ON SEMI-PERFECT GROUP RINGS
W.D. Burgess

(received January 14, 1969)

1. Introduction. In what follows the notation and terminology
of [7] are used and all rings are assumed to have a unity element.

The purpose of this note is to give some partial answers to the
question: under which conditions on a ring A and a group G is the
group ring AG semi-perfect?

For the convenience of the reader a few definitions and results
will be reviewed. A ring R 1is called semi-perfect if R/RadR (Jacob-
son radical) 1is completely reducible and idempotents can be lifted mo-
dulo RadR (i.e., if x is an idempotent of R/RadR there is an
idempotent e of R so that e * RadR = x). A homomorphic image of
a semi-perfect ring is again semi-perfect [2, Lemma 2.2]; and Rn’ the
ring of n x n - matrices over a ring R, is semi-perfect if and only
if R 1is semi-perfect [6, Theorem 3]. The commutative semi-perfect
rings are the finite direct products of local rings [2].

If A 1is a ring and G a group, AG denotes the discrete group
ring. If H 1is a subgroup of G, wH 1is the right ideal of AG gene-
rated by {1 - h]h e H}; if H 1is normal, this is an ideal and AG/wH

=~ A(G/H). If 1 1is a right ideal of A then IG denotes the elements
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of AG with coefficients in I; when I is an ideal so is IG and
AG/IG =~ (A/I)G. A group ring AG 1is regular if and only if A 1is re-
gular, G 1is locally finite and the order of every finite sub-group of

G is a unit in A [3, Theorem 3].

2. Necessary Conditions. Since A =~ AG/wG it follows that A

. . . . . e (k) (1)
is semi-perfect if AG 1is and, assuming A/RadA = Dn(l)x"'x Dn(k)’ D
p) ¢

a division ring, n(i) is semi-perfect. This last is because

AG/(RadA)G 1is semi-perfect as is

(A/RadA)G _ (i)

IG T n(i)
where
1~ ., p07D pGHD o p k)
n(l) n(i-1)""n(i+1) n(k)
It is clear that for any ring A, AnG = (AG)n (assign to Blg1+...+
Bsgs 3 AnG the matrix with ij entry a£;) gy *te.ot aﬁ?) g where

ai?) is the 1ij entry of Bm). By the result quoted above, D(l)G

is semi-perfect for i = 1,...,s.

PROPOSITION 1. If AG is semi-perfect so is A and so is DG

for each division ring appearing in the factors of A/RadA.

Definition 2 [8]. A group G 1is called an ID group (integral
domain group) if for each ring A with no zero divisors except zero
AG has no zero divisors except zero.

It is easily seen [8, Theorem 3.2] that a non-trivial ID group
is torsion free and that any ordered group (such as a torsion free Abe-

lian group) is ID. Clearly, if A has no zero divisors and G 1is an
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ID group, O and 1 are the only idempotents of AG.

PROPOSITION 3. If G # {1} is an ID group, AG is not semi-

perfect.

Proof. If AG is semi-perfect, DG is semi-perfect for some
division ring D. Hence, if e + RadDG is an idempotent of DG/RadDG,
either e € RadDG or 1 - e ¢ RadDG. Since DG/RadDG 1is completely
reducible, it follows that DG/RadDG is a division ring. Also DG/uG
=D so wG is a primitive ideal and, thus, RadDG € wG. But there can
be no proper ideals of DG properly containing RadDG, so wG = RadDG.

This implies [3, Proposition 15] that G is a p-group for some prime

p. This is a contradiction.

COROLLARY 4. 1If G is an extension of a group by a non-trivial

ID group then AG 1is not semi-perfect for any ring A.

Proof. By factoring out an ideal of AG one gets a group ring
of an ID group which cannot be semi-perfect.

As a special case, if G 1is Abelian and AG 1is semi-perfect
then G 1is torsion, since every non-torsion Abelian group is an exten-
sion of group by a non-trivial ID group. However, if G 1is Abelian,

a more detailed statement can be made.

PROPOSITION 5. If AG is semi-perfect, G an Abelian group,

then either G is finite or G = H «x Gp’ Gp an infinite p-group, H

finite, p f |H| and each of the division rings associated with the

completely reducible ring A/RadA is of characteristic p.
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Proof. As we have seen, if AG 1is semi-perfect so is DG where
D is a division ring from A/RadA. If D has characteristic zero then
DG is regular (and, hence RadDG = 0). This means that DG is completely
reducible and, by the Maschke Theorem [3, p. 6601, G 1is finite.

If D has characteristic p,G =~ H x Gp where Gp is a p-group and H
has no elements of order p. Then DH = DG/wGp is semi-perfect and re-
gular. As above, H 1is finite.

Corollary 4 and Proposition 5 lead one to conjecture that AG
semi-perfect implies that G 1is torsion. The following example shows
that G need not be locally finite. In [5, Chapter 8] there is an ex-
position of the Golod-Safarevic Theorem which gives a p-group G which
is not locally finite. In the particular example given in [5], A 1is
taken to be a field of characteristic p and, in AG, wG 1is a nil

ideal. Hence RadAG = wG, AG/wG ~ A is a field, so AG is semi-perfect.

3. Sufficient Conditions. It was shown in [3, Proposition 9]

that if A 1is Artinian or if G 1is locally finite then

RadA = A N RadAG.

LEMMA 6 ([3, Proposition 16 (iii) and (iv)]). If G is Abelian

then G = RadAG if and only if G 1is a p-group, p =0 in A, and

A is semi-primitive.

COROLLARY 6. If G 1is an Abelian p-group and A a finite direct

product of commutative local rings whose factor fields are of characte-

ristic p then AG is semi-perfect.
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Proof. Let A~ L. x...x L , L. 1local, L./RadL. =~ F. a field
—_— 1 n i i i i

of characteristic p. Then AG = LIG X...x LnG and for each 1,

L.G/(RadL,)G
L.G/RadL,G = RadT G/ TRadT,G © F,G/RadF.G = F,

by the proposition. Hence, each LiG is local.
A computation, which appears for example in [8, Theorem 1.4],
shows that if G = H x K then AG = (AH)K. This yields a converse to

Proposition 5.

COROLLARY 7. If A is commutative, G = Gp x H where Gp is

a p-group, H is finite and p [ |H|, then AG is semi-perfect if

AH is a finite direct product of local rings whose factor fields are

of characteristic p.

PROPOSITION 8. If A 1is semi-perfect, G finite, then AG

is semi-perfect if idempotents can be lifted modulo (RadA)G. If AG

is commutative, the converse is true.

Proof. By a remark above RadA < RadAG, so

AG/ (RadA)G (A/RadA)G

AG/RadAG = R 746/ (RadA)G ~ Rad(A/RadA)G

Now (A/RadA)G is Artinian, since by [3, Theorem 1] a group ring is

Artinain if and only if the underlying ring is Artinian and the group

is finite; thus, idempotents may be lifted modulo Rad((A/RadA)G).
The converse is proved, for example, in [4, Corollary 1.3].

The following proposition yields a sufficient condition for the
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lifting of idempotents modulo (RadA)G; however, much better results
are known (see [1] or [4]). The Proposition is included because it

seems interesting and it may have other applications.

PROPOSITION 9. Let A be any ring, N an ideal N < RadA, G

Abelian and torsion, then idempotents can be lifted from AG/NG to

AG/NZG.

Proof. Let e = hlg1 oot hngn be an idempotent of AG modulo
NG. Since the subgroup of G generated by {gl,...,gn} is finite and
the idempotent modulo N2G which will be constructed has the same sup-
port as e, it is assumed below that G 1is finite with elements
{gl,...,gn}. We have, for each k = 1,...,n, .; hihj = hk + Py
ij=k
where Py € N (here, as in what follows, the group element is referred

to by its subscript). To lift this idempotent to AG we would need to

find moe N, i=1,...,n so that
(1) .g (hi + mi)(hj + mj) = hk + m for k 1,...,n, or
ij=k
(2) z (hihj + mihj + hjmi + mimj) = hk +omyo.
ij=k
Since e 1is an idempotent modulo NG
(3) b3 (h.m, + h.m,) -m = -p, - 2 m.m, ,
jj=k L0 k koogjax 1

so a solution of

(4) b3 (h.m, h.m,) - m
ijk 3 17

1}
1

o
P

k

would yield an idempotent modulo NZG since the term 3 nm. e N2.

J
Relabelling (4) gives
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g2 thm . +h .m)-m =-p
PR 1k i 1k i k k

or, using the commutativity of G for the first time,

(5) T 2h.m -m =

To demonstrate the existence of a solution for (5), it suffices

to show that the matrix B of coefficients is a unit in An. For

/ m1 _pl\

. implies that each m e N.
_pn

The matrix B has the form

2h -1 if q# k,
kq
bqu
2hy -1 if q=k.
Hence B = 2C - I_, where ¢, = h and I is the identity matrix.
n kq kq_l n

Thus C 1is just the regular representation of e in An and this is
an idempotent modulo Nn‘ So C2 -Ce Nn and (2C - In)2 = In +J
where J ¢ Nn' But N < RadA so In + J 1is a unit in An and it
follows that B is also a unit.

It should be remarked that the above argument does not work if
G 1is non-abelian, for then B = C + C' - In where C 1is the right
and C' the left regular representation of e.

A corollary of this result is that if A is complete in the
RadA-adic topology then idempotents of AG modulo (RadA)G can be
lifted. However, this is true even when (A,RadA) is a Hensel pair
(see [1] and [4]) and G is any finite group. Certairly there are

Hensel rings without the completeness property.
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