```
ON SEMI-PERFECT GROUP RINGS
    W.D. Burgess
(received January 14, 1969)
```

1. Introduction. In what follows the notation and terminology of [7] are used and all rings are assumed to have a unity element. The purpose of this note is to give some partial answers to the question: under which conditions on a ring A and a group G is the group ring AG semi-perfect?

For the convenience of the reader a few definitions and results will be reviewed. A ring R is called semi-perfect if $R / R a d R$ (Jacobson radical) is completely reducible and idempotents can be lifted modulo RadR (i.e., if x is an idempotent of $R / R a d R$ there is an idempotent e of R so that $e+R a d R=x)$. A homomorphic image of a semi-perfect ring is again semi-perfect [2, Lemma 2.2]; and R_{n}, the
 if R is semi-perfect [6, Theorem 3]. The commutative semi-perfect rings are the finite direct products of local rings [2].

If A is a ring and G a group, $A G$ denotes the discrete group ring. If H is a subgroup of $G, \omega H$ is the right ideal of $A G$ generated by $\{1-h \mid h \in H\}$; if H is normal, this is an ideal and $A G / \omega H$ $\simeq A(G / H)$. If I is a right ideal of A then $I G$ denotes the elements

Canad. Math. Bull. vol. 12, no. 5, 1969
of AG with coefficients in I; when I is an ideal so is IG and $A G / I G \simeq(A / I) G$. A group ring $A G$ is regular if and only if A is regular, G is locally finite and the order of every finite sub-group of G is a unit in A [3, Theorem 3].
2. Necessary Conditions. Since $A \simeq A G / \omega G$ it follows that A is semi-perfect if $A G$ is and, assuming $A / R a d A \simeq D_{n(1)}^{(1)} \times \ldots \times D_{n(k)}^{(k)}, D^{(i)}$ a division ring, $\left.\mathrm{D}_{\mathrm{n}}^{(\mathrm{i})} \mathrm{i}\right) \mathrm{G}$ is semi-perfect. This last is because AG/(RadA)G is semi-perfect as is

$$
\frac{(\mathrm{A} / \operatorname{RadA}) \mathrm{G}}{\mathrm{IG}} \simeq \mathrm{D}_{\mathrm{n}(\mathrm{i})}^{(\mathrm{i})} \mathrm{G}
$$

where

$$
I \simeq D_{n(1)}^{(1)} \times \cdots \times D_{n(i-1)}^{(i-1)} \times D_{n(i+1)}^{(i+1)} \times \cdots \times D_{n(k)}^{(k)}
$$

It is clear that for any ring $A, A_{n} G \simeq(A G)_{n}$ (assign to $B_{1} g_{1}+\ldots+$ $B_{s} g_{S} \varepsilon A_{n} G$ the matrix with ij entry $a_{i j}^{(1)} g_{1}+\ldots+a_{i j}^{(s)} g_{s}$ where $a_{i j}^{(m)}$ is the ij entry of B_{m}). By the result quoted above, $D^{(i)} G$ is semi-perfect for $i=1, \ldots, s$.

PROPOSITION 1. If $A G$ is semi-perfect so is A and so is DG for each division ring appearing in the factors of $A / R a d A$.

Definition 2 [8]. A group G is called an $I D$ group (integral domain group) if for each ring A with no zero divisors except zero AG has no zero divisors except zero.

It is easily seen [8, Theorem 3.2] that a non-trivial ID group is torsion free and that any ordered group (such as a torsion free Abelian group) is ID. Clearly, if A has no zero divisors and G is an

ID group, 0 and 1 are the only idempotents of $A G$.

PROPOSITION 3. If $G \neq\{1\}$ is an $I D$ group, $A G$ is not semiperfect.

Proof. If $A G$ is semi-perfect, DG is semi-perfect for some division ring D. Hence, if e + RadDG is an idempotent of DG/RadDG, either e ε RadDG or 1 - e ε RadDG. Since DG/RadDG is completely reducible, it follows that $D G / R a d D G$ is a division ring. Also $D G / \omega G$ $\simeq D$ so ωG is a primitive ideal and, thus, RadDG $\subseteq \omega G$. But there can be no proper ideals of $D G$ properly containing RadDG, so $\omega G=$ RadDG. This implies [3, Proposition 15] that G is a p-group for some prime p. This is a contradiction.

COROLLARY 4. If G is an extension of a group by a non-trivial ID group then $A G$ is not semi-perfect for any ring A.

Proof. By factoring out an ideal of $A G$ one gets a group ring of an ID group which cannot be semi-perfect.

As a special case, if G is Abelian and $A G$ is semi-perfect then G is torsion, since every non-torsion Abelian group is an extension of group by a non-trivial ID group. However, if G is Abelian, a more detailed statement can be made.

PROPOSITION 5. If $A G$ is semi-perfect, G an Abelian group, then either G is finite or $G \simeq H \times G_{p}, G_{p}$ an infinite p-group, H finite, $p \nmid|H|$ and each of the division rings associated with the completely reducible ring $A / R a d A$ is of characteristic p.

Proof. As we have seen, if $A G$ is semi-perfect so is $D G$ where D is a division ring from $A / R a d A$. If D has characteristic zero then DG is regular (and, hence RadDG $=0$). This means that $D G$ is completely reducible and, by the Maschke Theorem [3, p. 660], G is finite. If D has characteristic $p, G \simeq H \times G_{p}$ where G_{p} is a p-group and H has no elements of order p. Then $D H \simeq D G / \omega G$ is semi-perfect and regular. As above, H is finite.

Corollary 4 and Proposition 5 lead one to conjecture that $A G$ semi-perfect implies that G is torsion. The following example shows that G need not be locally finite. In [5, Chapter 8] there is an exposition of the Golod-Šafarevic Theorem which gives a p-group G which is not locally finite. In the particular example given in [5], A is taken to be a field of characteristic p and, in $A G, \omega G$ is a nil ideal. Hence RadAG $=\omega G, A G / \omega G \simeq A$ is a field, so $A G$ is semi-perfect.
3. Sufficient Conditions. It was shown in [3, Proposition 9] that if A is Artinian or if G is locally finite then $\operatorname{RadA}=A \cap \operatorname{RadAG}$.

LEMMA 6 ([3, Proposition 16 (iii) and (iv)]). If G is Abelian then $\omega G=$ RadAG if and only if G is a p-group, $p=0$ in A, and A is semi-primitive.

COROLLARY 6. If G is an Abelian p-group and A finite direct product of commutative local rings whose factor fields are of characteristic p then $A G$ is semi-perfect.

Proof. Let $A \simeq L_{1} \times \ldots \times L_{n}, L_{i}$ local, $L_{i} / R_{i d L} \simeq F_{i}$ a field of characteristic p. Then $A G \simeq L_{1} G \times \ldots \times L_{n} G$ and for each i,

$$
L_{i} G / \operatorname{RadL}_{i} G \simeq \frac{L_{i} G /\left(\operatorname{RadL}_{i}\right) G}{\operatorname{RadL}_{i} G /\left(\operatorname{RadL}_{i}\right) G} \simeq F_{i} G / \operatorname{RadF}_{i} G \simeq F_{i}
$$

by the proposition. Hence, each $\mathrm{L}_{\mathrm{i}} \mathrm{G}$ is local.
A computation, which appears for example in [8, Theorem 1.4], shows that if $G \simeq H \times K$ then $A G \simeq(A H) K$. This yields a converse to Proposition 5.

COROLLARY 7. If A is commutative, $G \simeq G_{p} \times H$ where G_{p} is a p-group, H is finite and $p \nmid|H|$, then $A G$ is semi-perfect if AH is a finite direct product of local rings whose factor fields are of characteristic p.

PROPOSITION 8. If A is semi-perfect, G finite, then $A G$ is semi-perfect if idempotents can be lifted modulo (RadA)G. If AG is commutative, the converse is true.

Proof. By a remark above $\operatorname{RadA} \subset$ RadAG, so

$$
\mathrm{AG} / \operatorname{RadAG} \simeq \frac{\mathrm{AG} /(\operatorname{RadA}) \mathrm{G}}{\operatorname{RadAG} /(\operatorname{Rad} \mathrm{A}) \mathrm{G}} \simeq \frac{(\mathrm{~A} / \operatorname{RadA}) \mathrm{G}}{\operatorname{Rad}(\mathrm{~A} / \operatorname{Rad} \mathrm{A}) \mathrm{G}}
$$

Now (A/RadA)G is Artinian, since by [3, Theorem 1] a group ring is Artinain if and only if the underlying ring is Artinian and the group is finite; thus, idempotents may be lifted modulo $\operatorname{Rad}((A / \operatorname{RadA}) G)$.

The converse is proved, for example, in [4, Corollary 1.3].
The following proposition yields a sufficient condition for the
lifting of idempotents modulo (RadA)G; however, much better results are known (see [1] or [4]). The Proposition is included because it seems interesting and it may have other applications.

PROPOSITION 9. Let A be any ring, N an ideal $N \subset$ RadA, G Abelian and torsion, then idempotents can be lifted from $A G / N G$ to $A G / N^{2} G$.

Proof. Let $e=h_{1} g_{1}+\ldots+h_{n} g_{n}$ be an idempotent of $A G$ modulo NG. Since the subgroup of G generated by $\left\{g_{1}, \ldots, g_{n}\right\}$ is finite and the idempotent modulo $\mathrm{N}^{2} \mathrm{G}$ which will be constructed has the same support as e, it is assumed below that G is finite with elements $\left\{g_{1}, \ldots, g_{n}\right\}$. We have, for each $k=1, \ldots, n, \sum_{i j=k} h_{i} h_{j}=h_{k}+p_{k}$, where $p_{k} \in N$ (here, as in what follows, the group element is referred to by its subscript). To lift this idempotent to $A G$ we would need to find $m_{i} \varepsilon N$, $i=1, \ldots, n$ so that

$$
\begin{equation*}
\sum_{i j=k}\left(h_{i}+m_{i}\right)\left(h_{j}+m_{j}\right)=h_{k}+m_{k} \text { for } k \quad 1, \ldots, n, \text { or } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i j=k}\left(h_{i} h_{j}+m_{i} h_{j}+h_{j} m_{i}+m_{i} m_{j}\right)=h_{k}+m_{k} \tag{2}
\end{equation*}
$$

Since e is an idempotent modulo NG

$$
\begin{equation*}
\sum_{i j=k}^{\sum}\left(h_{i} m_{j}+h_{j} m_{i}\right)-m_{k}=-p_{k}-\sum_{i j=k} m_{i} m_{j}, \tag{3}
\end{equation*}
$$

so a solution of

$$
\begin{equation*}
\sum_{i j}^{\sum}\left(h_{i} m_{j} \quad h_{j} m_{i}\right)-m_{k}=-p_{k} \tag{4}
\end{equation*}
$$

would yield an idempotent modulo $N^{2} G$ since the term $\sum m_{i} m_{j} \varepsilon N^{2}$. Relabelling (4) gives

$$
\sum_{i}^{\sum}\left(h_{i}^{m}{ }_{i}-1_{k}+h_{i} 1_{k} m_{i}\right)-m_{k}=-p_{k}
$$

or, using the commutativity of G for the first time,

$$
\begin{equation*}
\sum_{i} 2 h_{i}^{m}{ }_{i}-1_{k}-m_{k}=-p_{k} . \tag{5}
\end{equation*}
$$

To demonstrate the existence of a solution for (5), it suffices to show that the matrix B of coefficients is a unit in A_{n}. For

$$
\text { B }\left(\begin{array}{c}
m_{1} \\
\cdot \\
\cdot \\
m_{n}
\end{array}\right)=\left(\begin{array}{c}
-p_{1} \\
\cdot \\
\cdot \\
-p_{n}
\end{array}\right) \text { implies that each } m_{i} \varepsilon N .
$$

The matrix B has the form

$$
b_{k q}=\left\{\begin{array}{lll}
2 h_{k q}^{-1} & \text { if } & q \neq k \\
2 h_{1}-1 & \text { if } & q=k
\end{array}\right.
$$

Hence $B=2 C-I_{n}$, where $c_{k q^{\prime}}=h_{k q}{ }^{-1}$ and I_{n} is the identity matrix. Thus C is just the regular representation of e in A_{n} and this is an idempotent modulo N_{n}. So $C^{2}-C \varepsilon N_{n}$ and $\left(2 C-I_{n}\right)^{2}=I_{n}+J$ where $J \varepsilon N_{n}$. But $N \subset$ RadA so $I_{n}+J$ is a unit in A_{n} and it follows that B is also a unit.

It should be remarked that the above argument does not work if G is non-abelian, for then $B=C+C^{\prime}-I_{n}$ where C is the right and C^{\prime} the left regular representation of e.

A corollary of this result is that if A is complete in the RadA-adic topology then idempotents of $A G$ modulo (RadA)G can be lifted. However, this is true even when (A,RadA) is a Hensel pair (see [1] and [4]) and G is any finite group. Certainily there are Hensel rings without the completeness property.

REFERENCES

1. G. Azumaya, On maximally central algebras. Nagoya Math. J. 2 (1950) 119-150.
2. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings. Trans. Amer. Math. Soc. 95 (1960) 466-488.
3. I. G. Connell, On the group ring. Canad. J. Math. 15 (1963) 650-685.
4. S. Greco, Algebras over nonlocal Hensel rings. J. Algebra 8 (1968) 45-59.
5. I. N. Herstein, Noncommutative rings. (Mathematical Association of America, 1968).
6. S. Keye, Ring theoretic properties of matrix rings. Canad. Math. Buil. 10 (1967) 365-374.
7. J. Lambek, Lectures on rings and modules. (Blaisdell, Waltham, Mass., U.S.A., 1966).
8. W. Rudin and H. Schneider, Idempotents in group rings. Duke Math. J. 31 (1964) 585-ó02.
9. H. Schneider and J. Weissglass, Group rings, semigroup rings and their radicals. J. Algebra 5 (1967) 1-15.

University of Ottawa

