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1. Introduction. The following two results in the theory of division algebras are well
known and easily proved, for an arbitrary commutative field k (cf. for example [3,
Chapter 10]).

(i) The tensor product of two central division algebras over k of coprime degrees is again
a division algebra.

(ii) Every central division algebra over k is a tensor product of division algebras of
prime power degrees.

It is natural to ask whether corresponding results hold for commutative fields. The
answers are not hard to find but (as far as I am aware) have not appeared in print before;
since they throw some light on the nature of tensor products they seemed worth
recording.

The analogue of (i) is easily seen to be true; this is proved in §2 where we examine in
more detail the condition for a tensor product of field extensions to be a field. The tensor
product of two field extensions Elk, F/k of which at least one is Galois is a field if and
only if they contain no isomorphic non-trivial subextensions. It is even enough to assume
that one of them is normal and the other separable, but an example is given to show that
normality cannot be omitted. This is closely related to a corresponding criterion for linear
disjointness due to Bourbaki [1], which also carries over to the case of a normal extension
(Theorem 2.2, Corollary 2).

To answer the question relating to (ii) for fields we shall limit ourselves to (finite)
Galois extensions. Here the analogue of (ii) holds precisely if the Galois group is soluble;
this is an easy consequence of P. Hall's characterization of soluble groups (§3). This in
turn raises the question whether for any given finite group G, division algebras exist which
are crossed products with Galois group G. This is indeed the case, as was shown by Farkas
[4]; it is also a simple consequence of the recent result of K. A. Brown that the group
algebra of a torsion free abelian-by-finite group has no zero-divisors ([2]; cf. also [5]).

2. The tensor product of two fields. We begin by showing that a tensor product of
finite field extensions of coprime aegrees is again a field.

PROPOSITION 2.1. Let k be any field and Elk, F/k finite extensions of degrees r, s where
r, s are coprime. Then E®kF is again a field.

Proof. Let L be a composite of E and F, i.e. a field containing k -isomorphic copies of
E and F and generated by them. Such a field L is well known to exist, e.g. as a
homomorphic image of the fc-algebra E®kF by a maximal ideal. We have a surjective
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homomorphism

E®kF^L. (1)

Let [L : fc] = n; since E, F are embedded in L, both r and s divide n, hence their least
common multiple rs also divides n, and so rs ^ n. If we compare dimensions in (1), we see
that equality must hold: rs = n, and so (1) is an isomorphism. Now the assertion follows.

If we restrict one of the extensions to be Galois (or even normal) we can give a more
precise description of- the tensor products that are fields. We shall not assume our
extensions to be finite, but of course all Galois extensions are understood to be algebraic.

THEOREM 2.2. Let k be any field and Elk, F/k any field extensions of which at least one
is Galois. Then E®kFis a field if and only if E and F have no isomorphic subfield properly
containing k.

Proof. Suppose that E, F each have a subfield isomorphic to a proper extension of k;
we may as well take this to be simple, say fc(a), where a, necessarily algebraic over fc of

n

degree n > 1, has the minimal equation £ c,xn~' = 0. Then
o

( l
M=O

a 01-1® a) =
0

and this shows that E®kF has zero-divisors.
To prove the converse we must show that under the given condition E <8> F has no

zero-divisors. Suppose that F/fc is Galois say; then any zero-divisor in E <8> F is already a
zero-divisor in E ® F', where F is a finitely generated Galois subextension of F. Thus it
will be enough to assume that F/k is finite Galois, hence simple, say F= k(a), where a
has minimal polynomial / over k. Over E we have a factorization

/ = P i . . . pr (p. monic irreducible over E), (2)

and E <8> F is a field if and only if r = 1. Assume that E <g> F is not a field; then r > 1 and if
Ej is the subfield of E generated by the coefficients of the ph then Ex i= k. Let us enlarge E
to a splitting field of /; this will contain a splitting field Eo of / over k, and clearly Eo 2 E v

But F, as Galois extension of k generated by a, is also a splitting field of / over k; by
uniqueness F = E 0 . Now El is a subfield of E and is contained in Eo, hence is isomorphic
to a subfield of F. This shows the condition to be necessary and it completes the proof.

This result can be slightly extended. Let us (as usual) define a normal extension F/fc
as an algebraic extension such that any irreducible polynomial over k with a zero in F
splits completely over F. For a finite normal extension we have the decomposition

F = Fs®kFh (3)

where Fs is the separable closure (the set of separable elements over k) and F; the perfect
closure (the set of purely inseparable elements over k) (cf. e.g. [3, p. 226]). Here of course
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Fs, being separable and normal, is Galois. Now assume that E/k is (algebraic) separable
and F/k is normal. If E ® F is not a field, it contains zero-divisors and again these will
already be zero-divisors in E <S> F for some finitely generated normal subfield F of F. So
we may assume F to be finite normal over k. By (3) we have

where all tensor products are over fc. Now Theorem 2.2 shows that if E and Fs have no
non-trivial isomorphic subextensions then E <8> Fs is a field. It is a separable extension of
k, being generated by separable elements; hence E®Fs®Fi is then a field (cf. [3, p.
227]), and this proves

COROLLARY 1. Let E/k, F/k be any field extensions, of which one is normal and one
(possibly the same) is separable algebraic. Then E®kF is a field if and only if E, F have no
isomorphic subfield properly containing k.

There is another way of stating Corollary 1, possibly more familiar (cf. [1, §10] for
the case of Galois extensions):

COROLLARY 2. Let L/k be any field extension. Then two subextensions E/k, F/k of
which one is normal and one separable algebraic, are linearly disjoint if and only if
EDF=fc.

For if E, F have isomorphic subextensions Eu F t say, and F is normal, then E t is
conjugate to F t and hence Ey £ F, therefore E D F ^ fc. The converse is clear.

Examples to show that normality cannot be omitted in Corollary 2 are well known.
Here is an example to show that the same applies to Corollary 1. We first analyse the
general situation, assuming only separability, by means of Galois theory.

Let E/k, F/k be any finite separable extensions and let L/k be any finite Galois
extension in which E and F are embedded; then we have a homomorphism:

E®kF^L. (4)

Put G = Gal(I./fc) and denote by H, K the subgroups of G corresponding to E, F
respectively. Then EF has the group HC\K, while E <S> F is an integral domain (and hence
a field) if and only if (4) is injective. The condition for this that [EF: fc] = [E <8) F : fc], i.e.

( G : H n X ) = (G:H)(G:K). (5)

Now (G:HnK) = (G:H)(H:Hr\K) = (G:H)(HK:K), hence (5) holds if and only if
(HK: K) = (G: K), i.e. HK = G. The condition that E, F have non-trivial isomorphic
subextensions is that H, K be contained in proper conjugate subgroups of G. Thus we
must find a finite group G and subgroups H, K such that HK^ G but there is no proper
subgroup M of G such that HQM, K^XMX'1 for some xeG. Equivalently, H and
x~*Kx generate G, for all xeG. Such an example is of course easily constructed. Let
G = S4 be the symmetric group of degree 4 and take H, K to be the subgroups generated
by a 3-cycle and a 4-cycle respectively; then |HK| = 12, hence HKj^G, but if the
subgroup generated by H, K were proper, it would be of order 12, i.e. the alternating
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group, which is not the case because it contains a 4-cycle. Thus H, K generate G and
likewise for any conjugates. On retracing our steps we find, by taking a Galois extension
with group S4, two subextensions which have no non-trivial isomorphic subextensions but
whose tensor product has zero-divisors.

3. The tensor product decomposition of a Galois extension. Let E/k be a finite
Galois extension of degree

m = p">... p"r (pi distinct primes). (1)

We shall keep this notation throughout the section and in particular write

qi = P:> (i = 1 r).

If for i = 1 , . . . , r, E contains a subfield Ej of degree q; over fe, then

E = El<S)...<S)En where [ E ^ f c ] ^ . (2)

For the right-hand side is a field, by an easy induction using Proposition 2.1, and the
inclusions Ei —*• E combine to produce a homomorphism of the right-hand side into the
left-hand side which must be injective; by counting dimension we find that it is an
isomorphism. Conversely, if we have an isomorphism (2), E must contain a subfield
isomorphic to Et, hence of degree qf. In terms of the group G = Gal(E/fc) we can say that
(2) holds if and only if for i — 1 , . . . , r, G has a subgroup Ht of index qh i.e. a
Pi-complement. By P. Hall's theorem (cf. e.g. [7, VI.2.3]) this holds if and only if G is
soluble. Moreover, any two decompositions into Sylow complements are conjugate ([7,
VI.2.4]). Thus we have proved

THEOREM 3.1. A finite Galois extension E/k of degree m given by (1) has a decom-
position (2) if and only if its Galois group G is soluble, and any two such decompositions are
conjugate by an automorphism of G.

In (2) the Ej need not be Galois over fc; they are so if and only if each pf-complement
H, is normal in G. As is well known, this is the case precisely when G is nilpotent (for G
then has normal Sylow subgroups cf. [6, p. 155]).

Theorem 3.1 is in sharp contrast with the behaviour of division algebras, which we
know always have such a decomposition. If we are given a finite Galois extension E/k we
can always construct a crossed product over E/fc, but this need not be a division algebra;
in fact there may be no division algebra which is a crossed product over E/k (e.g. if k is
finite). However, given any finite group G, there exists a Galois extension E/fc with group
G and a crossed product over E/fc which is a division algebra (cf. [4]).
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