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1. Introduction. In what follows the notation and terminology 

of [7] are used and all rings are assumed to have a unity element. 

The purpose of this note is to give some partial answers to the 

question: under which conditions on a ring A and a group G is the 

group ring AG semi-perfect? 

For the convenience of the reader a few definitions and results 

will be reviewed. A ring R is called semi-perfect if R/RadR (Jacob-

son radical) is completely reducible and idempotents can be lifted mo­

dulo RadR (i.e., if x is an idempotent of R/RadR there is an 

idempotent e of R so that e + RadR = x). A homomorphic image of 

a semi-perfect ring is again semi-perfect [2, Lemma 2.2]; and R , the 

ring of n x n - matrices over a ring R, is semi-perfect if and only 

if R is semi-perfect [6, Theorem 3]. The commutative semi-perfect 

rings are the finite direct products of local rings [2]. 

If A is a ring and G a group, AG denotes the discrete group 

ring. If H is a subgroup of G, u)H is the right ideal of AG gene­

rated by {1 - h |h e H}; if H is normal, this is an ideal and AG/toH 

- A(G/H). If I is a right ideal of A then IG denotes the elements 
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of AG with coefficients in I; when I is an ideal so is IG and 

AG/IG - (A/I)G. A group ring AG is regular if and only if A is re­

gular, G is locally finite and the order of every finite sub-group of 

G is a unit in A [3, Theorem 3]. 

2. Necessary Conditions. Since A a AG/wG it follows that A 

is semi-perfect if AG is and, assuming A/RadA - D ^ x...x D^;* D^ ^ 

a division ring, D ,..G is semi-perfect. This last is because 

AG/(RadA)G is semi-perfect as is 

(A/RadA)G (i) 
ÏG * °n(i)G 

where 

,(1) n(i-l) n(i+l) n(k) 
n ( l ) x " - x n(i-l)x n(i+l)x--*x n(k) 

It is clear that for any ring A, A G * (AG) (assign to B..g +...+ 

B g e A G the matrix with ij entry a., g, +...+ a., g where 
s6s n J J ij 61 13 6s 

a.. is the ij entry of B ). By the result quoted above, D ^G 

is semi-perfect for i = l,...,s. 

PROPOSITION 1. If. AG is semi-perfect so is A and so is DG 

for each division ring appearing in the factors of A/RadA. 

Definition 2 [8]. A group G is called an ID group (integral 

domain group) if for each ring A with no zero divisors except zero 

AG has no zero divisors except zero. 

It is easily seen [8, Theorem 3.2] that a non-trivial ID group 

is torsion free and that any ordered group (such as a torsion free Abe-

lian group) is ID. Clearly, if A has no zero divisors and G is an 
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ID group, 0 and 1 are the only idempotents of AG. 

PROPOSITION 3. Lf G / {1} is an ID group, AG is not semi-

perfect. 

Proof. If AG is semi-perfect, DG is semi-perfect for some 

division ring D. Hence, if e + RadDG is an idempotent of DG/RadDG, 

either e e RadDG or 1 - e E RadDG. Since DG/RadDG is completely 

reducible, it follows that DG/RadDG is a division ring. Also DG/wG 

- D so CJOG is a primitive ideal and, thus, RadDG c_a)G. But there can 

be no proper ideals of DG properly containing RadDG, so wG = RadDG 

This implies [3, Proposition 15] that G is a p-group for some prime 

p. This is a contradiction. 

COROLLARY 4. If_ G is an extension of a group by a non-trivial 

ID group then AG is not semi-perfect for any ring A. 

Proof. By factoring out an ideal of AG one gets a group ring 

of an ID group which cannot be semi-perfect. 

As a special case, if G is Abelian and AG is semi-perfect 

then G is torsion, since every non-torsion Abelian group is an exten­

sion of group by a non-trivial ID group. However, if G is Abelian, 

a more detailed statement can be made. 

PROPOSITION 5. If AG is semi-perfect, G an Abelian group, 

then either G is finite or G - H x G , G an infinite p-group, H 

finite, p | |H| and each of the division rings associated with the 

completely reducible ring A/RadA is of characteristic p. 
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Proof. As we have seen, if AG is semi-perfect so is DG where 

D is a division ring from A/RadA. If D has characteristic zero then 

DG is regular (and, hence RadDG = 0). This means that DG is completely 

reducible and, by the Maschke Theorem [3, p. 660], G is finite. 

If D has characteristic p,G - H x G where G is a p-group and H 

has no elements of order p. Then DH - DG/wG is semi-perfect and re­

gular. As above, H is finite. 

Corollary 4 and Proposition 5 lead one to conjecture that AG 

semi-perfect implies that G is torsion. The following example shows 

that G need not be locally finite. In [5, Chapter 8]-there is an ex-

position of the Golod-Safarevic Theorem which gives a p-group G which 

is not locally finite. In the particular example given in [5], A is 

taken to be a field of characteristic p and, in AG, QJG is a nil 

ideal. Hence RadAG = wG, AG/ooG = A is a field, so AG is semi-perfect. 

3. Sufficient Conditions. It was shown in [3, Proposition 9] 

that if A is Artinian or if G is locally finite then 

RadA = A n RadAG. 

LEMMA 6 ([3, Proposition 16 (iii) and (iv)]). If_ G is Abelian 

then o)G = RadAG if and only if G is a p-group, p = 0 ^H A> and 

A is semi-primitive. 

COROLLARY 6. Jjf G is an Abelian p-group and A a finite direct 

product of commutative local rings whose factor fields are of characte­

ristic p then AG is semi-perfect. 
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Proof. Let A ^ L. x...x L , L. local, L./RadL. ^ F. a field 
1 n l ' i l l 

of characteristic p. Then AG - L..G x...x L G and for each i, 
r I n ' 

L.G/(RadL.)G 
L.G/RadL.G - p1,. r , * ,. ,r - F.G/RadF.G - F. 
l l RadL.G/(RadL.)G I l I 

by the proposition. Hence, each L.G is local. 

A computation, which appears for example in [8, Theorem 1.4], 

shows that if G ̂  H x K then AG ̂  (AH)K. This yields a converse to 

Proposition 5. 

COROLLARY 7. If A is commutative, G ̂  G x H where G is 
— P P — 

a p-group, H is finite and p | |H|, then AG is semi-perfect if 

AH is a finite direct product of local rings whose factor fields are 

of characteristic p. 

PROPOSITION 8. lf_ A is semi-perfect, G finite, then AG 

is semi-perfect if idempotents can be lifted modulo (RadA)G. Jjf AG 

is commutative, the converse is true. 

Proof. By a remark above RadA <̂  RadAG, so 

~ AG/(RadA)G „ (A/RadA)G 
7 RadAG/(RadA)G Rad(A/RadA)G 

Now (A/RadA)G is Artinian, since by [3, Theorem 1] a group ring is 

Artinain if and only if the underlying ring is Artinian and the group 

is finite; thus, idempotents may be lifted modulo Rad((A/RadA)G). 

The converse is proved, for example, in [4, Corollary 1.3]. 

The following proposition yields a sufficient condition for the 
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lifting of idempotents modulo (RadA)G; however, much better results 

are known (see [1] or [4]). The Proposition is included because it 

seems interesting and it may have other applications. 

PROPOSITION 9. ]Let_ A be any ring, N an ideal N e RadA, G 

Abelian and torsion, then idempotents can be lifted from AG/NG to 

AG/N2G. 

Proof. Let e = h,g, +. . .+ h g be an idempotent of AG modulo 
1°1 n°n r 

NG. Since the subgroup of G generated by {g-,,...,g } is finite and 

2 

the idempotent modulo N G which will be constructed has the same sup­

port as e, it is assumed below that G is finite with elements 

{ g r - - - , g n } - We have, for each k = l,...,n, E h A \ - h R + p R , 
ij=k 

where p, e N (here, as in what follows, the group element is referred 

to by its subscript). To lift this idempotent to AG we would need to 

find m. e N, i = 1,...,n so that 

(1) E (hi + mi)(h + m ) = hR + mR for k l,...,n , or 
ij = k J J 

(2) E (h.h. + m.h. + h.m. + m.m.) = h, + m. . 
- - i l l i l j i i J k k 

Since e is an idempotent modulo NG 

(3) E (h.m. + h.m.) - m = - p - E m m 
ljrk J J ljrk J 

so a solution of 

(4) i (h.m h m.) - m = - p k 

il k J J 

2 2 
would yield an idempotent modulo N G since the term E m.m. e N . 

Relabelling (4) gives 

650 

https://doi.org/10.4153/CMB-1969-083-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1969-083-9


I (h m + h m.) - mk = - Pk 

i i k î k 

or, using the commutâtivity of G for the first time, 

(5) z 2h.m - mk = - p k . 
i i k 

To demonstrate the existence of a solution for (5), it suffices 

to show that the matrix B of coefficients is a unit in A . For 
n 

/ mx , "Pi 

implies that each m. e N. 

Hence B = 2C - I , where c, = h . and I is the identity matrix. 
kq kq-l 

Thus C is just the regular representation of e in A and this is 

2 2 
an idempotent modulo N . So C - C e N and (2C - I ) = 1 + J F n n ^ n^ n 

where J e N . But N c RadA so I + J is a unit in A and it 
n n n 

follows that B is also a unit. 

It should be remarked that the above argument does not work if 

G is non-abelian, for then B = C + CT - I where C is the right 

and C' the left regular representation of e. 

A corollary of this result is that if A is complete in the 

RadA-adic topology then idempotents of AG modulo (RadA)G can be 

lifted. However, this is true even when (A,RadA) is a Hensel pair 

(see [1] and [4]) and G is any finite group. Certainly there are 

Hensel rings without the completeness property. 
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