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Extension of Holomorphic Functions
From One Side of a Hypersurface

Luca Baracco

Abstract. We give a new proof of former results by G. Zampieri and the author on extension of holo-

morphic functions from one side Ω of a real hypersurface M of C
n in the presence of an analytic disc

tangent to M, attached to Ω̄ but not to M. Our method enables us to weaken the regularity assump-

tions both for the hypersurface and the disc.

1 Introduction

Let M be a C1,α hypersurface of C
n for 0 < α < 1, and Ω a domain of C

n with bound-

ary M. We prove in Theorem 2.3 that the existence of an analytic disc A tangent to M

at a point zo ∈ M ∩ ∂A, C1 up to the boundary, attached to Ω̄ but not to M, that is
satisfying ∂A ⊂ Ω̄ but ∂A 6⊂ M, implies extension of holomorphic functions from Ω

to a full neighborhood of zo. Also, if Ā is contained in Ω̄ but not in M in any neigh-

borhood of zo, then the above result yields extension of germs at zo of holomorphic
functions on Ω. In fact, let zk be a sequence of points of Ā which approach zo and
belong to Ω and not to M, and let ∆k ⊂ ∆ be a sequence of (smooth and small) discs
contained in ∆ with zk ∈ A(∂∆k), and which coincide with ∆ in a neighborhood of

τ = 1. Define Ak as A restricted to ∆k (which implies Ak ⊂ Ω̄); then our subsequent
Theorem 2.3 applies, in particular, to this sequence of discs Ak.

We observe now that if M contains a complex hypersurface, say h = 0, then 1

h

does not extend. In particular, one-sided discs through zo tangent to M are in fact
contained in M in a neighborhood of zo.

We can restate our theorem in terms of propagation of extendibility of holomor-

phic functions from one side of M to C
n along a disc A whose boundary is contained

in M. In fact, let A be tangent to M at zo ∈ ∂A, and f be holomorphic in Ω and
extend holomorphically to a full neighborhood of another point z1 ∈ ∂A. By a small
perturbation Ω̃ of Ω which keeps Ω unchanged in a neighborhood of zo and such that

z1 becomes a point of the interior of Ω̃, we enter in the assumptions of the subsequent
Theorem 2.3. Thus f extends holomorphically also to a neighborhood of zo. If A is a
“defective” disc, the above propagation principle is already contained in [1] and [10].
If A ⊂ M, and zo belongs to the interior of A, it is the main result of [6] which is also

valid for submanifolds of any codimension, not necessarily for hypersurfaces. Note
that in this case A does not need to be small.

Our theorem is closely related to the results of [2] and [11] where the technique of
the infinitesimal deformation of the disc A is used. Instead, in the present paper, we
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use a method which is the “boundary version” of that in [7]. We only deal with the
disc A and its translations inward Ω, and therefore avoid use of the implicit function

Theorem. This allows us to weaken the assumption of regularity of M (resp. A) from
C2,α (resp. C1,α) to C1,α (resp. C1). Also, this yields a simple and geometric proof.

2 Statement and Proof of the Main Theorem

Let Ω be a domain of C
n, z a point of Ω, {B} the system of balls with center z, ν a unit

vector in C
n, f a holomorphic function on Ω. We denote by ∆ = {τ ∈ C : |τ | < 1}

the standard disc in C, and set ∆r = {rτ : τ ∈ ∆}.

Definition 2.1 (i) We set

rν,B
f = sup

{

r : f extends holomorphically to

a neighborhood of z̃ + ν∆r for any z̃ ∈ B
}

.

(ii) We also set

rν
f (z) = sup

B

r
ν,B
f .

It is clear that rν
f (z), z ∈ Ω, is a lower semicontinuous function of z. We will make

an essential use of the following elementary remark. Let z ∈ Ω and zo ∈ ∂Ω be a
pair of points with the property that the vector zo − z is normal to ∂Ω at zo. We
write ν =

zo−z
|zo−z| and δ(z) = |zo − z|; thus δ(z) is the distance of z from ∂Ω. In this

situation, for a holomorphic function f on Ω:

if rν
f (z) > δ(z), then f extends holomorphically to a full neighborhood of zo.

The proof is a consequence of the definition itself of rν
f (z). We discuss now in more

detail the properties of rν
f . We first show that it describes the convergence radius of

the Taylor expansion of f in the ν-direction. In other terms we claim that

(2.1) rν
f (ξ) = sup{r : |∂k

ν f (z)| ≤ ck! r−k for some B, ∀z ∈ B, ∀k ∈ N},

where ∂ν denotes the holomorphic derivative along the ν-direction. In fact “≤” is
clear by Cauchy’s inequalities. As for “≥”, we denote by (z1, z ′) the variables in C

n,
and suppose that the direction of ν is that of the z1-axis. In a polydisc ξ + (∆ǫ ×
∆ǫ × · · · ), f is the sum of a “double” series in z1 − ξ1 and z ′ − ξ ′ that we may
rearrange as

∑

k ak(z ′)(z1 − ξ1)k the coefficients ak(z ′) being holomorphic. If r is a
number as in the right side of (2.1), then the above series converges for z1 ∈ ξ1 + ∆r

and therefore defines a holomorphic function on ξ + (∆r × ∆ǫ × · · · ). This proves

that f is holomorphic in a neighborhood of z + (∆r × {0} × {0} · · · ) ∀z ∈ B for a
ball B with center ξ; in particular rν

f (ξ) > r which proves our claim. We prove next
the following central statement (cf. also [7]):

Proposition 2.2 Let f be holomorphic in Ω; then log rν
f is plurisuperharmonic in

Ω, that is, over any 1-dimensional disc contained in Ω, it stands above the harmonic

extension from the boundary.
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Proof Fix a point ξo, consider nearby points ξ, and denote by Sξ discs with center
ξ contained in Ω approaching a limit disc Sξo

. We will use the notation “m.v.∂Sξ
” to

denote the mean value along ∂Sξ ; we have for any r < rν
f along ∂Sξ :

(2.2)
log |∂k

ν f (ξ)| ≤ m.v.∂Sξ
log |∂k

ν f |

≤ log ck! − k m.v.∂Sξ
log r,

where the first inequality is clear because log |∂k
ν f |Sξ

is subharmonic, and the second

is a consequence of (2.1). With the notation t := log r we then have

(2.3)

log r
ν,B
f = sup{t : log |∂k

ν f (ξ)| < log ck! − kt ∀ξ ∈ B}

≥ sup{t : t < m.v.∂Sξ
log rν

f ∀ξ ∈ B}

= inf
∀ξ∈B

m.v.∂Sξ
log rν

f ,

where the central inequality follows from (2.2). It follows

(2.4)

log rν
f (ξo) = sup

B

log r
ν,B
f ≥ lim inf

ξ
m.v.∂Sξ

log rν
f

≥ m.v.∂Sξo

log rν
f ,

where the first inequality follows from (2.3) and the second from Fatou’s Theorem.

Let A = A(τ ), τ ∈ ∆̄, be a small analytic disc in C
n, C1 up to the boundary. This

means that A extends as a C1 embedding of a neighborhood of ∆̄ into C
n.

Theorem 2.3 Let Ω be a domain of C
n with a C1,α boundary M = ∂Ω in a neigh-

borhood of a point zo of M, let A be a small disc C1 up to the boundary, with zo ∈ ∂A,

which satisfies

(2.5)











Tzo A ⊂ Tzo M,

∂A ⊂ Ω̄,

∂A ∩ Ω 6= ∅

Let B be a ball with center zo which contains Ā; then holomorphic functions on Ω ∩ B

extend holomorphically to a fixed neighborhood of zo.

Proof We select a point z1 ∈ ∂A ∩ Ω and fix our notation with zo
= A(1), z1

=

A(−1). We also choose complex coordinates z = (z1, z ′), z = x + i y in C
n so that

zo
= 0, M is defined by the equation

y1 = h(x1, z ′) with h(0, 0) = 0 and ∂h(0, 0) = 0,
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and Ω is the side of M defined by y1 < h. For 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, denote by
τ = reiθ the point in the standard disc ∆. Let ν := (i, 0, . . . ) be the unit exterior

normal to Ω at zo, and µ the unit tangent vector parallel to ∂rA(1). Choose a (2n−2)-
dimensional plane L ⊂ Tzo M transversal to µ, decompose Tzo M = Rµ ⊕ L, and, for
small parameters η and β, and for a vector λ ∈ L with |λ| ≤ 1, define

Aη,β,λ = −ην + βη(µ + λ) + A.

Denote by ǫ the diameter of A, and take a holomorphic function f on Ω ∩ B. Let c

be a local bound for the C1,α-norm of M. For a constant σ which depends on the

distance of z1 to ∂Ω and on neither η nor β, we have
(2.6)

{

rν
f ◦ Aη,β,λ(eiθ) ≥ η(1 − cβ1+αηα)

(

1 − (ǫθ)2
)

for any θ in [0, 2π],

rν
f ◦ Aη,β,λ(eiθ) > σ for θ in a neighborhood of π.

Write η(θ) := η(1 − cβ1+αηα)(1 − (ǫθ)2) and, for τ ∈ ∆, θ ∈ [0, 2π], denote by

P(τ , θ) the Poisson kernel. Evaluation at z = Aη,β,λ(r) with r ∈ [−1, 1] close to 1
yields

(2.7)

log rν
f (z) ≥

∫

2π

0

P(r, θ) log η(θ) dθ +

∫ π+ǫ

π−ǫ

P(r, θ) log
( σ

η

)

dθ

≥ log
(

η(1 − cβ1+αηα)
)

+

∫

2π

o

P(r, θ) log
(

1 − (ǫθ)2
)

dθ

+

∫ π+ǫ

π−ǫ

P(r, θ) log
( σ

η

)

dθ.

Denote by I1 and I2 the first and second integral respectively in the second and third

lines of (2.7). Note that P(r, θ) =
1−r2

1+r2−2r cos θ
≤ c(θ−2)(1 − r). It follows that I1 ≥

−ǫ(1 − r) and I2 ≥ c1 log( 1

η
)(1 − r) for a suitable c1 > 0. By this, (2.7) implies for

z = Aη,β,λ(r)

(2.8) rν
f (z) ≥ η(1 − cβ1+αηα)

(

1 − ǫ(1 − r)
)

(

1 + c1 log
( 1

η

)

(1 − r)

)

,

(provided that c1 log( 1

η
)(1 − r) is small). Recall that A is C1 up to the boundary

and tangent to M, and that M itself is C1,α. We use the notation Iη,β,λ = {Aη,β,λ(r)
∀r ∈ [−1, 1]}. It is clear that for any η, β, there is λ such that Iη,β,λ contains a point
zη,β,λ = Iη,β,λ(rη,β,λ) having all coordinates, but y1, which are 0. Now, for this point

rη,β,λ must be proportional to βη. By this fact we can easily check that

(2.9) δ(zη,β,λ) ≤ η(1 − c2β
2),

for a suitable c2 > 0. We notice that in order to get extension at zo
= 0 it will suffice

to show that

(2.10) rν
f (zη,β,λ) > δ(zη,β,λ).
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In turn, on account of (2.8), (2.9), it will suffice for (2.10) to show that

(2.11)
c1

2
η log

( 1

η

)

(1 − r) > cη1+αβ1+α + ǫη(1 − r) + c2ηβ2.

Now, it is clear that by choosing β = η
1

α
−1, (2.11) will be satisfied for sufficiently

small η (which also implies, among other things, that c1 log( 1

η
)(1 − r) is small). This

proves (2.10) and implies holomorphic extension of f at zo.
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