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ABSTRACT

The concept efficiency of a bonus-mains system was defined, apparently
in a totally different way, consecutively by Loimaranta (1972) and Lemaire
(1975, T976)- In this paper we start with a more general model that leads us
to a definition of efficiency that contains both earlier ones as special cases.
Further we introduce the definition of efficiency over a finite planning
horizon and consider the efficiency not only for a single risk but also for the
entire risk group. As a consequence of our approach we can also generalize
the concepts excess premium and central value as they were introduced by
Loimaranta.

1. THE BONUS-MALUS SYSTEM AS MARKOV CHAIN

The basis of a fair tarification in insurance, in our case motorcar
insurance, consists in the fact that each policyholder is charged a
premium that is proportional to the risk that he actually represents.
This risk is determined by a great number of risk factors. Some of
them, such as type and use of the car, can be taken into considera-
tion a priori for the tarification and they enable us to split up the
heterogeneous collectivity of risks into a number of risk groups
which have a more homogeneous risk structure. Other factors
cannot be taken into account a priori since they are too difficult
to observe, or for social and psychological reasons, or just because
one doesn't know all the factors which influence the risk. Due to
these factors there will still be accident proneness differentials
within a risk group. In the course of time these differentials will be
reflected by the individual claim experience of the risk. Therefore
one can bring into account a posteriori the earlier neglected risk
factors by means of an individual experience rating method, such
as a bonus-malus system.

From a point of time t = o we consider such a risk group in
which the tarification is based on a bonus-malus system that is
determined by the following factors.
— The length of an insurance period is 1, which means nothing

else than that the length of a period is choosen as unit of time.

— The number of classes is n.

— The premium which a risk of class j has to pay at the moment t
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to be insured for the period \t, t + i [is bt(j); j e {i, . . ., n), t z
{o, i, . . .}.

— The initial class in which a risk is placed at t = o is the class s.

— The transition rules are given in the form of probabilities %(&);
i, j s{i, . . ., n}, k s{o, i, . . . }; where %(&) = i if a risk of class i
moves to class _;' when k claims have occurred in the past period,
and tij(k) = o if such a risk goes to a class different from j . In
order that the transition rules be complete and free of contra-
dictions we must have: for each (i, k) there is one and just one j
so that tij(k) = i.

We assume that the accident proneness of a risk of the considered
risk group can be represented by a risk parameter X, which is the
claim frequency of the risk, i.e. the expected number of claims
per period for that risk. The value of the risk parameter is regarded
as a realization of a random variable A, whose distribution function
t/(X) represents the risk structure of the group. We take that the
value of the risk parameter is independent of time. Further we
assume that for a given risk X the random variables which give the
number of claims for the successive periods are mutually indepen-
dent and identically distributed with common probability distribu-
tion >̂j;(X), which depends explicitely and uniquely on the para-
meter X.

These assumptions permit us to describe the evolution of a given
risk through the bonus-malus system by a Markov chain with
constant transition matrix. The probability p$ (X) that a risk X
which is in the class i will be in the class j t periods later, is given
by the recursion formula

= i pk(k)t{j(k) (i.a)

2. THE EFFICIENCY OF A BONUS-MALUS SYSTEM

One notices that each country and in some countries even each
insurance company has its own bonus-malus system. However all
this systems have the same purpose, viz. to come to a fair tarifi-
cation by adjusting the premiums of each individual policyholder as
good as possible to the risk that he actually represents. To measure
how good a system fulfils this requirement the concept efficiency
is introduced.
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We denote by XT(k) a random variable that gives the discounted
value of all premiums that will be paid by a risk X in the time inter-
val [o, T[, TS{I, 2, . . .}.

These premiums are the ones paid at the moments o, i, . . ., T — i;
where the premium at a moment t equals bt(j) if the risk is in class j
at the moment t, and is zero if the risk has by that time left the
system. The expectation E[XX(X)] of the discounted value of these
premium payments, which is determined by the used bonus-malus
system, can be called the bonus-malus premium for a risk X in
[o, T[ . By YT(X) we denote a random variable that gives the dis-
counted value of all claim costs of a risk X in [o, T[ . The expectation
£[Y.(X)] of the discounted value of these claim costs represents the
risk premium for a risk X in [o, T [.

To verify how good the premium of a certain policy holder
corresponds with the risk that he represents we measure the sensi-
bility of the bonus-malus premium by changing risk premium.

dE[YT(X)]
Therefore we compare a relative variation --. in the risk

dE[Xr{\)] .
premium with the relative variation . in the bonus-malus

premium that it implies. By definition we call efficiency of a bonus-
malus system for a risk X in [o, T[ the ratio of these two quantities

e (X) = J ^ M d ln

d In £[YT(X)]

The efficiency in [o, T[ is thus the elasticity of the bonus-malus
premium in [o, T[ with respect to the risk premium in [o, T[ . Put
into words this means that for a risk X a variation of i% in the
expectation of the discounted claim costs in [o, T[ causes a variation
of eT(X)% in the expectation of the discounted premium payments in
[o, T[ .

When we take in (2) the limit for T ^ o o w e get the efficiency in
[o, 00 [, viz.

e(\) = lim eT(X) (3)

A first analysis of the definition of efficiency enables us to make
the following observations

A reasonable bonus-malus system got to have a separation effect,
so that in an average sense good risks pay lower premiums than
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bad ones. This means that the relative variations in bonus-malus
and risk premium got to have the same sign, so that for each (X, T)
holds e.(k) > o.

The limitcase of a bonus-malus system in which the bonus-malus
premium in [o, T[ remains the same for each risk, corresponds with
eT(X) = o for each X. This case shows up during the first period when
each risk is in the initial class, so that we have ei(X) = o for each X.

The ideal case in which for each risk and for each interval the
bonus-malus premium equals the risk premium corresponds with
eT(X) = I for each (X, T). In particular e(X) = i corresponds with an
asymptotical correct tarification for a risk X. The conditions of an
ideal system can in general never be met.

In practice a relative increase in the risk premium will generally
cause a smaller relative increase in the bonus-malus premium,
which means that the good risks have to pay for the bad ones.
In general <3,(X) will thus lie between the values zero and one.
Theoretically we can have e.(X) > i but such a case of overefficiency
in which an increase in the expectation of the claim costs is more
than compensated by the increase of the expectation of the premium
payments is rarely found.

Because of:

E[XT(X)] > o , £[YT(X)] -* o for X -> o (4)

E[XT(X)] bounded, £[YT(X)] -> oo for X -> oo

We have in general that for each T:

lim eT(X) = o and lim eT(X) = o (5)

Geometrically the definition-formula (2) can be interpreted in the
following way

X)] tga

So far the efficiency was defined for a risk with given and known
risk parameter X. The assumption that the risk parameter is known
is useful for the development of the theory but is never fulfilled
in practice. On the other hand the distribution function of the risk
parameter, viz. the structure function U(k), is more likely known,
so that it is natural to define the efficiency over the considered risk
group. We call efficiency of a bonus-mains system over a given risk
group in [o, T[ the expression:

er = J *T(X) dU(l) (7)
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E[X,(X)]

.A"
E[YT(X)]

and we get for T —>• 00:

= J
A

(8)

This averaged efficiency over the risk group enables us to com-
pare the different bonus-malus systems in an objective way.

Further we notice that in our definition of efficiency we could
also take into account the so called "bonus-hunger effect" (cfr.
Lemaire). This can be done by changing the definition of XT(X)
and YT(X) in an appropriate way.

Finally we remark that our concept of efficiency is not only
valid for bonus-malus systems but can be applied to other experience
rating systems.

3. CALCULATION OF THE EFFICIENCY UNDER DIFFERENT ASSUMP-

TIONS CONCERNING THE RISK PROCESS.

3.1. We consider a risk X which is placed in class s at t = o and
assume that at the end of each period this risk can either take an
insurance for the next period or leave the system. By «v(X) we
denote the probability that the risk X is insured for the period
[t, t -f- 1 [. We take that a risk X which left the system cannot re-
enter it, so that wo(\) = 1 > a>i(X) > ze>2(X) > . . . . Further we
suppose that the average cost of a claim is independent of the
number of claims and we denote by C*(X) the average cost of a
claim for a risk X in the period [t, t -\- 1 [. Finally we denote by
P < i a discount factor.
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Under these assumptions we get for the bonus-malus premium of
a risk X in [o, T [:

E[XZ(\)] = L2 &wt(\) i p<$ (X) bt(j) with j><$ = nsj (9)
t - 0 ) = 1

and we have for the risk premium

)] = X ¥ p« + >S(X) Ct(\) (10)

Using these formulae the efficiency can in principle be calculated.
However, additional assumptions concerning the earlier mentioned
elements of the risk process seem desirable in order to come to a
more manageable expression.

3.2. We suppose now that for each period \t, t -\- 1 [, both the
probabilities ze>t(X) and the average claim costs C«(X) are the same
for all risks of the considered risk group, this is that they are in-
dependent of the parameter X.

Under these assumptions formula (2) is reduced to

Ml x
(11)

More explicitly we have

> $wt ) — i r - btU)
, T ( X ) = 1=1 i=l (12)

/ $twt

where the derivatives are determined by the recursion formula

We remark that in the case that the number of claims is Poisson
distributed formula (13.a) becomes

dpJX) vn , Xk
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3.3. Moreover we make an assumption concerning the evolution
in time of the premiums bt(j) and the probabilities wt. We assume
that the premium of each class will increase with the same per-
centage for each period, this is bt(j) = a.lbj with bj = bo(j) the value
of the premium of class j at constant price and a > i the price
index of premiums. Further we assume that the probability to
leave the system at the end of a certain period is independent of
the considered period and equals p, this means wt = (i — p)'
where ps[o, i] is the rate of exit. We shall put 0 = Pa (i — p),
in which we take that 0 < i what is satisfied in practical cases.

Finally we suppose that the Markov chain which is associated
to the bonus-malus system is regular. Then the limit probabilities

(15)

exist and are independent of the initial class. They are uniquely
defined by the system of equations

cij(k) = S cii[k) />y(X) (io.a)

£ «;-(X) = i (i6.b)

Under these assumptions equation (9) is reduced to
T — X n

1-0 } - l

and if we put
n

b(k) = 2 a}{\) bj (18)

T - 1 n

gs^_x{\) = S 9 ' S y>$(x) — a}{\)] bj (19)

we get

+ Ss T-iW 8 < 1 (2O.a)

f- gs T_i(X) 0 = i (2O.b)

We remark that

E[X.
( o 0 < 1 (21.a)

lim
= I
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so that &(X) represents for a risk X the limit value of the premium
i

per period in the case 6 = i. (e.g. a = - p = o).

The first term in (20) is the discounted expectation of the premium
payments in [o, T [ for a risk X in the case that the premium to be
insured for the period [t, t + 1 [ equals 6(X)a', irrespective of the
class in which the risk is placed at the moment t. The second term
gs T_i(X) represents the discounted expectation of the extra
premium (positive or negative) that has to be paid in [o, T [, since
the premium that a risk X has to pay to be insured for the period
[t, t -j- 1 [ isn't 6(X)a* but bjcn1, with j the class in which the risk is
placed at the moment t. This correction term depends on the initial
class s and gs T_i(X) is called the excess premium of the class s for
a risk X in [0, T [. The advantage of the introduction of the excess
premiums lies in the fact that they simplify to a great extent the
calculation of E[X^(Vf] and thus of eT(X). It is easy to verify that for
the excess premiums the following recursion formula is valid

(22.a)

0 i pv{\) gu,_1(\) T = I, 2, . . . (22.b)

so that it is no longer necessary to calculate ggT_i(X) from (19),
which would require the preliminary computation of all appearing

Further we have that for each (X, T) the following relation hold

2 ««M gi,M = 0 T = o, i , . . . (23)
i-l

According to (11) and (20) we get then for the efficiency in [0, T[

( 2 4 ' a )

—.— 6 = i (24.b)

where 6(X) can be calculated from (16) and (18), while gST_i(X) is
given by (22) in which (23) is useful for control purposes.
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db(\) ^ da}(k)
The derivative —;— = ) —;— bj can be computed from the

system of equations obtained by derivating (16)

= Z h r Mx) +ai{x) ~*rJ (25-a)
' i 1

(IT-° (25-b)
whereby the derivative of pij(X) is given by (13.a) or (14).

Finally the derivative of g,T_i(X) is determined by the recursion
formula

/ dgi o(X) db(X)
= — -jT (26-a)d\

dX dX '
f i-i

\ T = 1, 2, . . . (26.b)

and the controlling equations (23) become

To calculate the efficiency in [0, 00 [, we first extend the concept
excess premium to [0, 00 [

gs{X) = lim ggjT (X) = S 6* S $$(X) — a;(X)] 6; (28)

Since the />^ (X) converge geometrically fast to the limit proba-
bilities aj{X) the series (28) is absolute convergent. When we take in
(22.b) and (23) the limit for T —5- 00 we get the following system of
equations for the excess premiums in [0, 00 [ of the different classes

n

|- 6 S ftij{X) gj(X) (29-a)
f - i

g,(X) = o (29.b)

We remark that, in this system of n + 1 equations in n unknown,
for 6 < 1 the equation (29.b) is a consequence of the relations (29.a),
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while for 6 = I (2g.b) is independent of (29.a) but in this case we
have that the relations (29.a) are linear dependent.

In an appendix we shall prove that the gi(X) are determined in an
unique way by the system (29).

For the efficiency in [o, 00 [ we have now

e(X) =

db(k) _ dgs(X)

dX dX

- 0) g,(x)
< 1

X db(X)

b(X) dX

(3O.a)

(3o.b)

in which gs(X) can be calculated from (29), while its derivative is
determined in an unique way (cfr. appendix) by the system of
equations

dX

db(X)

dX II + ( 3 I - a )

V at{X)
dgi(X)] _

dX J

So we find as a special case (30.b) the definition of efficiency
given by Loimaranta.

4. THE CENTRAL VALUE

We consider the equation

E[XX(X)] = E[YT(X)} (32)

which expresses the equality between the bonus-malus premium
and the risk premium for a risk X in [0, T [. Because of the relations
(4) equation (32) has at least one solution X*. We call a solution
X* of (32) a central value of the bonus-malus system in [o, T [.

We assume now that wt(X) and Ct{X) are independent of X and we
shall show that the central value in [0, T [ is unique if eT(X) < 1
for all X.

From (11) we have

din E [XX(X)] = eT(X) dink
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which gives if we integrate with X* as initial value

where

E[XT(\*T)] = £[YT(XT*)] = ~E[YT(

so that

X<X* (33-a)

x)j,-J[1-^)]— x>x: (33.b)
If &_(X) < 1 for all X we have thus that X̂  is unique and that

E[XT(\)] ^ £[YT(X)] if X == XT*

Now we make some assumptions that will permit us to rewrite
equation (32) in an easier form. As in section 3.3. we assume that
bt(j) = afb], wt = (1 — p)' and 0 < 1, where 6 = (3oc (1 — p).
Further we assume that the evolution in time of the average claim
cost can be given in the form C«(X) = y*C, with C = Co the average
cost at constant price and y > 1 the price index of claims. Hereby
we put s = (iy (1 — p) and take that s < 1. The central value in
[0, T [, X*, is then the solution of the equation

b(k) ¥ 6* + gs>T_!(X) = XC'S e* (35)
1 - 0 1 - 0

bs
In particular we have that X* = pr .

We call central value in [0, 00 [

X* = lim XT* (36)

and we distinguish the following cases. In the case 0 < i, s < 1
we have from (35) that X* is the solution of the equation

bCk) XC

+ (x)

For 6 = 1, s < 1 we have that X* —> 00, while for 0 < 1, e =
1 holds X* —> 0. Finally in the case 0 = s = 1 we obtain that X* is
the solution of

b(k) = XC (38)
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The solution of this last equation corresponds with the concept
central value as introduced by Loimaranta.

5. APPENDIX

We shall prove that the systems (29) and (31) of n + 1 equations
in n unknown have an unique solution.

5.1. We make use of the following two lemmas, in which o
denotes the zero matrix and / the unit matrix.

Lemma 1

If Q is a square matrix and Qk tends to 0 as k tends to infinity,
then

det (/ — 0 ) ^ o

and (1 — 0 -1 = / + Q + Q2 + . . . = 2 ^

Proof

see e.g. Kemeny and Snell p. 22.

Lemma 2

If to the x-th row (column) of the blocks of a partioned matrix
Q we add the y-th row (column) multiplied on the left (right) by a
rectangular matrix R of the corresponding dimensions, then the
rank of Q remains unchanged under this transformation and, if Q
is a square matrix, the determinant of Q is also unchanged.

Proof

see e.g. Gantmacher p. 45.

We introduce the following matrix notations

A : 1 x n matrix with elements «t(X)
B : n X 1 matrix with elements hi
G : n x 1 matrix with elements gj(X)
P : n X n matrix with elements />y(X)
E : n x 1 matrix with all elements equal to 1
D = b(k) E : n X 1 matrix with all elements equal to b(k)
M = EA : n X n matrix whose rows are all identical and equal

to A
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According to (15), (16) and (18) we have then

lim P* = M

AP = A, AE = 1

AB = 6(X)

5.2. We now prove that the system (29) has an unique solution.
In matrix notations this system becomes

\(QP-I)G = D-B (39)
\AG = o

The necessary and sufficient conditions for an unique solution are

[6P — I]
rank = n, det

6P — / D— B

A 0
= o (40)

According to lemma 2 we have

rank
0P — /

= rank
0(P — M) —

where we have substracted from the first row the last row multi-
plied on the left by QE. Since for each power q holds Ma = I w e
have (P — M)k = Pk — M. From lim P* = M it follows then that

lim [0(P — M)]* = 0 for each 6 < 1 and we have that

det [6(P — M) — / ] ^ o according to lemma 1. This shows that
the coefficient-matrix has rank n.

To prove that the determinant in (40) is zero we make the
following transformations:

det

= det

6 P _ / D

A

0(P — M)-

0

= — A [0(P — M)

We have now

— A [0(P — M) —

— B

0

- /

J]-i

= det
0(P — M)

D— B

— A [0(P — M) —

- i ( D — B).det[0(P-

= J [I — 0(P — M)

= A S [6(P — M)]*

I

/]-!(

-Af)

I"1

D—B

0

-

— •?]
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S 6*(-P* — Af)]

with = o, which completes the proof.

5-3- For the system (31) we have

\ (0P — I)G' = D' — QP'G
(AC = —A'G

where a quote indicates derivation with respect to X.

The necessary and sufficient conditions for an unique solution are

QP — I D' — QP'G
rank = n, det

A —A'G
= o (42)

The first condition is the same as in section 5.2. and is thus
satisfied. For the second condition we obtain after some transfor-
mations

det
QP — I D' — QP'G

A —A'G

= {— A'G — A[Q(P — M) — 7]-i [D' — QP'G + QEA'G]} .
det [0(P — M) — /]

The proof follows now from

— A'G + AD' — QAP'G + QA'G = — A'G + AD' + QA'PG

= A'[(QP — I)G + B]

= A'D = o.
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