinite 
André quasi-fields satisfying the left Bol quasi-field. We shall show t h a t every 
André quasi-field satisfying the r ight Bol law is a near-field. For this we need 
the following facts about André quasi-fields: 
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(i) v(xoy) = v(x)v(y) = v(yox), 
(ii) <r(xoy) = <r(y o x). 

THEOREM 2.4. Let (Q, F) be an André quasi-field which satisfies the right 
alternative law. Then (Q, F) is a near-field. 

Proof. From [(x o y) o z] o y = x o [(y o z) o y], for all x, y, z we obtain: 
Xy<x(x)za(Xoy)ya((xoy)oz) _ Xy<r(x)zff(V)<r(x)ya(yoz)<r(z) ^ 

Then z = 1 implies, since x o 1 = x for all x G <2, that 
ycr(xoy) __ ya(y)<r(a;) 

for all x, 3; Ç <2. Now <r(xoy) = a(y o x) implies that 

(x o y) o x = x;ya(a:) • x*^0^ = xya^xff^ff^x,) 

and 
x o (3/ o x) = x ^ ^ x ^ ^ . 

Hence, the reflexive law holds and (Q, F) is a near-field. 

3. Right Bol planes. Let SP be a projective plane and let ^4, 5 , and C be 
three distinct non-collinear points. The Bol configuration with basis points 
A, B, and C is as follows: From 

EiC = E2C, E2B = Q2B, E,A = PtA (i = 1, 2), 
P iC - P2C, P i P = RiB, QtA = P , ^ (i = 1, 2), 
QXC = Q2C, P i 3 = (2i5 = P 2 £ = R2B, 

Eu Pu Qi9 Rt g AB, AC, BC (i = 1, 2), 
follows 

P iC = R2C 
(Figure 1). 

B 

FIGURE 1 
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The Reidemeister configuration is obtained if we replace the condition 
EXB = . . . = R2B by the separate conditions EXB = QXB and P2B = R2B. 

We shall use Hall's method of coordinatization (4) with "slope" written on 
the left. If a projective plane SP is coordinatized by a ternary ring (R, F), 
then with (R, F) can be associated four points U, V, 0, I of 8P. U is the 
point (0) or the point at infinity of the x-axis, V is the point (oo ) or the point 
at infinity of the ^-axis, 0 is the point (0, 0), and I the point (1, 1). We will 
call these four points the basis points of (R, F) and, in particular, U and V 
will be called the points at infinity of (R, F). When (R, F) is a quasi-field, we 
will sometimes say that 8P is coordinatized by (R, F) with respect to U and V. 
Note, however, that order is important in this terminology: the first point 
is always the point (0), the second the point (oo ), etc. 

The Bol configuration is intimately tied up with the right and left Bol laws 
for loops and with the Moufang law. We summarize here what is contained 
in (9, pp. 50-57). Let SP be a projective plane coordinatized by a ternary 
ring (R, F) with basis points U, V, 0, I. (R, F) satisfies the left Bol law if and 
only if the Bol condition holds for A = V, B = 0, C = U. 

The right Bol law for (R, F) is equivalent to the Bol condition for A = 0, 
B = V, C = U. The Moufang law for (R, F) is equivalent to the Bol condition 
holding for the above two cases as well as the case A = 0, B = U, C = V. 
Furthermore, the Bol condition holding for any two of these three cases 
implies that it holds for the third case also and thus (R, F) satisfies the 
Moufang law. For example, if (R, F) satisfies the right Bol law and & has a 
collineation fixing 0 and interchanging U and V, then (R, F) satisfies the 
Moufang identity. 

The Reidemeister condition for A = V, B = 0, C — U is equivalent to 
(R, F) having associative multiplication. We also should mention that the 
Bol condition is symmetric in A and C while the Reidemeister condition is 
symmetric in A, B, C. 

Finally we mention that if one ternary ring satisfies the right Bol law 
(left Bol law, Moufang law) then every ternary ring having the same first 
three basis points satisfies the right Bol law (left Bol law, Moufang law). 

In (8) Klingenberg proved that the Reidemeister condition holding generally 
in a projective plane implies the Theorem of Desargues and in (7) he showed 
that the Bol condition holding generally implies the small Theorem of 
Desargues. 

Definition. A projective plane £P is a right Bol plane (with respect to the 
points U and V) if one of the ternary rings of £P (with U and V as its points 
at infinity) is a right Bol quasi-field. 

THEOREM 3.1.-4 projective plane £P is a Moufang plane if there exist in & 
distinct points U, V, U' with UV = U'V such that SP is a right Bol plane with 
respect to U and V and also with respect to V and V. 
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Proof. Choose a Bol quasi-field (Q, F) of & such that U and V are its 
points at infinity and V = (1). This we may do since £P is (UV, UV)-
transitive and the fact that the right Bol law is an isotopic invariant. Pick 
a, b £ Q with a 9e 0, 1, b 9e 0, 1. Consider the points 

Ei = ( 1 , 1 - a ) , E 2 = ( a , 0 ) , P1=(x,x-l)1 P 2 = (1, 0), 

Qi = (1, 1 — a + ba), Q2 = (a, ba), 

Rx = (Xj (1 - a + ba)x), R2 = (1, 6), 

where x is given by the equation 

(3.1) (1 - a)x = x - 1 

(Figure 2). These eight points satisfy the hypothesis of the Bol configuration 
for the points A = (0, 0), B = V, C = U'. Thus P i t / ' = R2U' or 

(3.2) x + 6 - 1 = (1 - a + ba)x. 

FIGURE 2 

We have shown that given a 9e- 0, 1, if x satisfies (3.1), then for any 
b 9^ 0, 1, (3.2) holds. Thus x depends only on a. Assume, in addition, that 
a 9^ — 1 and let b = — a - 1 in (3.2). This yields 

x — arl — 1 = ( — a)x. 

x = arl is a solution of this equation. If a = — 1 , then it follows directly 
from (3.1) that x = - 1 . Therefore x = a"1 in (3.1) and (3.2). 

Hence, given a 9^ 0, 1, b 9^ 0, 1, we have proven: 

(3.3) (1 - ûOa-1 = a-1 - 1, 

(3.4) (1 - a + ba)a~l = a"1 + & - 1. 
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If a = 1 or b = 1, (3.4) is trivial. If b = 0, (3.4) reduces to (3.3). Hence 
Theorem 2.2 implies that Q is an alternative division ring and therefore 0 is 
Moufang. 

COROLLARY 3.1.1. Let 0 be a right Bol plane with respect to the points U and 
V. SP is a Moufang plane if and only if there exists a collineation of 0 fixing V 
and moving U. 

Proof. If 0 is Moufang, such collineations exist. On the other hand, if a is 
such a collineation, then TJaV 9e UV implies that 0 is a translation plane 
with respect to two lines and hence 0 is a Moufang plane (4, p. 372). If 
U°V = UV, then Theorem 3.1 applies and 0 is Moufang. 

Remark. More general results than Theorem 3.1 and its corollary have been 
obtained by André (1) in the case of near-field planes and by the author for 
planes coordinatized by Moufang quasi-fields (5) or Bol quasi-fields (6). 

4. Integration. In this section we consider what happens if a projective 
plane 0 is coordinatized by a Bol quasi-field with respect to the points U 
and V and also by a right Bol quasi-field with respect to the points U' and V. 
If u' = U, V = V (or if U' = V, Y = U), then 0 is coordinatized by a 
Moufang quasi-field with respect to U and V. This is the best we can hope 
for; for example, 0 could be coordinatized by a near-field. 

If U' and V are both distinct from U and V, then it is still possible for 0 
not to be Moufang. Andre's exceptional plane (the plane over the Hall near-
field of order 9) is an example of this (1). Thus we have to add an additional 
restriction. The restriction needed is the same one that was needed in (5; 6). 
With this restriction, we shall show that 0 is Moufang. 

THEOREM 4.1. Assume that 0 is a projective plane coordinatized by a Bol 
quasi-field with respect to the points U and V. If there exists a point U' with 
Uf j* U, V, U'V = UV such that 0 is a right Bol plane with respect to U' 
and V, then 0 is Moufang. 

Proof. Let (Q, F) be a Bol quasi-field coordinatizing SP with respect to U 
and V. We denote the points of 0 by their coordinates (x,y), (m) with 
respect to (Q, F). Without loss of generality, we may assume that Uf = (1), 
since SP is (UV, UV)-transitive and the fact that the right Bol law is an iso-
topic invariant. Since every quasi-field of order less than 9 is a field, we may 
assume that Q has at least nine elements. The following two mappings are 
collineations of SP\ 

(4.1) a: (x,y) -* (y,x), (m) -+ (w"1), U-> V, V-> U, 

(4.2) r: (x, y) —> (a~xy, ax), (m) —> (a • m~la), U —» V, V -* U, 

where a Ç Q, a 9^ 0, ± 1 . Their product cr maps (1) into (a2) and fixes U 
and V. a2 9e 1 since this would imply that a = ± 1 ; see (3). Thus ar fixes V 
and moves U'. By Corollary 3.1.1, 0 is Moufang. 
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THEOREM 4.2. Assume that SP is a projective plane coordinatized by a Bol 
quasi-field with respect to the points U and V. If there exists a point V with 
V ^ U, V, UV = UV such that SP is a right Bol plane with respect to U 
and V\ then £P is Moufang. 

Proof. Choose a coordinate system (Q, F) for SP with U and V as its points 
at infinity. Then (Q, F) is a right Bol quasi-field. If we represent the points 
of P by their coordinates (x, y), (m) with respect to (Q, F), then, as before, 
we may assume that V has coordinate (1). Since SP is coordinatized by a Bol 
quasi-field with respect to U and V, the Bol configuration holds for A = V, 
B = (0,0), C = U. 

Pick b, c Ç Q with b 9e 0, 1, c ^ 0, 1. Consider the points 

£ ! = ( 0 , c ) , E 2 = ( l , c ) , P i = ( - 1 , - 1 + c ) , P 2 = ( 0 , - l + c), 
Gi = (0,cb), Q2 = (b,cb), 

Ri = (f,f+cb), R2 = (0, -b + cb), 

where / is defined by the equation (1 — c)f = f + cb (Figure 3). 

Ri(f,f+cb) P2(0, -b + cb) 

FIGURE 3 

These eight points satisfy the hypothesis of the Bol configuration for 
A = V, B = (0, 0), C = U. Therefore RtU = R2U, or f = -b. Hence 

(4.3) (1 - c)(-b) = -b + cb 

for all b, c G Q, b ^ 0, 1, c ^ 0, 1. Since - 1 Ç C(Q) C N(Q) we have, 
replacing — c by d and — b by e, 

(4.4) (1 + d)e = e + de 

for all d, e£Q with d ^ 0, 1, e ^ 0, - 1 . (4.4) still holds if d = 0 or - 1 , or if 
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e = 0 or —-1. Thus by Theorem 2.1, Q is an alternative division ring and SP 
is Moufang. 

Definition. A right Bol quasi-held (Q, F) is non-exceptional if Nr(Q) is 
neither the Hall near-field of nine elements, nor GF(3), nor GF(5). A pro
jective plane SP is a non-exceptional right Bol plane (with respect to the points 
U and V) if one of the ternary rings of SP (with U and V as its points at 
infinity) is a non-exceptional right Bol quasi-field. 

LEMMA 4.1. If (Q, F) is a non-exceptional right Bol quasi-field with charac
teristic not 2, there exists b £ Nr(Q) with b ^ 0, 1, — 1 and b2 ^ — 1. 

Proof. If Nr(Q) is a proper near-field, the assertion follows from Andre's 
result that the only near-field with no such element b is the Hall near-field of 
order 9 (1, pp. 141-142). Clearly, the only fields not fulfilling the assertion are 
GF(3) and GF(5). In the case of a non-commutative division ring, the lemma 
follows from the fact that to every subfield there exists a pure extension field. 

If the non-exceptional right Bol quasi-field (<2, F) is actually Moufang, 
then our definition agrees with that of a special Moufang quasi-field given in 
(5), since in this case Nr(Q) = N(Q). By the lemma, (Q, F) will then also be 
a non-exceptional Bol quasi-field if it has characteristic not 2 (6). 

For our next theorem we need the following result proved in (6). 

THEOREM A. Let SP be a projective plane coordinatized by a non-exceptional 
Bol quasi-field with respect to the distinct points U and V. If there exist distinct 
points U' and V with U' ^ U, V such that SP is also coordinatized by a Bol 
quasi-field with respect to Ur and V, then SP is a Moufang plane. 

THEOREM 4.3. Let SP be a non-exceptional right Bol plane with respect to the 
points U and V. If there exist distinct points U', V with 

UV = UV, U' 9± U, V, V 9* U,V 

such that SP is coordinatized by a Bol quasi-field with respect to V and V, then 
0 is a Moufang plane. 

Proof. Choose a coordinate system (Q, F) for £P with Ur and V as its 
points at infinity. If we denote the points of & by their coordinates with 
respect to (Q, F), then we may assume that V = (1). Assume U = (a), 
a T6- — 1. Then the mapping a defined in (4.1) is a collineation of 0 since 
(Q, F) is a Bol quasi-field, a fixes V and moves U since a~l = a implies a = 1 
or —1 (3). Corollary 3.1.1 implies that & is Moufang. 

Assume now that U = ( — 1). The characteristic of (Q, F) is not 2. Since 
— 1 G C(Q) H N(Q) (see 3), the mapping (x, y) —> (x, —y), (m) —* ( — m), 
V —> V is a collineation of 0 which interchanges U and V. Thus, if (Q', Ff) 
is a non-exceptional right Bol quasi-field coordinatizing 0 and having basic 
points U and V, then it is a Moufang quasi-field. Furthermore, (Q, F) having 
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characteristic not 2 implies that (Qf, Fr) has characteristic not 2. Thus (Q', Ff) 
is a non-exceptional Bol quasi-field. By Theorem A, SP is Moufang. 

THEOREM 4.4. Let SP be a non-exceptional right Bol plane with respect to the 
points U and V. If there exist points U', V in SP with U' ^ U, V such that SP 
is coordinatized by a Bol quasi-field with respect to U' and V, then 8P is a Moufang 
plane. 

Proof. If U'V ?£ UV, then 3P is a translation plane with respect to two 
lines and thus is Moufang. If U'V = UV, then the theorem follows from the 
previous theorems. 
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