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In this paper, we study wave scattering and radiation by a surface-piercing vertical
truncated metamaterial cylinder composed of a closely spaced array of thin vertical
barriers, between which fluid can flow. A theoretical model is developed under full
depth-dependent linearised water wave theory, where an effective medium equation and
effective boundary conditions are employed, respectively, to describe the fluid motion
inside the cylinder and match the flow between the fluid regions in and outside the
metamaterial cylinder. A damping mechanism is introduced at the surface of the fluid
occupied by the metamaterial cylinder to consider the wave power dissipation in narrow
gaps between the thin vertical plates. The wave excitation forces acting on the cylinder and
the hydrodynamic coefficients can be calculated straightforwardly in terms of the velocity
potential inside the cylinder. An alternative way is by using the velocity potential outside
the cylinder, the expression of which has the reduction of the integral and an infinite
accumulation that are included in the straightforward expression. The results highlight
the patterns of the radiated waves induced by the oscillation of the cylinder and the
characteristics of the hydrodynamic coefficients. The metamaterial cylinder when fixed
in place and with a damping mechanism included is found to capture more wave power
than that of a traditional axisymmetric heaving wave energy converter over a wide range
of wave frequencies.
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1. Introduction

Metamaterials, which are artificial composite structures engineered to have a property that
is not found in naturally occurring materials, have emerged as a new frontier of science
involving material science, physics, engineering, chemistry and biology (Liu & Zhang
2011; Higgins et al. 2020). The design of metamaterials has generated a completely new
field of study on waves at different length scales ranging from, for example, microwaves
of small scale (Chen et al. 2009; Sadeghi et al. 2015) to ground-borne vibrations of large
scale (Palermo et al. 2016). In recent decades, water wave interaction with metamaterial
structures has been paid increasing attention by scholars.

In the field of water wave interactions with metamaterials, Berraquero et al. (2013)
carried out a series of quantitative experimental tests of water wave control using a
metamaterial, which was realised with a layered structure with alternating layers. They
demonstrated that metamaterials with anisotropic properties could be employed in the
context of water waves to produce a reflectionless bent waveguide. Maurel et al. (2017)
reported that significant anisotropic parameters could be produced by metamaterials made
from a subwavelength layered structuration of the bathymetry in the shallow water regime.
Porter (2018) proposed a theoretical model to study wave interaction with a metamaterial
device formed from closely spaced arrays of thin parallel plates that extend throughout the
fluid depth and occupy an infinitely long rectangular domain. He found that plane waves
incident from special directions were unaffected by the device, resulting in interesting
negative refractive and Goos–Hänchen shift effects, which were later reported fully in
Porter (2021). Marangos & Porter (2021) developed a shallow water theory to study wave
scattering over structured bathymetry, which is composed of abrupt fluctuations in depth
between two smoothly varying levels. Later, Porter & Marangos (2022) proposed a full
depth-dependent solution to scattering of oblique waves by a long submerged uniform
rectangular ridge formed by a plate array, demonstrating that perfect negatively refracted
transmission could be achieved for all wave frequencies for specific metamaterial ridges
and wave headings.

Whilst most of the above-mentioned work concentrated on refraction across planar
interfaces, Zheng, Porter & Greaves (2020b) considered water wave interaction with an
array of metamaterial cylinders, each of which is formed by a closely spaced array of
thin vertical plates. Their theoretical results showed that wave focusing/blocking could be
achieved by the appropriate choice of plate alignment of a pair of metamaterial cylinders.
Furthermore, a damping mechanism was introduced at the surface of the fluid occupied by
the metamaterial cylinders in their model to consider the wave power dissipation in narrow
gaps between the thin plates. Their work was later extended by Huang & Porter (2022) to
study wave power absorption of a metamaterial cylinder-based wave energy converter, in
which a pair of opposing paddles hinged below the surface were applied along the centre
plane of the narrow channels. The paddles are attached to springs and dampers through
which wave power is captured. Recently, Porter, Zheng & Liang (2022) considered the
scattering of waves by a truncated metamaterial cylinder, which consists of an array of
closely spaced thin vertical plates and is fully submerged in the water with its bottom
sitting on the seabed.

Apart from the metamaterials made from vertical plates closely deployed in parallel, an
annular region containing an array of thin radial plates may also work as a metamaterial
structure. Maling & Craster (2016) considered closely spaced radially arranged plates
occupying an annular domain. The ability of the device to support localised wave motions
was examined. Li et al. (2018) applied an annular metamaterial cylinder as a device for
manipulating water waves. Besides the radially aligned plates, a linear variation of the
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Wave scattering and radiation

depth of the fluid within the annular region was also imposed with the particular purpose of
concentrating wave energy inside the cylinder. Recently, Zheng et al. (2022b) carried out
analytical and numerical studies on wave scattering by an annular metamaterial cylinder
consisting of a series of radially aligned closely spaced plates, and reported that there
could be hardly any back scattering for a wide range of wave frequencies.

In addition to an array of closely spaced plates, the interaction of water waves
with metamaterials made from other shaped components was also investigated, e.g.
one-dimensional groove array (Han, Chen & Chen 2022), rigid sectors-made cloak (Farhat
et al. 2008) and stationary surface disk arrays (Zhao, Hu & Zi 2021).

Most of the previous work has been focused on the wave scattering problem of
metamaterial structures, i.e. assuming the structures are fixed. To the best of the authors’
knowledge, the water wave radiation problem of a metamaterial cylinder has never been
studied before. The study of wave radiation by a metamaterial sheds light on the utilisation
of floating metamaterial structures, e.g. wave power dissipation, wave energy harnessing,
etc. In the present paper, we consider both radiation and scattering problems of waves
by a surface-piercing vertical truncated metamaterial cylinder. The primary objective
is to establish the fundamental knowledge regarding radiation and scattering of water
waves by a truncated metamaterial cylinder, which is instrumental to the development
of wave energy converters (WECs), floating breakwater, wave absorbers, etc, employing
metamaterials. Unlike the geometries standing throughout the water depth considered in
Porter (2018), Zheng et al. (2020b) and Huang & Porter (2022), the truncated feature
makes the present model more practical when applied in deep water, and meanwhile,
it brings considerable mathematical challenges to deal with, for example, within the
cylindrical region defined by the cylinder radius, the field equation satisfied by the velocity
potential above and below the submerged level of the bottom of the cylinder switches from
a reduced two-dimensional (2-D) Laplace equation to the three-dimensional (3-D) Laplace
equation. Different from the fully submerged and bottom-mounted truncated metamaterial
cylinder, which was recently studied by Porter et al. (2022), the considered metamaterial is
surface piercing, and therefore wave effects are more pronounced. In addition, to consider
the wave power dissipation in narrow gaps between the thin vertical plates, a damping
mechanism is introduced at the surface of the fluid occupied by the metamaterial cylinder.
Moreover, the reciprocal relationship between radiation and scattering problems of the
floating metamaterial cylinder is established, which deepens the understanding of physical
insights into the hydrodynamic behaviours.

The paper is organised as follows. The statement of the problem is elucidated in § 2,
where the governing equations and boundary conditions are formulated in § 2.1; the
expressions of the velocity potential at different regions are derived in § 2.2; the solutions
of the unknown coefficients are described in § 2.3. Expressions of the free surface
elevation, wave excitation forces and wave radiation forces, far-field radiation coefficient,
the Haskind relation (HR)-based expressions, as well as wave power dissipation, are
derived in § 3. The theoretical model is validated in § 4. The validated model is applied
to some case studies, the results and discussions of which are presented in § 5 before the
work is summarised in § 6.

2. Problem formulation

Scattering and radiation of water waves by a surface-piercing vertical truncated
metamaterial circular cylinder deployed in the water of finite depth h are considered
(figure 1). The structured cylinder is composed of a closely spaced periodic array of
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Figure 1. Illustration of the geometry: (a) bird’s-eye view of the truncated metamaterial cylinder consisting of
an array of closely spaced barriers; (b) a plan view showing incident wave heading with respect to the barriers.

infinitely thin surface-piercing vertical barriers, between which the fluid is allowed to flow
tangentially. The radius and draft of the cylinder are denoted as R and d, respectively.

A mixture of 3-D Cartesian and cylindrical coordinates, i.e. Oxyz and Orθz, is chosen
with z = 0 coinciding with the mean free surface of the fluid, the z-axis measured
vertically upwards, and the x-axis in parallel with the barriers. Hence the fluid bottom
is at z = −h. The cylinder is under the actions of a plane wave with angular frequency
ω, wave amplitude A and wavenumber k incident from infinity at an arbitrary heading
angle, β. The separation between plates is assumed to be small compared with both the
wavelength and the length of the plate.

2.1. Governing equations and boundary conditions
Assume that all amplitudes are small enough that classical linear water wave theory
applies, and the motion is time-harmonic with an angular frequency ω. Thus, the fluid
velocity potential may be written as Φ(x, y, z, t) = Re[φ(x, y, z) e−iωt], where Re denotes
the real part, φ represents the complex amplitude of the velocity potential at a space
point (x, y, z) which is independent of time, t, and i is the imaginary unit. Hereinafter, the
time-harmonic dependence e−iωt is suppressed, and φ is adopted to represent the velocity
potential. Under linear theory, φ may be decomposed as the sum of scattered and radiated
wave potentials,

φ = φ(0) − iω
6∑

j=1

Xjφ
( j), (2.1)

where φ(0) = φI + φD denotes the scattered wave velocity potential, in which φI and
φD represent the undisturbed incident wave velocity potential and the diffracted velocity
potential, respectively. Here Xj represents the complex displacement amplitude of the
cylinder oscillating in the jth mode with j = 1, 2, . . . , 6 denoting the surge (i.e. along the
x-axis), sway (i.e. along the y-axis), heave (i.e. along the z-axis), roll (i.e. about the x-axis),
pitch (i.e. about the y-axis) and yaw (i.e. about the z-axis), respectively, with the reference
point at the origin (0, 0, 0). Here φ( j) denotes the corresponding radiated velocity potential
due to a unit amplitude velocity oscillation of the cylinder in the jth mode in still water. In
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the present paper, the plates of the cylinder are deployed in parallel with the x-axis, hence
we only handle the modes with j = 2, 4 and 6 for the wave radiation problems.

The governing equations inside and outside the cylinder give the effective field equation

∇2
xzφ

( j) = ∂2φ( j)

∂x2 + ∂2φ( j)

∂z2 = 0, (2.2)

and

∇2φ( j) = ∂2φ( j)

∂x2 + ∂2φ( j)

∂y2 + ∂2φ( j)

∂z2 = 1
r
∂

∂r

(
r
∂φ( j)

∂r

)
+ 1

r2
∂2φ( j)

∂θ2 + ∂2φ( j)

∂z2 = 0,

(2.3)

respectively, where ∇2
xz represents the 2-D Laplacian in the x and z dimensions, and ∇2

denotes the 3-D Laplacian.
The combined linearised dynamic and kinematic boundary condition at the free surface

inside and outside the cylinder, i.e.

∂φ( j)

∂z
−Kφ( j) = 0, on r < R, z = 0, (2.4)

where K = K/(1 − v̄ i) and K ≡ ω2/g, with a damping parameter v̄ ≥ 0 as a means of
introducing a damping mechanism and considering the possibility of energy dissipation
between the plates, and

∂φ( j)

∂z
− Kφ( j) = 0, on r ≥ R, z = 0, (2.5)

and the bottom boundary condition

∂φ( j)

∂z
= 0, on z = −h, (2.6)

should be satisfied. Because of the narrowness of the gap between adjacent plates, fluid
resonance may occur due to energy trapping. In this scenario, the friction due to boundary
layers attached to the plate plays a predominant role over the flow separation from edges.
Thus, the damping exhibits linear behaviour at the model scale (Zhao et al. 2018; Tan et al.
2019; Liang et al. 2022). The condition presented in (2.4) could be applied to different
physical settings (Zheng et al. 2020b), e.g. where the surface of the narrow channels
within the cylinder is covered by floating buoys constrained to move in heave (Garnaud
& Mei 2009), the surface of the fluid within the cylinder is covered with a porous medium
(Chwang & Chan 1998) and the case accounting for the viscous dissipation caused by the
fluid interaction with the sidewalls of the narrow rectangular fluid-filled channels with a
normal air–fluid free surface (Hunt 1952; Mei, Stiassnie & Yue 2005). A more detailed
discussion regarding the boundary condition at the free surface inside the cylinder was
presented in Zheng et al. (2020b).
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On z = −d, r ∈ [0,R], we have

φ( j)|z=−d− = φ( j)|z=−d+,
∂φ( j)

∂z

∣∣∣∣∣
z=−d−

= ∂φ( j)

∂z

∣∣∣∣∣
z=−d+

. (2.7a,b)

Over the curved surface of the cylinder, r = R, z ∈ [−d, 0], we have

φ( j)|r=R− = φ( j)|r=R+, (2.8a)

∂φ( j)

∂x

∣∣∣∣∣
r=R−

cos θ + (δ2,j − δ4,jz + δ6,jR cos θ) sin θ = ∂φ( j)

∂r

∣∣∣∣∣
r=R+

, (2.8b)

representing the continuity conditions of the field in terms of pressure and mass flux,
respectively, across r = R. Here δl,n denotes the Kronecker delta, which equals to 1 when
l = n and 0 otherwise.

Additionally, it is required that the diffracted and radiated waves propagate outwards for
r → ∞, i.e. the far-field radiation condition

√
kr
(
∂φχ

∂r
− ikφχ

)
= 0, kr → ∞, (2.9)

where χ represents D and ( j) for j = 2, 4 and 6.

2.2. Expressions of the velocity potential
The fluid domain can be divided into two regions, i.e. the exterior region r ∈ [R,∞),
z ∈ [−h, 0] and the interior region r ∈ [0,R), z ∈ [−h, 0].

2.2.1. Exterior region
Using the separation of variables, we may express the velocity potential at the exterior
region as

φ( j)(r, θ, z) = δ0,jφ
I +

∞∑
m=−∞

im eimθ
∞∑

l=0

a( j)
m,lHm(klr)ψl(z), (2.10)

where

φI = −igA
ω

N1/2
0

cosh(kh)
eikr cos(θ−β)ψ0(z) = eik(x cosβ+y sinβ)ψ0(z)

=
∞∑

m=−∞
imJm(kr) eim(θ−β)ψ0(z), (2.11)

represents the velocity potential of the undisturbed incident waves with the complex
amplitude A = iω cosh(kh)/(gN1/2

0 );

ψl(z) = N−1/2
l cosh[kl(z + h)]; Nl = 1

2

(
1 + sinh(2klh)

2klh

)
, (2.12)

in which kl are the positive real (k0 = k) and positive imaginary roots (for l ≥ 1)
of the dispersion relation ω2 = gk tanh(kh). Here a( j)

m,l are unknown coefficients to be
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Wave scattering and radiation

determined; Jm and Hm denote the Bessel functions of the first-kind and Hankel functions,
respectively, of order m.

The orthogonality condition

1
h

ˆ 0

−h
ψl(z)ψn(z) dz = δl,n, (2.13)

holds for l, n = 0, 1, 2, . . ..

2.2.2. Interior region
The solution of the velocity potential at the interior region, i.e. r ∈ [0,R], z ∈ [−d, 0],
is more complicated since there are two distinct subdomains: one within and the other
below the truncated metamaterial cylinder, and the corresponding governing equations
differ. The solutions at these two subdomains are connected by the conditions (2.7a,b).
Following Porter et al. (2022), we may write the solution in the interior region satisfying
(2.2) and (2.3) in z ∈ [−d, 0] and z ∈ [−h,−d], respectively, in its most general form

φ( j)(r, θ, z) =
∞∑

l=0

ˆ π

−π

B( j)
l (u) eiμl(u)r cos(θ−u)Zl(z, u) du, (2.14)

which is a superposition over all possible wavenumbers and wave angles, where B( j)
l (u)

are undetermined functions,

Zl(z, u)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cosh[μl(u)z cos u] + K
μl(u) cos u

sinh[μl(u)z cos u], z ∈ [−d, 0]

cosh[μl(u)d cos u] − K
μl(u) cos u

sinh[μl(u)d cos u]

cosh[μl(u)(h − d)]
cosh[μl(u)(z + h)], z ∈ [−h,−d]

,

(2.15)

such that μ = μl(u) are solutions of

tanh[μ(h − d)] = K − μ cos u tanh(μd cos u)

μ− K
cos u

tanh(μd cos u)
. (2.16)

The roots of (2.16) satisfy μ(−u) = μ(u), μ(π − u) = μ(u), hence once the roots μ(u)
with u ∈ [0,π/2] are known, any other roots with u ∈ [−π,π] can be easily calculated.
When u = 0 and v̄ = 0, (2.16) becomes K = μ tanh(μh), which is the dispersion relation
in the open sea as expected; when u = π/2, it becomes tanh[μ(h − d)] = K/[(1 − v̄ i −
Kd)μ].

If μ(u) is a root of (2.16), −μ(u) would also be a root. For any specified value of u,
there is an infinite number of discrete roots of (2.16). These for the cases with v̄ = 0,
in general, consist of two mutually opposite real roots and an infinite sequence of roots
lying on the imaginary axis. Since the integral interval of (2.14) is [−π,π], we need only
include the single positive real root, μ0(u), and the sequence of roots lying on the positive
imaginary axis, μl(u) for l = 1, 2, . . ., which contribute to propagating and evanescent
waves, respectively. An exception is the case with t = π/2 and Kd > 1, for which all the
roots, including μ0(π/2), are imaginary. The roots (2.16) for v̄ /= 0 can be derived by
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using the homotopy method, starting with the corresponding roots for the case of v̄ = 0
(Meylan, Bennetts & Peter 2017; Zheng et al. 2020a).

Here B( j)
l (u) could be expressed in terms of any basis whose elements are periodic in u

with period 2π. Here, we assume that B( j)
l (u) may be expressed as

B( j)
l (u) =

∞∑
m=−∞

b( j)
m,l eimu eiμl(u)R, (2.17)

where b( j)
m,l are unknown coefficients to be determined, and the exponential factor involving

μl(u)R is introduced to suppress numerical rounding error issues otherwise associated
with the exponential growth of the functions Jp(μl(u)R) for l > 0 whenμl(u) is imaginary.
With the employment of (2.17), in place of (2.14), we have

φ( j)(r, θ, z) =
∞∑

l=0

∞∑
m=−∞

b( j)
m,l

ˆ π

−π

eimu eiμl(u)r cos(θ−u) eiμl(u)RZl(z, u) du. (2.18)

With the employment of the Jacobi–Anger expansion of the plane wavefunction

eiμl(u)r cos(θ−u) =
∞∑

p=−∞
ipJp(μl(u)r) eip(θ−u), (2.19)

the velocity potential at the interior region can be further expressed as

φ( j)(r, θ, z) =
∞∑

l=0

∞∑
m=−∞

b( j)
m,l

∞∑
p=−∞

ip eipθ
ˆ π

−π

Jp(μl(u)r) ei(m−p)u eiμl(u)RZl(z, u) du.

(2.20)

2.3. Solution of the unknown coefficients

The unknown coefficients a( j)
m,l and b( j)

m,l can be determined by using the continuity
conditions of the velocity potential and mass fluxes at the interface between the interior
and exterior regions.

Applying the continuity condition of the velocity potential at r = R, i.e. φ( j)(R−, θ, z) =
φ( j)(R+, θ, z) all over the water depth gives

δ0,j

∞∑
m=−∞

imJm(kR) eim(θ−β)ψ0(z)+
∞∑

m=−∞
im eimθ

∞∑
l=0

a( j)
m,lHm(klR)ψl(z)

=
∞∑

l=0

∞∑
m=−∞

b( j)
m,l

∞∑
p=−∞

ip eipθ
ˆ π

−π

Jp(μl(u)R) ei(m−p)u eiμl(u)RZl(z, u) du. (2.21)

After multiplying both sides by ψs(z) e−iqθ , integrating in z ∈ [−h, 0] and θ ∈ [0, 2π],
and using their orthogonality characteristics, it can be rewritten as

δ0,jδs,0Jq(kR) e−iqβ + a( j)
q,sHq(ksR)

=
∞∑

l=0

∞∑
m=−∞

b( j)
m,l

ˆ π

−π

Jq(μl(u)R) ei(m−q)u eiμl(u)RFs,l(u) du, (2.22)
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where

Fs,l(u) = F+
s,l(u)+ F−

s,l(u), (2.23)

in which

F+
s,l(u) = 1

h

ˆ 0

−d
ψs(z)Zl(z, u) dz

= −1
hμl(u)

√
Ns(k2

s − μ2
l (u) cos2 u)

{
ks sinh[ks(h − d)]

×
[
μl(u) cosh[μl(u)d cos u] − K

cos u
sinh[μl(u)d cos u]

]
− cosh[ks(h − d)]μl(u)[K cosh[μl(u)d cos u] − μl(u) cos u sinh[μl(u)d cos u]]

+ μl(u)[K cosh(ksh)− ks sinh(ksh)]
}
, (2.24)

and

F−
s,l(u) = 1

h

ˆ −d

−h
ψs(z)Zl(z, u) dz

= 1
hμl(u)

√
Ns(k2

s − μ2
l (u))

{
ks sinh[ks(h − d)]

×
[
μl(u) cosh[μl(u)d cos u] − K

cos u
sinh[μl(u)d cos u]

]
− cosh[ks(h − d)]μl(u)[K cosh[μl(u)d cos u]

− μl(u) cos u sinh[μl(u)d cos u]]
}
. (2.25)

The continuity condition of the velocity at r = R, i.e. (2.8b) for z ∈ [−d, 0] and
∂φ( j)/∂r|r=R− = ∂φ( j)/∂r|r=R+ for z ∈ [−h,−d], gives

δ0,j

∞∑
m=−∞

imkJ′
m(kR) eim(θ−β)ψ0(z)+

∞∑
m=−∞

im eimθ
∞∑

l=0

a( j)
m,lklH′

m(klR)ψl(z)

= (δ2,j − δ4,jz + δ6,jR cos θ) sin θ, z ∈ [−d, 0]

+
∞∑

l=0

∞∑
m=−∞

b( j)
m,l ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

∞∑
p=−∞

ip+1I(1)l,p , z ∈ [−d, 0]

∞∑
p=−∞

ip eipθI(2)l,p , z ∈ [−h,−d]
, (2.26)

with

I(1)l,p =
ˆ π

−π

μl(u)[ei( p+1)θ + ei( p−1)θ ] cos uJp(μl(u)R) ei(m−p)u eiμl(u)RZl(z, u) du,

(2.27)
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and

I(2)l,p =
ˆ π

−π

μl(u)J′
p(μl(u)R) ei(m−p)u eiμl(u)RZl(z, u) du. (2.28)

After multiplying both sides by ψs(z) e−iqθ , integrating in z ∈ [−h, 0] and θ ∈ [0, 2π],
and using their orthogonality characteristics, it can be rewritten as

δ0,jδs,0kJ′
q(kR) e−iqβ + a( j)

q,sksH′
q(ksR)

= (δ2,jTs − δ4,jTz,s)
δq,1 − δq,−1

2 iq+1 + δ6,jRTs
δq,2 − δq,−2

4 iq+1

+
∞∑

l=0

∞∑
m=−∞

b( j)
m,l

ˆ π

−π

ei(m−q)uμl(u) eiμl(u)R
{

J′
q(μl(u)R)F−

s,l(u)

+ cos u
2

[Jq−1(μl(u)R) eiu − Jq+1(μl(u)R) e−iu]F+
s,l(u)

}
du, (2.29)

where

Ts = 1
h

ˆ 0

−d
ψs(z) dz = sinh(ksh)− sinh[ks(h − d)]

kshN1/2
s

, (2.30)

and

Tz,s = 1
h

ˆ 0

−d
ψs(z)z dz = ksd sinh[ks(h − d)] + cosh[ks(h − d)] − cosh(ksh)

k2
s hN1/2

s
. (2.31)

After combining (2.22) and (2.29), and applying the Wronksian identity for Bessel
functions (Abramowitz & Stegun 1964),

Jn(x)Y ′
n(x)− J′

n(x)Yn(x) = 2
πx
, (2.32)

we have the following matrix equation to determine the unknown coefficients b( j)
m,l:

∞∑
l=0

∞∑
m=−∞

b( j)
m,lMm,l,q,s = G( j)

q,s, (2.33)

in which

Mm,l,q,s =
ˆ π

−π

ei(m−q)u eiμl(u)R

{[
Jq(μl(u)R)

Hq(ksR)
− μl(u)J′

q(μl(u)R)

ksH′
q(ksR)

]
F−

s,l(u)

+
[

Jq(μl(u)R)
Hq(ksR)

− μl(u) cos u
2ksH′

q(ksR)
(Jq−1(μl(u)R) eiu − Jq+1(μl(u)R) e−iu)

]
F+

s,l(u)

}
du

= 4
ˆ π/2

0
cos[(m − q)︸ ︷︷ ︸

even

u] eiμl(u)R

{[
Jq(μl(u)R)

Hq(ksR)
− μl(u)

ks

J′
q(μl(u)R)

H′
q(ksR)

]
F−

s,l(u)

+
[

Jq(μl(u)R)
Hq(ksR)

− μl(u)[cos(2u)+ 1]J′
q(μl(u)R)

2ksH′
q(ksR)

]
F+

s,l(u)

}
du

+ 2
ˆ π/2

0
sin[(m − q)︸ ︷︷ ︸

even

u] eiμl(u)R sin(2u)qJq(μl(u)R)
ksRH′

q(ksR)
F+

s,l(u) du, (2.34)
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Wave scattering and radiation

and

G( j)
q,s = δ0,jδs,0

2 i e−iqβ

πkRHq(kR)H′
q(kR)

+
[
(−δ2,jTs + δ4,jTz,s)

δq,1 + δq,−1

2

+ δ6,j iRTs
δq,2 − δq,−2

4

]
1

ksH′
q(ksR)

. (2.35)

Once b( j)
m,l are known, a( j)

m,l can be further determined with the employment of (2.22).

3. Hydrodynamic responses and reciprocal relations

3.1. Free surface elevation
The complex amplitude of the free surface elevation associated with φ( j) is

η( j) =

⎧⎪⎨
⎪⎩

iω
g(1 − v̄ i)

φ( j)|z=0, r ∈ [0,R)

iω
g
φ( j)|z=0, r ∈ [R,∞)

= iω
g

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
1 − v̄ i

∞∑
l=0

∞∑
m=−∞

b( j)
m,l

ˆ π

−π

eimu eiμl(u)r cos(θ−u) eiμl(u)R du, r ∈ [0,R),

δ0,jφ
I |z=0 +

∞∑
m=−∞

im eimθ
∞∑

l=0

a( j)
m,lHm(klr)ψl(0), r ∈ [R,∞).

(3.1)

3.2. Wave excitation forces and wave radiation forces
The wave excitation and radiation forces acting on the structured cylinder is a sum over
all of the vertical barriers of the differential pressure induced by the scattered waves and
radiated waves, respectively, acting over each barrier. It is straightforward to determine the
effective medium limit of this discrete description which results in the expression

Fij = −iωρ
˚

Vc

∂φ( j)

∂y
(δ2,i − δ4,iz + δ6,ir cos θ) dV + iωa(0)ij , (3.2)

where Vc denotes the volume domain occupied by the truncated metamaterial cylinder, i.e.
r ∈ [0,R], θ ∈ [0, 2π], z ∈ [−d, 0]. Here Fij for j = 0 denotes the wave excitation force
acting on the cylinder in the ith mode; for j /= 0, it denotes the wave radiation force
acting on the cylinder in ith mode due to a unit amplitude velocity oscillation of the
cylinder in jth mode in still water. Here a(0)ij is the effective mass of the water occupied
by the metamaterial cylinder to account for their inertial effect which is not reflected
in the velocity potential for the wave radiation problem. We have a(0)22 = ρπR2d, a(0)44 =
ρπR2d3/3, a(0)66 = ρπR4d/4, a(0)24 = a(0)42 = ρπR2d2/2 and a vanishing a(0)ij for other i, j.
The wave radiation force (i.e. Fij for j /= 0) can be further expressed as Fij = −cij + iωaij,
where cij and aij are the so-called wave radiation damping and added mass, respectively.
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S. Zheng, H. Liang and D. Greaves

From another point of view, after applying the divergence theorem, also known as
Gauss’ theorem, Fij may be rewritten as

Fij = −iωρ
¨

Sc

φ( j)|r=R−(δ2,i − δ4,iz + δ6,iR cos θ) sin θ dS + iωa(0)ij , (3.3)

where Sc denotes the curved sidewall of the truncated metamaterial cylinder, i.e. r =
R, θ ∈ [0, 2π], z ∈ [−d, 0]. Compared with (3.2), (3.3) is simpler because of no partial
derivative in y direction and one less integral over r ∈ [0,R].

After applying the expression of the velocity potential at the interior region, i.e. (2.20),
both (3.2) and (3.3) give the same expression of Fij:

Fij = 2πωρR
∞∑

l=0

∞∑
m=−∞

b( j)
m,l

ˆ π

−π

eimu eiμl(u)R
{

[δ2,iZ̄l(u)− δ4,iZ̄z,l(u)]J1(μl(u)R) sin u

+ δ6,i
iR
2

Z̄l(u)J2(μl(u)R) sin(2u)
}

du + iωa(0)ij

= 8iπωρR
∞∑

l=0

∞∑
m=−∞

b( j)
m,l

ˆ π/2

0
eiμl(u)R

⎧⎨
⎩[δ2,iZ̄l(u)− δ4,iZ̄z,l(u)]J1(μl(u)R) sin( m︸︷︷︸

odd

u) sin u

+ δ6,i
iR
2

J2(μl(u)R)Z̄l(u) sin( m︸︷︷︸
even

u) sin(2u)

⎫⎬
⎭ du + iωa(0)ij , (3.4)

where

Z̄l(u) =
ˆ 0

−d
Zl(z, u) dz

= μl(u) cos u sinh(μl(u)d cos u)+K[1 − cosh(μl(u)d cos u)]
μ2

l (u) cos2 u
, (3.5)

and

Z̄z,l(u) =
ˆ 0

−d
Zl(z, u)zdz

=

[μl(u)d tanh(μl(u)(h − d))+ 1][μl(u) cos u cosh(μl(u)d cos u)

−K sinh(μl(u)d cos u)] − μl(u) cos u

μ3
l (u) cos3 u

. (3.6)

Note that φ( j)|r=R− = φ( j)|r=R+ , hence (3.3) can be rewritten in terms of the velocity
potential at the exterior region

Fij = −iωρ
¨

Sc

φ( j)|r=R+(δ2,i − δ4,iz + δ6,iR cos θ) sin θ dS+iωa(0)ij

= πωρRh
{
δ0,j[2(δ2,iT0 − δ4,iTz,0)J1(kR) sinβ + δ6,i iRT0J2(kR) sin(2β)]
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Wave scattering and radiation

+ i
∞∑

l=0

[
(δ2,iTl − δ4,iTz,l)(a

( j)
1,l − a( j)

−1,l)H1(klR)+ δ6,i
iR
2
(a( j)

2,l − a( j)
−2,l)H2(klR)Tl

]}

+ iωa(0)ij , (3.7)

which is much simpler than (3.4) because of the absence of the integration over t ∈
[0,π/2] and the accumulation over m ∈ (−∞,∞).

3.3. Far-field radiation coefficient
For wave radiation problems, as kr → ∞, after applying the large argument asymptotics
of the Hankel function, we have

φ(i)(r, θ, z) ∼
√

2
πkr

A(i)(θ) ei(kr−π/4)ψ0(z), for i = 2, 4 and 6, (3.8)

where

A(i)(θ) =
∞∑

m=−∞
a(i)m,0 eimθ (3.9)

is the θ -dependent far-field radiation coefficient due to the oscillation of the cylinder in
the ith mode.

3.4. Haskind relation
Some important relations in which the wave excitation forces and wave radiation damping
can be calculated in terms of far-field radiation coefficients indirectly are derived in
this section. A general mathematical preparation for further studies in the following
subsections is given in Appendix A.

3.4.1. Excitation forces: HR
Using (A11), we may rewrite expression (3.7) for the excitation force (j = 0) as

Fi0(β) = −iωρ
¨

Sc

φ(0)|r=R+(δ2,i − δ4,iz + δ6,iR cos θ) sin θ dS

= −iωρI1(φ
(0), φ(i)) = −iωρI1(φ

I, φ(i))− iωρI1(φ
D, φ(i)). (3.10)

Furthermore, because φD and φ(i) both satisfy the far-field radiation condition (see
(2.9)), which means I1(φ

D, φ(i)) = 0, we obtain

Fi0(β) = −iωρI1(φ
I, φ(i))

= −iωρ
¨

S∞

(
φI ∂φ

(i)

∂r
− φ(i)

∂φI

∂r

)
dS

= 4ωρh
∞∑

m=−∞
(−1)m eimβa(i)m,0

= 4ωρhA(i)(β ± π). (3.11)
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It means that the excitation force the metamaterial cylinder experiences when a plane
wave is incident from a certain direction is associated with the cylinder’s ability to radiate
a wave into just that direction. It enables the excitation forces to be expressed in terms
of radiation parameters without any requirement of the solution of the wave scattering
problem.

3.4.2. Reciprocity relation between radiation damping and excitation forces/far-field
radiation coefficients

For the wave radiation forces (i, j /= 0), using (3.7) and (A11), and because φ(i) and φ( j)

both satisfy the far-field radiation condition (see (2.9)), which means I1(φ
(i), φ( j)) = 0,

we have

Fij − Fji = −iωρ
¨

Sc

φ( j)(δ2,i − δ4,iz + δ6,iR cos θ) sin θ dS

+ iωρ
¨

Sc

φ(i)(δ2,j − δ4,jz + δ6,jR cos θ) sin θ dS

= iωρI1(φ
(i), φ( j)) = 0, (3.12)

which proves the reciprocity relations Fij = Fji, cij = cji and aij = aji.
Therefore, we have

cij = −1
2
(Fij + F∗

ij) = −1
2
(Fij + F∗

ji)

= iωρ
2

¨
Sc

[φ( j)(δ2,i − δ4,iz + δ6,iR cos θ)− φ(i)∗(δ2,j − δ4,jz + δ6,jR cos θ)] sin θ dS

= iωρ
2

[
I1(φ

( j), φ(i)∗)− 2Kv̄ i
1 + v̄2

¨
Si

φ( j)φ(i)∗ dS
]

= ωρk
¨

S∞
φ( j)φ(i)∗ dS + Kωρv̄

1 + v̄2

¨
Si

φ( j)φ(i)∗ dS

= 4ωρh
∞∑

m=−∞
a( j)

m,0a(i)∗m,0+
Kωρv̄
1 + v̄2

¨
Si

φ( j)φ(i)∗ dS

= 1
8πωρh

ˆ 2π

0
Fj0(β)F∗

i0(β) dβ + Kωρv̄
1 + v̄2

¨
Si

φ( j)φ(i)∗ dS

= 2ωρh
π

ˆ 2π

0
A( j)(θ)A(i)∗(θ) dθ + Kωρv̄

1 + v̄2

¨
Si

φ( j)φ(i)∗ dS, (3.13)

indicating the relationship between the radiation damping and the far-field radiation
coefficients/wave excitation forces.

The Haskind-type identities as given in (3.11) and (3.13) link up the wave scattering and
radiation problems, and present a way to examine the accuracy of the proposed model.
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3.5. Wave power dissipation
The wave power dissipated by the metamaterial cylinder in a stationary condition due to
the damping mechanism can be calculated in a straightforward way,

P(i)diss = ρgωv̄
2

¨
Si

|η(i)|2 ds = ρω3v̄

2g(1 + v̄2)

¨
Si

|φ(i)|2 ds

= ρω3v̄

2g(1 + v̄2)

¨
Si

∣∣∣∣∣
∞∑

l=0

∞∑
m=−∞

b(i)m,l

ˆ π

−π

eimu eiμl(u)r cos(θ−u) eiμl(u)R du

∣∣∣∣∣
2

ds, (3.14)

with i = 0, which is called the ‘direct method’ hereinafter, where Si represents the free
surface inside the cylinder. For the metamaterial cylinder forced to oscillate in still water
in the ith mode with angular frequency ω and amplitude Xi (i = 2, 4, 6), the wave power
dissipated by the cylinder due to the damping mechanism can also be evaluated with the
‘direct method’, i.e. (3.14) but with a gain factor ω2|Xi|2 added to the right-hand side.

An alternative method is to use the energy conservation principle and express wave
power dissipation indirectly in terms of the far-field coefficients a(0)m,0. More specifically,
the wave power dissipated by a fixed metamaterial cylinder subjected to regular waves
can be expressed as the difference between the incoming wave power coming towards
the cylinder and the outgoing wave power propagating away from the cylinder (e.g. see
Zheng et al. 2022a); whereas for the wave radiation problem, it could be expressed as the
difference between the input power and the wave power radiated away from the cylinder
due to its oscillation, i.e.

P(i)diss =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρg|A|2cg

2k

∞∑
m=−∞

(1 − | e−imβ + 2a(i)m,0|2), i = 0

ω2|Xi|2
(

cii

2
− 2ωρh

∞∑
m=−∞

|a(i)m,0|2
)
, i /= 0

, (3.15)

which, hereinafter, is called the ‘indirect method’, where cg denotes the wave group
velocity cg = ω/[2k(1 + 2kh/sinh(2kh))].

The comparison between the predicted wave power dissipation by using the direct and
indirect methods provides an approach to check the accuracy of the proposed model.

It should be pointed out that the wave power dissipation discussed above is for
separate wave scattering and wave radiation problems. For the oscillating metamaterial
cylinder excited by incident waves, the overall wave power dissipated due to the damping
mechanism may be calculated by using the direct and indirect methods

Pdiss = ρω3v̄

2g(1 + v̄2)

¨
Si

∣∣∣∣∣∣
∞∑

l=0

∞∑
m=−∞

⎛
⎝b(0)m,l − iω

∑
j=2,4,6

Xjb
( j)
m,l

⎞
⎠

×
ˆ π

−π

eimu eiμl(u)r cos(θ−u) eiμl(u)R du
∣∣∣∣2 ds, (3.16)
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and

Pdiss = ρg|A|2cg

2k

∞∑
m=−∞

⎛
⎜⎝1 −

∣∣∣∣∣∣e−imβ + 2

⎛
⎝a(0)m,0 − iω

∑
j=2,4,6

Xja
( j)
m,0

⎞
⎠
∣∣∣∣∣∣
2
⎞
⎟⎠, (3.17)

respectively.

4. Model validation

Hereinafter, the wave excitation forces, hydrodynamic coefficients and the wave power
dissipated by the metamaterial cylinder when stationary are presented in terms of
dimensionless parameters defined as follows:

F̄i = Fi0

ρgRmA
, (4.1)

where m = 2 for i = 2, and m = 3 for i = 4 and 6;

āij = aij

ρRm , c̄ij = cij

ωρRm , (4.2a,b)

in which m = 3 for (i, j) = (2, 2); m = 4 for (i, j) = (2, 4); and m = 5 for (i, j) = (4, 4)
and (6, 6);

P̄(0)diss = 2kP(0)diss

ρg|A|2cg
. (4.3)

A convergence analysis is carried out to examine the effect of the number of the
truncated terms in terms of M (m = −M, . . . ,M) and L (l = 0, 1, . . . , L) on the frequency
responses of the wave excitation forces, the results of which are given in Appendix B. In
order to obtain the converged results, M ≥ 5 and L ≥ 4 are suggested. Hereinafter, M = 5
and L = 4 are adopted unless otherwise specified. The accuracy of the effective medium
model developed in this paper is tested by comparing the present wave scattering results
with those using the boundary element method of Liang et al. (2021) for an arrangement
of 40 discrete thin vertical plates (see figure 2). Two wave conditions, kR = 1.0 and 1.3,
are used here as an example for illustration of wave pattern in figure 2 for a cylinder
extending through 20 % of the depth with v̄ = 0. It indicates visibly satisfactory agreement
between the present theoretical results and the numerical ones. The numerical results
plotted in figures 2(b) and 2(d) are determined by using 7584 quadrilateral panels, and
there are 201 × 201 = 40 401 points on the free surface. Because of the dense matrix
in the boundary element method, the computation is very time consuming and storage
intensive, and it takes approximately 16 min on a workstation for each wave condition.
Whereas for the analytical model, it takes only approximately 1.7 min on a personal
computer, showing the advantage of the low computational cost of the analytical model.
The frequency responses of wave excitation forces acting on the vertical metamaterial
cylinder by using analytical and numerical models are compared in figure 3. The mild
differences between the effective medium results and the discrete computation as shown
in figures 2 and 3 could be further reduced by increasing the number of plates in the
numerical simulation provided more simulation time is acceptable.

983 A7-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

14
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.147


Wave scattering and radiation

–4 –3 –2 –1 0 1 2 3 4 5–5

–4

–3

–2

–1

0

1

2

3

4

5

y/R

–4 –3 –2 –1 0 1 2 3 4 5

–4 –3 –2 –1 0 1 2 3 4 5 –4 –3 –2 –1 0 1 2 3 4 5

–5

–4

–3

–2

–1

0

1

2

3

4

5
|η(0)/A|

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

x/R
–5

–4

–3

–2

–1

0

1

2

3

4

5

y/R

x/R
–5

–4

–3

–2

–1

0

1

2

3

4

5
|η(0)/A|

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

(a) (b)

(c) (d )

Figure 2. Wave motion due to incident wave propagation with β = π/4 on a stationary truncated metamaterial
cylinder with R/h = 1.0, d/h = 0.2 and v̄ = 0: (a,b) kR = 1.0; (c,d) kR = 1.3. Panels (a) and (c) are analytical
results; (b) and (d) numerical results (Liang et al. 2021), in which the cylinder was modelled by 40 infinitely
thin vertical plates (see the horizontal lines on the cylinder). Here η(0) denotes the free surface elevation of the
wave scattering problem.

In addition to the wave field and wave excitation forces, we have also compared the
dissipated wave power and the wave radiation damping coefficients with the employment
of different methods in figure 4. It is noted that the damping parameter v̄ cannot be
determined within the potential flow theory in a straightforward manner, and instead
it should be quantified via the experiments or solving the Navier–Stokes equations.
Moreover, the roughness of the plate surface is sensitive to the damping coefficient v̄.
Therefore, for illustrative purposes, we consider a wide range of damping coefficients
v̄ ∈ [0.0, 2.0]. In figure 4, an excellent agreement between the results using different
methods of wave excitation forces and hydrodynamic coefficients with the employment
of different methods is obtained, indicating the accuracy of the present model in solving
separate wave scattering and radiation problems.

5. Results and discussion

The validated model is applied to a series of case studies.

983 A7-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

14
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.147


S. Zheng, H. Liang and D. Greaves

0.6

0.4

0.2

1.0
(×10–1)

(×10–1)

0.8

0.6

0.4

0.2

4.0

3.0

2.0

1.0

0.4 0.8 1.2 1.6 2.00 0.4 0.8 1.2 1.6 2.00

0.4 0.8 1.2 1.6 2.00

kR

kR kR

|F̄2| |F̄4|

|F̄6|

Analytical

Numerical

(a) (b)

(c)

Figure 3. Frequency response of wave excitation forces experienced by a vertical truncated metamaterial
cylinder with R/h = 1.0, d/h = 0.2, v̄ = 0 and β = π/4: (a) |F̄2|; (b) |F̄4| and (c) |F̄6|. Here ‘analytical’
denotes the present effective medium results and ‘numerical’ represents the discrete computation results, in
which the cylinder was modelled by 40 infinitely thin vertical plates (Liang et al. 2021).
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Figure 4. Variation of the non-dimensional wave power dissipation and wave radiation damping coefficients
predicted by using different methods with respect to the damping parameter v̄ for R/h = 1.0, d/h = 0.2 and
kR = 1.0: (a) P̄(0)diss with β = π/4; (b) c̄22, c̄44 and c̄66. Here ‘direct method’ denotes the results by using (3.14),
and ‘indirect method’ denotes the results by using (3.15); ‘direct method, interior’ denotes the results by using
(3.4), ‘direct method, exterior’ denotes the results by using (3.7) and ‘indirect method, HR’ denotes the results
by using (3.13), the HR.
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Figure 5. Frequency response of wave excitation forces experienced by a vertical truncated metamaterial
cylinder (thick curves) with R/h = 1.0 and β = π/4: (a) |F̄2|; (b) |F̄4|; (c) |F̄6|. The corresponding wave
excitation forces experienced by an equivalent solid cylinder of the same size are also plotted as a comparison
(see the solid thin curves). The curves in the same colour denote the results with the same value of d/h.

5.1. A truncated metamaterial cylinder without damping mechanism
Figure 5 illustrates the effect of the cylinder draft d/h on the magnitude of the
dimensionless wave excitation forces on a truncated metamaterial cylinder with R/h = 1.0
subjected to incident regular waves of heading angle β = π/4. The corresponding results
of an equivalent solid cylinder of the same size are also plotted as controls. We note
that in long waves, e.g. kR < 0.5, there is a linear interrelationship between |F̄2| and
d/h (figure 5a), which is as expected because the excitation force is dominated by the
Froude–Krylov force due to incident waves. Indeed, for kR < 0.5, the sway excitation
forces acting on the truncated metamaterial cylinder and the equivalent solid cylinder
of the same size are found to have a good qualitative agreement. As kR gets larger, the
|F̄2| − kR curves for the metamaterial cylinder deviate from those of the equivalent solid
cylinder, and the deviation is generally upwards in the computed range of kR, except around
kR = 1.8 for d/h = 0.3 ∼ 0.5, where an apparent downwards deviation occurs. This may
be due to the wave near-trapping by the metamaterial cylinder, which will be discussed
later in this paper.

For the metamaterial cylinder, the shapes of the |F̄4| − kR curves (figure 5b) are
observed to be similar to those of the |F̄2| − kR curves. Nevertheless, for the equivalent
solid cylinder, the |F̄4| − kR curves perform rather differently from the corresponding
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Figure 6. Frequency response of wave radiation damping of a vertical truncated metamaterial cylinder (thick
curves) with R/h = 1.0: (a) c̄22; (b) c̄44; (c) c̄66; (d) c̄24. The corresponding wave radiation damping of an
equivalent solid cylinder of the same size is also plotted as a comparison (see the solid thin curves). The curves
in the same colour denote the results with the same value of d/h.

|F̄2| − kR curves. This is because the roll excitation force acting on a solid truncated
cylinder is influenced not only by the hydrodynamic pressure acting on the curved sidewall
but also by that acting on the bottom of the cylinder. In most of the computed range of kR,
e.g. kR < 1.6, the larger d/h, the larger |F̄4| of the metamaterial cylinder. On the contrary,
the value of |F̄4| for the equivalent solid cylinder decreases with increasing d/h. This
could be because the hydrodynamic pressure acting on the bottom of the solid cylinder
dominates |F̄4|, and the hydrodynamics at a deeper position is less intensive than that at a
shallower position.

For a solid cylinder, there is no yaw wave excitation force. While due to the existence
of the closely deployed vertical barriers, between which fluid motion occurs, the yaw
wave excitation force acting on the metamaterial cylinder can be excited (figure 5c). In the
examined range of wave conditions, |F̄6| of the metamaterial cylinder presents a monotonic
increase with the increase of kR. For any specific kR, the larger d/h, the larger |F̄6|.

The frequency responses of wave radiation damping and added mass of the metamaterial
cylinder, as well as those of the equivalent solid cylinder of the same size, are plotted in
figures 6 and 7, respectively. We observe that the curves of c̄22, c̄44 and c̄66 with kR are
qualitatively similar to those of |F̄2|, |F̄4| and |F̄6| in figure 5. Note, however, that the effect
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Figure 7. Frequency response of added mass of a vertical truncated metamaterial cylinder (thick curves) with
R/h = 1.0: (a) ā22; (b) ā44; (c) ā66; (d) ā24. The corresponding added mass of an equivalent solid cylinder of
the same size is also plotted as a comparison (see the solid thin curves). The curves in the same colour denote
the results with the same value of d/h.

of d/h on the wave radiation damping is more intense than that on wave excitation forces.
A sharp valley of the curves c̄22, c̄44 and c̄24 is observed at kR = 1.8 for the metamaterial
cylinder with d/h = 0.5. A similar feature also appears in the other cases, and the smaller
d/h, the larger kR where it occurs. In the range of computed kR regardless of the value of
d/h, c̄24 of the solid cylinder is negative and satisfies c̄2

24 = c̄22c̄44, which can be derived
by using the reciprocity relation between radiation damping and excitation force for 2-D
symmetric bodies (Fernandes 1989) and 3-D axisymmetric bodies (Falnes 2002). Here c̄24
is positive or negative when the excitation forces for sway and roll are in the same phase
or in opposite phases, respectively. Here c̄2

24 = c̄22c̄44 is also satisfied by the radiation
damping coefficients of the metamaterial cylinder but with positive c̄24 in the computed
range of kR.

The added mass of the metamaterial cylinder as plotted in figure 7 is finite as kR
approaches zero, and the limiting values are different for the cases with different values
of d/h: the larger d/h, the larger these limiting values. Here ā22 of the metamaterial
cylinder is generally larger than that of the equivalent solid cylinder. Figure 7(b) shows that
ā44 of the metamaterial cylinder is much smaller than that of the solid cylinder, and the
difference, again, may be explained by the contribution of the hydrodynamics at the bottom
of the cylinder. Interestingly, ā22, ā44 and ā24 of the metamaterial cylinder with d/h = 0.5
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Figure 8. Sway-induced radiated wave field with R/h = 1.0 and d/h = 0.5: (a) and (b) amplitude field,
ω|η(2)|; (c) and (d) instantaneous wave field, ωRe[η(2)]. Here (a) and (c) kR = 1.2; (b) and (d) kR = 1.8.

exhibit an inverted ‘N’ shaped curve at kR = 1.8 corresponding to the sharp valley of
the wave radiation damping curves. It means that at that particular frequency, standing
waves are trapped in the region bounded by the cylinder whose energy slowly leaks
away to infinity. We term this phenomenon ‘wave near-trapping’. The wave near-trapping
frequency moves towards low frequencies as the draft of the truncated metamaterial
cylinder increases.

To have a better understanding of what is happening at kR = 1.8, we plot the radiated
wave field of a metamaterial cylinder with R/h = 1.0 and d/h = 0.5 under swaying
oscillations of unit velocity amplitude in figure 8, showing both wave amplitude and
instantaneous free surface elevation non-dimensionalised by the sway motion amplitude
1/(−iω). The radiated wave field for kR = 1.2 is also plotted as a comparison. As shown
in figures 8(a) and 8(c), the radiated wave field performs in a dipolar pattern for kR = 1.2,
and the sources are located at θ = ±π/2 near the edge of the cylinder. This is roughly the
same as that of an equivalent solid cylinder undergoing swaying motions (not plotted here).
When the oscillating frequency reaches kR = 1.8, we observe from figures 8(b) and 8(d)
that, in addition to the intense free surface response at θ = ±π/2 near the circular edge,
a larger wave motion is excited inside the metamaterial cylinder roughly at r/R = 0.4,
θ = ±π/2. Correspondingly, from the perspective of the exterior radiated wave field, two
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Figure 9. Yaw-induced radiated wave field with d/h = 0.5 and kh = 1.66: Here (a) and (b) amplitude
field, ω|η(6)|/R; (c) and (d) instantaneous wave field, ωRe[η(6)]/R. Here (a) and (c) R/h = 1.0; (b) and
(d) R/h = 2.0.

more dipoles are generated at the edge, one at x/R = −0.9 with the two monopolar sources
located at y/R = ±0.4, and the other at x/R = 0.9 with the two monopolar sources located
at y/R = ±0.4. The two large wave motion-induced dipoles within the cylinder are roughly
out of phase with those at the circular edge, partially offsetting one another at the far-field
and resulting in a local valley of the wave radiation damping curves.

Returning to figures 6 and 7, we cannot see any sharp valley of c̄66 nor inverted
‘N’ shaped ā66 curve. This is because the examined range of kR is not broad enough
to cover the yaw motion-related wave near-trapping frequencies, which are generally
larger than those of the sway and roll modes. Enlarging the radius of the metamaterial
cylinder can effectively reduce the near-trapping frequency. Figure 9 presents the radiated
wave field of metamaterial cylinders of different radii and d/h = 0.5 oscillating in yaw
with kh = 1.66. For the yaw wave radiation problem, the velocity potential may be
decomposed as a series of circular components in terms of sin(2mθ) with m = 1, 2, . . ..
When the radius of the cylinder or the wave frequency is small, the circular components
of the yaw-motion induced radiated wave field are dominated by the sin(2θ) component
(figures 9a and 9c), and there are four sources of the radiated waves, which are located
at θ = ±π/4 and ±3π/4, respectively, on the edge of the cylinder. When the oscillating
frequency or the radius of the cylinder is large enough, large-amplitude wave motion can
be excited inside the metamaterial cylinder in yaw motion, and meanwhile the high-order
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Figure 10. Frequency response of wave excitation forces experienced by a vertical truncated metamaterial
cylinder (thick curves) with R/h = 1.0, d/h = 0.5 and β = π/4: (a) |F̄2|; (b) |F̄4|; (c) |F̄6|.

circular component of the velocity potential outside the cylinder, e.g. sin(4θ) as shown in
figures 9(b) and 9(d), is excited.

5.2. A truncated metamaterial cylinder with damping mechanism
In this subsection, we take the truncated metamaterial cylinder with R/h = 1.0, d/h = 0.5
and different values of v̄ as an example to demonstrate how a damping mechanism at the
free surface inside the cylinder influences the wave scattering and radiation problems.

Figure 10 presents the frequency responses of wave excitation forces acting on the
structured cylinder for v̄ ranging between 0 and 0.8. For low wave frequencies, e.g.
kR < 0.6, the wave excitation forces are nearly independent of the change of v̄ in the
examined range. This was to be expected because the damping parameter is embodied in
K = K/(1 − v̄ i) in the model (see (2.4)), meaning that when K is small enough, K is
insensitive to the change of v̄. For 0.8 < kR < 1.6, as v̄ increases from 0 to 0.8, both |F̄2|
and |F̄4| decrease, and their main peaks move towards small kR. Nevertheless, for wave
conditions around the near-trapping frequencies, i.e. kR ≈ 1.8, we observe that the larger
the value of v̄, the larger the values of |F̄2| and |F̄4|. To have a better understanding of why
the damping mechanism has different influences on |F̄2| and |F̄4| for the non-near-trapping
and near-trapping wave conditions, we select kR = 1.2 and 1.8 as two representative wave
conditions and plot the wave scattering field in terms of wave amplitude and instantaneous
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Figure 11. Wave scattering field in terms of |η(0)/A| and Re[η(0)/A] with R/h = 1.0, d/h = 0.5 and
kR = 1.2: (a) and (b) v̄ = 0.05; (c) and (d) v̄ = 0.4. Here (a) and (c) |η(0)/A|; (b) and (d) Re[η(0)/A].

free surface elevation with v̄ = 0.05 and v̄ = 0.4 for these two wave frequencies in
figures 11 and 12, respectively. It is observed that for kR = 1.2 with a relatively small
damping coefficient, say v̄ = 0.05 (see figures 11a and 11b), the largest and smallest wave
amplitudes inside the structured cylinder are |η(0)/A| = 1.51 and 0.67, respectively. There
is one main peak of the instantaneous wave field observed inside the cylinder and the
largest jump of Re[η(0)/A] can be as large as 1.85. As the damping coefficient increases
and achieves a relatively large value, say v̄ = 0.4 (see figures 11c and 11d), the free surface
oscillation inside the metamaterial cylinder is effectively attenuated. The comparison
between the instantaneous wave field indicates that as v̄ increases from 0.05 to 0.4, the
‘wavelength’ inside the cylinder is enlarged, explaining the reason why the main peaks of
|F̄2| and |F̄4| for 0.8 < kR < 1.6 move towards small kR with the increase of v̄.

For the near-trapping wave conditions, say kR = 1.8 (see figure 12), with a small
damping coefficient, say v̄ = 0.05, there is one peak and one valley of the field of
|η(0)/A| observed inside the structured cylinder. There are some strong local jumps of the
instantaneous wave field across the plates inside the structured cylinder, yet after taking
the integral of the jumps along the y-axis, they cancel each other out to a large extent,
resulting in a relatively low value of the sway excitation force and roll excitation moment
acting on the metamaterial cylinder. As v̄ increases from 0.05 to 0.4, although the largest
and smallest wave amplitudes inside the structured cylinder |η(0)/A| as well as the largest
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Figure 12. Wave scattering field in terms of |η(0)/A| and Re[η(0)/A] with R/h = 1.0, d/h = 0.5 and
kR = 1.8: (a) and (b) v̄ = 0.05; (c) and (d) v̄ = 0.4. Here (a) and (c) |η(0)/A|; (b) and (d) Re[η(0)/A].

jump of Re[η(0)/A] are all decreased, the ‘wavelength’ and the pattern of the free surface
inside the cylinder change, breaking the balance of the jumps along the y-axis and leading
to large |F̄2| and |F̄4|.

In the computed range of kR, the yaw motion-related near-trapping frequencies are not
covered, and the |F̄6| is found to decrease with the increase of v̄ (see figure 10c).

Figure 13 presents the frequency response of wave radiation damping coefficients for
different values of v̄. The effect of v̄ on the frequency response of c̄22, c̄44 and c̄24 is
found to be similar to that on the frequency response of |F̄2| and |F̄4|. We observe that
c̄2

24 = c̄22c̄44 is valid regardless of the values of v̄. The change of v̄ has a limited impact on
c̄66 over the examined wave conditions except for rather large wavenumbers, e.g. kR > 1.7,
where the c̄66-kR curve drops down as v̄ increases from 0.2 to 0.8.

We also plot the frequency response of the added mass for different values of v̄ in
figure 14. The main influence of the change of v̄ on ā22, ā44 and ā24 occurs around the
near-trapping frequencies kR = 1.8, particularly between kR = 1.6 and 1.8, where the
larger the v̄ the larger the added masses. With the increase of v̄, the inverted ‘N’ shaped
curves at kR = 1.8 turn to be straightened, and the local peaks and valleys disappear when
v̄ > 0.2. For the yaw-motion-related added mass ā66, the main peak gets lower and moves
towards small kR with the increase of the damping coefficient, which could be explained

983 A7-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

14
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.147


Wave scattering and radiation

1.2

0.8

0.6

0.4

0.2

0

2.5

2.0

1.5

1.0

0.5

0

0.4

0

1.5

1.0

0.5

0

0.4 0.8 1.2 1.6 2.0 0.4 0.8 1.2 1.6 2.0

0.4 0.8 1.2 1.6 2.0 0.4 0.8 1.2 1.6 2.0

kR kR

(×10–1)

(×10–1)(×10–1)

c̄ 2
2

c̄ 4
4

c̄ 6
6

c̄ 2
4

(a) (b)

(c) (d )

v̄ = 0 v̄ = 0.2

v̄ = 0.05 v̄ = 0.4

v̄ = 0.1 v̄ = 0.8

Figure 13. Frequency response of wave radiation damping of a vertical truncated metamaterial cylinder with
R/h = 1.0 and d/h = 0.5: (a) c̄22; (b) c̄44; (c) c̄66; (d) c̄24.

from the point of view of the enhanced attenuation and the increase of ‘wavelength’ of the
wave field inside the metamaterial cylinder.

Finally, we examine the performance of a stationary truncated metamaterial cylinder
in terms of wave power dissipation, the results of which are plotted in figure 15. For
the metamaterial cylinder subjected to waves with β = π/4, in the computed range of
kR, P̄(0)diss is monotonically increasing with the increase of kR regardless of the value of
v̄. As v̄ increases from 0.05 to 1.6, the P̄(0)diss–kR curve rises first and then falls after
reaching the highest point, meaning that there is an optimised damping coefficient to
maximise the wave power dissipation. Similar results can also be observed in figure 4(a).
We then fix the damping coefficient as v̄ = 0.4 and examine the performance of the
structured cylinder in waves with different incident wave directions. From figure 15(b)
we see that the more perpendicular the plates’ alignment relative to the incident wave
propagation, the more wave power can be dissipated. Note that the metamaterial cylinder
may be utilised to capture wave power if the channels between the plates contain heaving
buoys extracting power with their heave motion. For a traditional WEC consisting of an
axisymmetric rigid cylinder moving in heave mode, the theoretical maximum wave power
capture width ratio expressed in terms of P̄(0)diss is 1.0 when the motion is fully optimised
(e.g. see Budal & Falnes 1975; Evans 1976; Newman 1976). The metamaterial cylinder
with v̄ = 0.4 especially for β = π/2 is able to give P̄(0)diss > 1.0 over a wide range of wave
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ā 6
6
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Figure 14. Frequency response of added mass of a vertical truncated metamaterial cylinder with R/h = 1.0
and d/h = 0.5: (a) ā22; (b) ā44; (c) ā66; (d) ā24.
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Figure 15. Frequency response of the non-dimensional dissipated wave power of a stationary vertical
truncated metamaterial cylinder with R/h = 1.0 and d/h = 0.5: (a) P̄(0)diss for β = π/4; (b) P̄(0)diss for v̄ = 0.4.

conditions, absorbing more than a traditional axisymmetric heaving WEC can achieve.
Applying heaving buoys with a metamaterial cylinder consisting of a series of parallel
plates is merely a concept for wave power absorption. There are also some other concepts
of harnessing wave power with a metamaterial cylinder, e.g. using a pair of opposing
vertically buoyant hinged paddles oscillating along the centre plane of the narrow channels
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to capture wave power (Huang & Porter 2022), and more recently, employing an array of
small cuboid buoys inside a surface-piercing truncated metamaterial cylinder consisting of
two overlapping arrays of closely spaced vertical thin plates to absorb wave power (Huang,
Porter & Zheng 2023).

6. Conclusions

In this paper, we have considered scattering and radiation of water waves by a
surface-piercing vertical truncated metamaterial cylinder, which is composed of a closely
spaced array of thin vertical barriers. The fluids inside the truncated metamaterial cylinder
are allowed and restricted by the barriers to flow between them and parallel to them.
A theoretical model based on linear velocity flow theory is developed to solve the
hydrodynamic problems, in which an effective medium equation is employed to describe
the wave motion inside the cylinder.

We have proved and confirmed that the wave excitation forces acting on the metamaterial
cylinder can be expressed not only in terms of the local interior or exterior velocity
potential straightforwardly but also in terms of the far-field radiation coefficients.
Moreover, there is a reciprocity relation between radiation damping and excitation
forces/far-field radiation coefficients. It is revealed that the frequency responses of the
sway excitation force, the sway–sway radiation damping, and the sway–sway added mass
of the truncated metamaterial cylinder have a similar appearance to those of the equivalent
truncated solid cylinder, except at near-trapping frequencies, where a sharp valley of the
sway excitation force and radiation damping curves happens, whereas an inverted ‘N’
shaped curve is observed for the sway–sway added mass. For small wavenumbers, the
radiated wave field around a metamaterial cylinder oscillating in sway performs in a
dipolar pattern; whereas, for the yaw-motion case, the radiated wave field is dominated
by the sin(2θ) circular components. Large-amplitude wave motion can be excited inside
the metamaterial cylinder when the oscillating frequencies are close to the near-trapping
frequencies. The yaw motion-related near-trapping frequencies are generally larger than
those of the sway and roll ones.

The sway excitation force and roll excitation moment acting on the metamaterial
cylinder for non-near-trapping wave frequencies can be effectively reduced by inducing
a damping mechanism at the free surface inside the cylinder. The larger the damping
coefficient, the lower the main peaks of their frequency responses, and those peaks
move towards small wave frequencies. Nevertheless, for the near-trapping frequencies,
the sway and roll excitation force/moment increase with the increase of the damping
coefficient. The truncated metamaterial cylinder when fixed in place and with a damping
mechanism included is found to dissipate more wave power when the plates are aligned
more perpendicular relative to the incident wave propagation. The metamaterial cylinder
is able to capture more wave power than that of a traditional axisymmetric heaving WEC
over a wide range of wave frequencies.

The model developed, as well as the findings revealed, in this paper could be of
significant value for deepening understanding of water wave interaction with floating
metamaterial structures, shedding light on the harnessing and dissipation of wave energy
with the employment of metamaterials.
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Figure 16. (a) A truncated metamaterial cylinder within an imaginary cylindrical control surface S∞. Wetted
curved cylindrical sidewall and bottom of the metamaterial cylinder are indicated by Sc and Sm, whereas Se
denotes the external water surface. (b) A channel between two adjacent barriers of the metamaterial cylinder.
Side opening and bottom of the channel are indicated by Sc1,c, Sc2,c and Sm,c, whereas Si,c denotes the internal
water surface. The red arrows indicate the direction of the line integrals.

Author ORCIDs.
S. Zheng https://orcid.org/0000-0001-7124-1619;
H. Liang https://orcid.org/0000-0003-3602-1623;
D. Greaves https://orcid.org/0000-0003-3906-9630.

Appendix A. Some useful integrals based on Green’s theorem

Figure 16 presents a sketch of a finite region of the sea containing a surface-piercing
vertical truncated metamaterial cylinder. Figure 16(a) shows the finite 3-D region outside
the structured cylinder. It is assumed that outside the region, the sea is unbounded
horizontally and the water has a constant depth h outside the mentioned finite region.
Figure 16(b) illustrates the 2-D fluid domain inside a narrow channel between the closely
spaced barriers.

Let us now apply Green’s theorem to the 3-D and 2-D fluid regions indicated in
figure 16. As shown in figure 16, the 3-D fluid region is contained inside a closed surface
composed of the curved sidewall of the cylinder, Sc, the circular bottom of the cylinder,
Sm, the free water surface external to the cylinder, Se, the sea bed, Sb, and an envisaged
vertical cylinder-shaped ‘control’ surface at r → ∞, S∞.

We define a useful integral over the curved sidewall of the cylinder and the circular
bottom of the cylinder

I1(φ
(i), φ( j)) =

¨
Sc+Sm

(
φ(i)

∂φ( j)

∂n
− φ( j) ∂φ

(i)

∂n

)
dS

=
¨

Sc

(
φ(i)

∂φ( j)

∂r
− φ( j) ∂φ

(i)

∂r

)∣∣∣∣∣
r=R+

dS −
¨

Sm

(
φ(i)

∂φ( j)

∂z
− φ( j) ∂φ

(i)

∂z

)
dS
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=
"

Sc+Sm+Sb+Se+S∞

(
φ(i)

∂φ( j)

∂n
− φ( j) ∂φ

(i)

∂n

)
dS −

¨
Sb

(
φ(i)

∂φ( j)

∂n
− φ( j) ∂φ

(i)

∂n

)
dS

−
¨

Se

(
φ(i)

∂φ( j)

∂n
− φ( j) ∂φ

(i)

∂n

)
dS −

¨
S∞

(
φ(i)

∂φ( j)

∂n
− φ( j) ∂φ

(i)

∂n

)
dS. (A1)

Following from Gauss’ divergence theorem, the surface integral of a vector field over
a closed surface, i.e. the flux through the surface, is equal to the volume integral of the
divergence over the region inside the surface, and since both φ(i) and φ( j) satisfy Laplace’s
equation all over the fluid domain, we have

" (
φ(i)

∂φ( j)

∂n
− φ( j) ∂φ

(i)

∂n

)
dS =

"
n · (φ(i)∇φ( j) − φ( j)∇φ(i)) dS

=
˚

Vf

∇ · (φ(i)∇φ( j) − φ( j)∇φ(i)) dV

=
˚

Vf

(φ(i)∇2φ( j) − φ( j)∇2φ(i)) dV

= 0, (A2)

where Vf denotes the fluid volume enclosed by the closed surface.
Note also that the integrand in (A1) vanishes on Sb and Se because of the free surface

and seabed boundary conditions (2.5) and (2.6). Hence, instead of integrating over Sc and
Sm, we may express I1(φ

(i), φ( j)) by integrating over S∞,

I1(φ
(i), φ( j)) =

¨
S∞

(
φ(i)

∂φ( j)

∂r
− φ( j) ∂φ

(i)

∂r

)
dS. (A3)

For i, j /= 0, we have I1(φ
(i), φ( j)) = 0 because φ(i) and φ( j) satisfy the same radiation

conditions. However, because φ(i) and φ( j)∗ satisfy opposite radiation conditions, we have

I1(φ
(i), φ( j)∗) =

¨
S∞

(
φ(i)

∂φ( j)∗

∂r
− φ( j)∗ ∂φ(i)

∂r

)
dS = −2 ik

¨
S∞
φ(i)φ( j)∗ dS. (A4)

Similarly, we define another useful integral over the two opening sides and the bottom
of a narrow channel (see figure 16b) located at y,

I2(φ
(i), φ( j), y) =

ˆ
Sc1,c+Sc2,c+Sm,c

(
φ(i)

∂φ( j)

∂nc
− φ( j) ∂φ

(i)

∂nc

)
ds

=
˛

Sc1,c+Sc2,c+Sm,c+Si,c

(
φ(i)

∂φ( j)

∂nc
− φ( j) ∂φ

(i)

∂nc

)
ds

−
ˆ

Si,c

(
φ(i)

∂φ( j)

∂nc
− φ( j) ∂φ

(i)

∂nc

)
ds. (A5)

Following from the 2-D divergence theorem, the integral of a vector field over a closed
line is equal to the surface integral of the divergence over the area enclosed by the line.
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Since both φ(i) and φ( j) satisfy the reduced Laplace equation, i.e. (2.2), inside the channel,
we have

˛ (
φ(i)

∂φ( j)

∂nc
− φ( j) ∂φ

(i)

∂nc

)
ds =

˛
nc · (φ(i)∇xzφ

( j) − φ( j)∇xzφ
(i)) ds

=
¨

Sp

∇xz · (φ(i)∇xzφ
( j) − φ( j)∇xzφ

(i)) dS

=
¨

Sp

(φ(i)∇2
xzφ

( j) − φ( j)∇2
xzφ

(i)) dS

= 0, (A6)

where Sp denotes the barrier region at y.
Note that the integrand in (A5) vanishes on Si,c because of the free surface boundary

condition, (2.4), leading to

I2(φ
(i), φ( j), y) = 0. (A7)

Because φ(i) and φ( j)∗ satisfy different free surface conditions inside the cylinder, we have

I2(φ
(i), φ( j)∗, y) = −

ˆ
Si,c

(
φ(i)

∂φ( j)∗

∂nc
− φ( j)∗ ∂φ(i)

∂nc

)
ds = − 2Kv̄ i

1 + v̄2

ˆ
Si,c

φ(i)φ( j)∗ ds.

(A8)

After integrating I2(φ
(i), φ( j), y) and I2(φ

(i), φ( j)∗, y) over the y dimension of the
metamaterial cylinder, we have
ˆ

I2(φ
(i), φ( j), y) dy

=
ˆ ˆ

Sc1,c+Sc2,c

(
φ(i)

∂φ( j)

∂nc
− φ( j) ∂φ

(i)

∂nc

)∣∣∣∣∣
r=R−

ds dy +
ˆ ˆ

Sm,c

(
φ(i)

∂φ( j)

∂nc
− φ( j) ∂φ

(i)

∂nc

)
ds dy

= −
¨

Sc

(
φ(i)

∂φ( j)

∂x
− φ( j) ∂φ

(i)

∂x

)∣∣∣∣∣
r=R−

cos θ dS +
¨

Sm

(
φ(i)

∂φ( j)

∂z
− φ( j) ∂φ

(i)

∂z

)
dS

= 0, (A9)

and
ˆ

I2(φ
(i), φ( j)∗, y) dy

= −
¨

Sc

(
φ(i)

∂φ( j)∗

∂x
− φ( j)∗ ∂φ(i)

∂x

)∣∣∣∣∣
r=R−

cos θ dS +
¨

Sm

(
φ(i)

∂φ( j)∗

∂z
− φ( j)∗ ∂φ(i)

∂z

)
dS

= − 2Kv̄ i
1 + v̄2

¨
Si

φ(i)φ( j)∗ dS. (A10)
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Figure 17. Impact of the angular cut-offs (i.e. in terms of M) on wave excitation forces acting on vertical
truncated metamaterial cylinder with R/h = 1.0, d/h = 0.5, v̄ = 1.0, β = π/4, and L = 4: (a) |F̄2|; (b) |F̄4|
and (c) |F̄6|.

After taking the sum of (A3) and (A9), and applying the continuum boundary of velocity
over the curved surface of the cylinder, (2.8b), we have
¨

Sc

[(
φ(i)

∂φ( j)

∂r
− φ( j) ∂φ

(i)

∂r

)∣∣∣∣∣
r=R+

−
(
φ(i)

∂φ( j)

∂x
− φ( j) ∂φ

(i)

∂x

)∣∣∣∣∣
r=R−

cos θ

]
dS

=
¨

Sc

[φ(i)(δ2,j − δ4,jz + δ6,jR cos θ)− φ( j)(δ2,i − δ4,iz + δ6,iR cos θ)] sin θ dS

=
¨

S∞

(
φ(i)

∂φ( j)

∂r
− φ( j) ∂φ

(i)

∂r

)
dS

= I1(φ
(i), φ( j)), (A11)

and, similarly, by using (A4) and (A10), together with (2.8b), we have
¨

Sc

[(
φ(i)

∂φ( j)∗

∂r
− φ( j)∗ ∂φ(i)

∂r

)∣∣∣∣∣
r=R+

−
(
φ(i)

∂φ( j)∗

∂x
− φ( j)∗ ∂φ(i)

∂x

)∣∣∣∣∣
r=R−

cos θ

]
dS

+ 2Kv̄ i
1 + v̄2

¨
Si

φ(i)φ( j)∗ dS
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Figure 18. Impact of the vertical cut-offs (i.e. in terms of L) on wave excitation forces acting on vertical
truncated metamaterial cylinder with R/h = 1.0, d/h = 0.5, v̄ = 1.0, β = π/4, and M = 5: (a) |F̄2|; (b) |F̄4|
and (c) |F̄6|.

=
¨

Sc

[φ(i)(δ2,j − δ4,jz + δ6,jR cos θ)− φ( j)∗(δ2,i − δ4,iz + δ6,iR cos θ)] sin θ dS

+ 2Kv̄ i
1 + v̄2

¨
Si

φ(i)φ( j)∗ dS

=
¨

S∞

(
φ(i)

∂φ( j)∗

∂r
− φ( j)∗ ∂φ(i)

∂r

)
dS

= I1(φ
(i), φ( j)∗). (A12)

Appendix B. Convergence analysis

Figures 17 and 18 illustrate the impact of the angular cut-offs and vertical cut-offs in terms
of M (m = −M, . . . ,M) and L (l = 0, 1, . . . , L), respectively, on the frequency responses
of wave excitation forces. In order to obtain the converged results, M ≥ 5 and L ≥ 4 are
suggested.
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