Canad. Math. Bull. Vol. 48 (4), 2005 pp. 500-504

Extension of Holomorphic Functions From One Side of a Hypersurface

Luca Baracco

Abstract. We give a new proof of former results by G. Zampieri and the author on extension of holomorphic functions from one side Ω of a real hypersurface M of \mathbb{C}^n in the presence of an analytic disc tangent to M, attached to $\overline{\Omega}$ but not to M. Our method enables us to weaken the regularity assumptions both for the hypersurface and the disc.

1 Introduction

Let M be a $C^{1,\alpha}$ hypersurface of \mathbb{C}^n for $0 < \alpha < 1$, and Ω a domain of \mathbb{C}^n with boundary M. We prove in Theorem 2.3 that the existence of an analytic disc A tangent to Mat a point $z^o \in M \cap \partial A$, C^1 up to the boundary, attached to $\overline{\Omega}$ but not to M, that is satisfying $\partial A \subset \overline{\Omega}$ but $\partial A \not\subset M$, implies extension of holomorphic functions from Ω to a full neighborhood of z^o . Also, if \overline{A} is contained in $\overline{\Omega}$ but not in M in any neighborhood of z^o , then the above result yields extension of germs at z^o of holomorphic functions on Ω . In fact, let z_k be a sequence of points of \overline{A} which approach z^o and belong to Ω and not to M, and let $\Delta_k \subset \Delta$ be a sequence of (smooth and small) discs contained in Δ with $z_k \in A(\partial \Delta_k)$, and which coincide with Δ in a neighborhood of $\tau = 1$. Define A_k as A restricted to Δ_k (which implies $A_k \subset \overline{\Omega}$); then our subsequent Theorem 2.3 applies, in particular, to this sequence of discs A_k .

We observe now that if M contains a complex hypersurface, say h = 0, then $\frac{1}{h}$ does not extend. In particular, one-sided discs through z^o tangent to M are in fact contained in M in a neighborhood of z^o .

We can restate our theorem in terms of propagation of extendibility of holomorphic functions from one side of M to \mathbb{C}^n along a disc A whose boundary is contained in M. In fact, let A be tangent to M at $z^o \in \partial A$, and f be holomorphic in Ω and extend holomorphically to a full neighborhood of another point $z^1 \in \partial A$. By a small perturbation $\tilde{\Omega}$ of Ω which keeps Ω unchanged in a neighborhood of z^o and such that z^1 becomes a point of the interior of $\tilde{\Omega}$, we enter in the assumptions of the subsequent Theorem 2.3. Thus f extends holomorphically also to a neighborhood of z^o . If A is a "defective" disc, the above propagation principle is already contained in [1] and [10]. If $A \subset M$, and z^o belongs to the interior of A, it is the main result of [6] which is also valid for submanifolds of any codimension, not necessarily for hypersurfaces. Note that in this case A does not need to be small.

Our theorem is closely related to the results of [2] and [11] where the technique of the infinitesimal deformation of the disc *A* is used. Instead, in the present paper, we

Received by the editors November 17, 2003; revised February 20, 2004.

AMS subject classification: 32D10 32V25.

Keywords: analytic discs, Poisson integral, holomorphic extension.

[©]Canadian Mathematical Society 2005.

use a method which is the "boundary version" of that in [7]. We only deal with the disc *A* and its translations inward Ω , and therefore avoid use of the implicit function Theorem. This allows us to weaken the assumption of regularity of *M* (resp. *A*) from $C^{2,\alpha}$ (resp. $C^{1,\alpha}$) to $C^{1,\alpha}$ (resp. C^1). Also, this yields a simple and geometric proof.

2 Statement and Proof of the Main Theorem

Let Ω be a domain of \mathbb{C}^n , z a point of Ω , $\{B\}$ the system of balls with center z, ν a unit vector in \mathbb{C}^n , f a holomorphic function on Ω . We denote by $\Delta = \{\tau \in \mathbb{C} : |\tau| < 1\}$ the standard disc in \mathbb{C} , and set $\Delta_r = \{r\tau : \tau \in \Delta\}$.

Definition 2.1 (i) We set

 $r_f^{\nu,B} = \sup\{r: f \text{ extends holomorphically to}\}$

a neighborhood of $\tilde{z} + \nu \Delta_r$ for any $\tilde{z} \in B$.

(ii) We also set

$$r_f^{\nu}(z) = \sup_B r_f^{\nu,B}.$$

It is clear that $r_f^{\nu}(z), z \in \Omega$, is a lower semicontinuous function of z. We will make an essential use of the following elementary remark. Let $z \in \Omega$ and $z^o \in \partial\Omega$ be a pair of points with the property that the vector $z^o - z$ is normal to $\partial\Omega$ at z^o . We write $\nu = \frac{z^o - z}{|z^o - z|}$ and $\delta(z) = |z^o - z|$; thus $\delta(z)$ is the distance of z from $\partial\Omega$. In this situation, for a holomorphic function f on Ω :

if $r_f^{\nu}(z) > \delta(z)$, then f extends holomorphically to a full neighborhood of z° .

The proof is a consequence of the definition itself of $r_f^{\nu}(z)$. We discuss now in more detail the properties of r_f^{ν} . We first show that it describes the convergence radius of the Taylor expansion of f in the ν -direction. In other terms we claim that

(2.1)
$$r_f^{\nu}(\xi) = \sup\{r : |\partial_{\nu}^k f(z)| \le ck! r^{-k} \text{ for some } B, \forall z \in B, \forall k \in \mathbb{N}\},\$$

where ∂_{ν} denotes the holomorphic derivative along the ν -direction. In fact " \leq " is clear by Cauchy's inequalities. As for " \geq ", we denote by (z_1, z') the variables in \mathbb{C}^n , and suppose that the direction of ν is that of the z_1 -axis. In a polydisc $\xi + (\Delta_{\epsilon} \times \Delta_{\epsilon} \times \cdots)$, f is the sum of a "double" series in $z_1 - \xi_1$ and $z' - \xi'$ that we may rearrange as $\sum_k a_k(z')(z_1 - \xi_1)^k$ the coefficients $a_k(z')$ being holomorphic. If r is a number as in the right side of (2.1), then the above series converges for $z_1 \in \xi_1 + \Delta_r$ and therefore defines a holomorphic function on $\xi + (\Delta_r \times \Delta_{\epsilon} \times \cdots)$. This proves that f is holomorphic in a neighborhood of $z + (\Delta_r \times \{0\} \times \{0\} \cdots) \forall z \in B$ for a ball B with center ξ ; in particular $r_f^{\nu}(\xi) > r$ which proves our claim. We prove next the following central statement (*cf.* also [7]):

Proposition 2.2 Let f be holomorphic in Ω ; then $\log r_f^{\nu}$ is plurisuperharmonic in Ω , that is, over any 1-dimensional disc contained in Ω , it stands above the harmonic extension from the boundary.

501

Proof Fix a point ξ_o , consider nearby points ξ , and denote by S_{ξ} discs with center ξ contained in Ω approaching a *limit* disc S_{ξ_o} . We will use the notation "m.v. ∂S_{ξ} " to denote the mean value along ∂S_{ξ} ; we have for any $r < r_f^{\nu}$ along ∂S_{ξ} :

(2.2)
$$\log |\partial_{\nu}^{k} f(\xi)| \leq \text{m.v.}_{\partial S_{\xi}} \log |\partial_{\nu}^{k} f| \\ \leq \log ck! - k \text{m.v.}_{\partial S_{\xi}} \log r,$$

where the first inequality is clear because $\log |\partial_{\nu}^{k} f|_{S_{\xi}}$ is subharmonic, and the second is a consequence of (2.1). With the notation $t := \log r$ we then have

(2.3)
$$\log r_{f}^{\nu,B} = \sup\{t : \log |\partial_{\nu}^{k} f(\xi)| < \log ck! - kt \ \forall \xi \in B\}$$
$$\geq \sup\{t : t < \text{m.v.}_{\partial S_{\xi}} \log r_{f}^{\nu} \ \forall \xi \in B\}$$
$$= \inf_{\forall \xi \in B} \text{m.v.}_{\partial S_{\xi}} \log r_{f}^{\nu},$$

where the central inequality follows from (2.2). It follows

(2.4)
$$\log r_f^{\nu}(\xi_o) = \sup_B \log r_f^{\nu,B} \ge \liminf_{\xi} \operatorname{m.v.}_{\partial S_{\xi}} \log r_f^{\nu}$$
$$\ge \operatorname{m.v.}_{\partial S_{\xi_o}} \log r_f^{\nu},$$

where the first inequality follows from (2.3) and the second from Fatou's Theorem.

Let $A = A(\tau), \tau \in \overline{\Delta}$, be a small analytic disc in \mathbb{C}^n , C^1 up to the boundary. This means that A extends as a C^1 embedding of a neighborhood of $\overline{\Delta}$ into \mathbb{C}^n .

Theorem 2.3 Let Ω be a domain of \mathbb{C}^n with a $C^{1,\alpha}$ boundary $M = \partial \Omega$ in a neighborhood of a point z^o of M, let A be a small disc C^1 up to the boundary, with $z^o \in \partial A$, which satisfies

(2.5) $\begin{cases} T_{z^{o}}A \subset T_{z^{o}}M, \\ \partial A \subset \bar{\Omega}, \\ \partial A \cap \Omega \neq \varnothing \end{cases}$

Let B be a ball with center z° which contains \overline{A} ; then holomorphic functions on $\Omega \cap B$ extend holomorphically to a fixed neighborhood of z° .

Proof We select a point $z^1 \in \partial A \cap \Omega$ and fix our notation with $z^o = A(1)$, $z^1 = A(-1)$. We also choose complex coordinates $z = (z_1, z')$, z = x + iy in \mathbb{C}^n so that $z^o = 0$, M is defined by the equation

$$y_1 = h(x_1, z')$$
 with $h(0, 0) = 0$ and $\partial h(0, 0) = 0$,

502

and Ω is the side of M defined by $y_1 < h$. For $0 \le r \le 1$, $0 \le \theta \le 2\pi$, denote by $\tau = re^{i\theta}$ the point in the standard disc Δ . Let $\nu := (i, 0, ...)$ be the unit exterior normal to Ω at z^o , and μ the unit tangent vector parallel to $\partial_r A(1)$. Choose a (2n-2)-dimensional plane $L \subset T_{z^o}M$ transversal to μ , decompose $T_{z^o}M = \mathbb{R}\mu \oplus L$, and, for small parameters η and β , and for a vector $\lambda \in L$ with $|\lambda| \le 1$, define

$$A_{\eta,\beta,\lambda} = -\eta\nu + \beta\eta(\mu + \lambda) + A.$$

Denote by ϵ the diameter of A, and take a holomorphic function f on $\Omega \cap B$. Let c be a local bound for the $C^{1,\alpha}$ -norm of M. For a constant σ which depends on the distance of z^1 to $\partial\Omega$ and on neither η nor β , we have (2.6)

$$\begin{cases} r_f^{\nu} \circ A_{\eta,\beta,\lambda}(e^{i\theta}) \ge \eta(1 - c\beta^{1+\alpha}\eta^{\alpha}) (1 - (\epsilon\theta)^2) & \text{for any } \theta \text{ in } [0, 2\pi], \\ r_f^{\nu} \circ A_{\eta,\beta,\lambda}(e^{i\theta}) > \sigma & \text{for } \theta \text{ in a neighborhood of } \pi. \end{cases}$$

Write $\eta(\theta) := \eta(1 - c\beta^{1+\alpha}\eta^{\alpha})(1 - (\epsilon\theta)^2)$ and, for $\tau \in \Delta$, $\theta \in [0, 2\pi]$, denote by $P(\tau, \theta)$ the Poisson kernel. Evaluation at $z = A_{\eta,\beta,\lambda}(r)$ with $r \in [-1, 1]$ close to 1 yields

(2.7)

$$\log r_f^{\nu}(z) \ge \int_0^{2\pi} P(r,\theta) \log \eta(\theta) \, d\theta + \int_{\pi-\epsilon}^{\pi+\epsilon} P(r,\theta) \log\left(\frac{\sigma}{\eta}\right) \, d\theta$$

$$\ge \log\left(\eta(1-c\beta^{1+\alpha}\eta^{\alpha})\right) + \int_o^{2\pi} P(r,\theta) \log\left(1-(\epsilon\theta)^2\right) \, d\theta$$

$$+ \int_{\pi-\epsilon}^{\pi+\epsilon} P(r,\theta) \log\left(\frac{\sigma}{\eta}\right) \, d\theta.$$

Denote by \mathcal{I}_1 and \mathcal{I}_2 the first and second integral respectively in the second and third lines of (2.7). Note that $P(r, \theta) = \frac{1-r^2}{1+r^2-2r\cos\theta} \le c(\theta^{-2})(1-r)$. It follows that $\mathcal{I}_1 \ge -\epsilon(1-r)$ and $\mathcal{I}_2 \ge c_1 \log(\frac{1}{\eta})(1-r)$ for a suitable $c_1 > 0$. By this, (2.7) implies for $z = A_{\eta,\beta,\lambda}(r)$

(2.8)
$$r_f^{\nu}(z) \ge \eta (1 - c\beta^{1+\alpha}\eta^{\alpha}) \left(1 - \epsilon(1-r)\right) \left(1 + c_1 \log\left(\frac{1}{\eta}\right) (1-r)\right),$$

(provided that $c_1 \log(\frac{1}{\eta})(1-r)$ is small). Recall that A is C^1 up to the boundary and tangent to M, and that M itself is $C^{1,\alpha}$. We use the notation $I_{\eta,\beta,\lambda} = \{A_{\eta,\beta,\lambda}(r) \forall r \in [-1,1]\}$. It is clear that for any η , β , there is λ such that $I_{\eta,\beta,\lambda}$ contains a point $z_{\eta,\beta,\lambda} = I_{\eta,\beta,\lambda}(r_{\eta,\beta,\lambda})$ having all coordinates, but y_1 , which are 0. Now, for this point $r_{\eta,\beta,\lambda}$ must be proportional to $\beta\eta$. By this fact we can easily check that

(2.9)
$$\delta(z_{\eta,\beta,\lambda}) \leq \eta(1-c_2\beta^2),$$

for a suitable $c_2 > 0$. We notice that in order to get extension at $z^o = 0$ it will suffice to show that

(2.10)
$$r_f^{\nu}(z_{\eta,\beta,\lambda}) > \delta(z_{\eta,\beta,\lambda}).$$

In turn, on account of (2.8), (2.9), it will suffice for (2.10) to show that

(2.11)
$$\frac{c_1}{2}\eta \log\left(\frac{1}{\eta}\right)(1-r) > c\eta^{1+\alpha}\beta^{1+\alpha} + \epsilon\eta(1-r) + c_2\eta\beta^2.$$

Now, it is clear that by choosing $\beta = \eta^{\frac{1}{\alpha}-1}$, (2.11) will be satisfied for sufficiently small η (which also implies, among other things, that $c_1 \log(\frac{1}{\eta})(1-r)$ is small). This proves (2.10) and implies holomorphic extension of f at z^o .

References

- [1] M. S. Baouendi, L. P. Rothschild and J. M. Trepreau, *On the geometry of analytic discs attached to real manifolds*. J. Differential Geom. **39**(1994), 379–405.
- [2] L. Baracco and G. Zampieri, Analytic discs attached to half spaces of Cⁿ and extension of holomorphic functions. J. Math. Sci. Univ. Tokyo 8(2001), 317–327.
- [3] _____, Analytic discs and extension of CR functions. Compositio Math. 127(2001), 289–295.
- [4] A. Boggess, CR manifolds and the tangential Cauchy–Riemann complex. Studies in Advanced Mathematics CRC Press, Boca Raton, FL, 1991.
- [5] K. Diederich and J. E. Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Invent. Math. 39(1977), 129–141.
- [6] N. Hanges and F. Trèves, Propagation of holomorphic extendibility of CR functions. Math. Ann. 263(1983), 157–177.
- [7] R. Manfrin, A. Scalari and G. Zampieri, Propagation along complex curves on a hypersurface. Kyushu J. Math. 52(1997), 15–22.
- [8] J M. Trepreau, Sur le prolongement holomorphe des fonctions C-R définies sur une hypersurface réelle de classe C^2 dans \mathbb{C}^n . Invent Math. **83**(1986), 583–592.
- [9] A. Tumanov, Extending CR functions on manifolds of finite type to a wedge. Mat. Sb. 136(1988), 128–139.
- [10] _____, Connections and propagation of analyticity for CR functions. Duke Math. J. 73(1994), 1–24.
- [11] G. Zampieri, *Extension of holomorphic functions through a hypersurface by tangent analytic discs.* Hokkaido Math. J. **32**(2003), 487–496.

Dipartimento di Matematica Università di Padova via Belzoni 7 35131 Padova Italy email: baracco@math.unipd.it

504