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M-IDEALS AND FUNCTION ALGEBRAS 

K. SEDDIGHI AND H. ZAHEDANI 

ABSTRACT. Let C{X) be the space of all continuous complex-valued functions 
defined on the compact Hausdorff space X. We characterize the M-ideals in a uniform 
algebra A of C{X) in terms of singular measures. For a Banach function algebra B of 
C(X) we determine the connection between strong hulls for B and its peak sets. We also 
show that M{X) the space of complex regular Borel measures on X has no M-ideal. 

1. Introduction. Since its inception some twenty years ago, the topic of M-ideals 
has proven useful and interesting in various branches of analysis, thanks in large part to 
the approximation properties M-ideals enjoy. 

In this article we plan to characterize the M-ideals of a function space A in C(X). 
The concept of an M-ideal is defined by Alfsen and Effros [1] and a growing body of 
literature has been built up on the study of such ideals, see [2], [10] and [6]. 

We characterize an M-ideal J in a uniform algebra A of C(X) in terms of singular 
measures and similarly for a Banach function algebra. Using the notion of band of 
measures we show that M(X) the space of measures on X contains no M-ideal. 

For Banach function algebras a good substitute for peak sets is the notion of a strong 
hull introduced in [4]. We prove that for a normal Banach function algebra if ker(£), E 
closed, is an M-ideal then E is a strong hull. Two examples are given; one to show that 
normality is essential; another to show that the converse is not true. 

2. Preliminaries. Let C(X) be the Banach space of continuous complex-valued 
functions on the compact Hausdorff space X equipped with the sup-norm. A subalgebra 
A of C(X) is said to be a uniform algebra if it is uniformly closed, contains the constants 
and separates the points of X. A subalgebra B of C(X) is called a Banach function algebra 
on X if B contains the constants, separates the points of X and has a norm ||.|| which 
makes it into a Banach algebra. Clearly \f(x)\ < \\f\\ for/ G A and x G X. Hence lifHoo < 
11/11 and the embedding of B into C(X) is continuous. 

Let F be a Banach space. A closed subspace N\ of Fis called an L-summand if there is 
a closed subspace N2 of F such that Y -N\ ®A^and ||«i+«2|| = lki|| + ||w2|| for HI E N\ 
and «2 E Â2- Similarly, a closed subspace J\ of F is an M-summand if there is a closed 
subspace J2 of F such that F = J\ 0 J2 and \x\ + jc |̂| = max(||jci ||, 11*21|) for x\ E J\ and 
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X2 G Ji. If J is aclosed subspace of y such that the polar of 7, J° = {f G Y* :f\j = 0}, is 
an L-summand in Y* then J is called an M-ideal in Y. 

Let B be a Banach function algebra on X. The state space of B is defined by SB = 
{p G B* : p(l) = \\p\\ = 1}. The map L.X—^ SB given by Lx(f) = f{x)J G B is a 
homeomorphic embedding of X into S#. The Choquet boundary of X with respect to B 
is defined by c»#X = {x G X : Lx G d ^ } , where d ^ is the set of extreme points of SB . 
Finally we denote by M(dsX) those complex measures /x on X for which the direct image 
measure L(|/i|) on SB is an element of M(deSB), see [8], 

3. Singular measures. We start with the following simple lemma. 

LEMMA 1. Let [i and v be two measures in M(X). Then ||/i dt v\\ = ||/i|| + \\i/\\ if and 
only if/j, 1.1/. 

PROOF. We suppose that \\p ± i/\\ = ||/i|| + \\i/\\. Set A = |/x| + |z/| and write \i - gX, 
v -hX forg, h inL^A). Then | |g±/i | | i = ||g||i + \\h\\\, where the norm is that of L1 (A). 
From this we have |g=b/i| = |g| + |/i| a.e. A on X and in particular a.e. A on E Pi F where 
E = {x : g(x) ^ 0} and F = {x : /I(JC) ^ 0}. If C is a subset of EH F with A(Q = 0 on 
which \g±h jé\g\ + \h\ then replacing E(F) by E\C (F\C) in our argument we may 
assume that \g ± h\ = \g\ + \h\ on EP\F. Since the equality \a±b\ = \a\ + |Z?|, a, b, in 
C — {0}, never holds; we get EH F = 0. Because p(v) is carried by £(F) we have / i l l / . 

• 

In the sequel note that if A and B are subsets of M(X) then by A 1_ B we mean 
li LvMji in A and W in 5. 

PROPOSITION 1. Let J be a closed ideal ofC{X). If J is an M-ideal and M(X) = J°®K 
then J° J_ K. Assume N is w*-closed, that MiX) = TV 0 K, and that N _L AT. Then N is an 
L-summand and hence °N is an M-ideal. 

In what follows we need some notation. If / is an M-ideal in A then J° is an L-
summand in A* = M(X)/A1-. Recall that for every Banach space X the action of JC* G X* 
on x G X is denoted by (x, JC* ) (= JC*(JC)). Now let \i G M(X). Then (/", /i + A1) = 0 V/ in 
7 if and only if (/•,//) = 0 V/ in 7. Hence 7° = {/z + AL : /i G J1} = J1/A1, and we can 
wr i teMW/A 1 = JL/AL ® F/ALAï p G M(X) then H/i+A^H = sup{|(/", /z + AL)\ : 
/ G A, ll/Hoc < 1} = sup{|(/",/i)| : / G A, |[/||oo < 1} = ||/i|A||. Here we regard /i as a 
bounded linear functional on C(X). 

THEOREM 1. Let Abe a uniform algebra in C(X) and let J be a closed ideal of A. If J 
is an M-ideal in A and \\p,\ db /i2 + AX|| = \\p,\ +AX|| + ||/X2 +AX||, /xi G 7 1 and \i2 G F 
/7zen z7zere .̂«5/- Ai, A2 in M(X) swc/z ^ « / /ir + A 1 = A/ + A1, / = 1,2, ||A/|| = | |^,|A|| #ftd 
Ai _L A2. Conversely, suppose A* = J° 0 AT w/zere AT = F /A 1 swc/z that\/p\ G 7X and 
\ii ÇL F the restrictions [i[\\ (i = 1, 2) have norm-preserving extensions X( to C(X) with 
X\ _L A2 £/̂ rc 7 /s an M-ideal. 
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PROOF. Assume J is an M-ideal and the above relation holds. Then \\pi + A1\\ = 
\\pi\A\\J = 1,2. Applying the Hahn-Banach theorem we get a norm-preserving extension 
A; to CiX) of /^.Because z// = À/ —/i/isinA1 we have pi +A1 = Xi+A1. Since Ai ±À2 
is an extension of (p\ ± /i2)U to C(X) we have ||/xi ± /12 + A-1!! = \\(p\ ± //2)UH < 
||Ai ±A 2 | | < ||A,|| + ||A2|| = ||MiU|| + ||/i2UII = ll/ii+A-LlI + ll/iî+A1!! = \\pl±p2+A1\l 
so ||Ai ±A2 | | = ||Ai|| + ||A2||. Therefore Ai _L A2. 

Conversely, suppose /i/l^, 1 = 1,2, have norm preserving extensions A/ to C(X) such 
that Ai_LA2. Suppose A/ is carried by Et (i =1 ,2 ) and X = E\ U £2» a disjoint union. 
Then ||(/ii ±/x2)U|| = llxz^Oi ± V>I)\A + X£2(Mi ±M2)UH = \\XE^I\A ± X^^UH = 
Hx^MiUII + ||X£2M2UH = UMIUII + HM2UII. The proof is now complete. • 

THEOREM 2. Suppose B is a Banach function algebra in C(X) and N\ is a weak* 
closed ideal in B*. IfN\ is an L-summand, B* = N\ 0 N2 and \\p\ + P2II = \\p\ || + IIP2II» 
/?/ G M (/ = 1,2) then there exist representing measures pi in M(ÔBX) for pi (i = 1,2) 
with \\pi\\ = ll/x/ll satisfying p\ -L P2> Conversely, suppose B* = N\ 0 N2 such that every 
Pi G Ni has a representing measure pi m M(dsX) with \\pi\\ = ||/i;|| (1 = 1, 2) swc/t f/iaf 
/il _L ji2 then N\ is an L-summand. 

PROOF. Assume N\ is an L-summand and B* = N\ 0 N2. If pt G Ni (i = 1, 2) and 
||pi + P2II = \\p\ || + HP2II then by a result of Hustad and Hirsberg [8, p. 142] there exist 
representing measures pi G M(3BX) for />/ (1 =1 ,2 ) such that ||/?;|| = \\pi\\. Because 
/xi + /X2 is a representing measure for pi +p2 we have ||/ii|| + H/12II = ||pi|| + ||p2|| = 
IIP1+P2II < IIM1+M2II < ||/ii|| + ||/X2||,so ||/ii|| + ||/i2|| = ||/ii+/x2||. Therefore/ii _L/i2. 

Conversely, suppose B* =iVi©iV2 such that every pt G Ni has a representing measure 
Pi in M(dBX) with ||/7;|| = ||/i/|| (/ = 1,2) such that /xi _L /12. We show that iVi is an L-
summand. If pi is carried by £/ (/ = 1,2) and d^X = E\ UE2, a disjoint union, then we can 
write ||/?i +/?21| = ||x£1(Pi+/?2) + X£2(/

7i+/?2)|| = \\XE1P\+XE2P2\\ = WXE.PIW + \\XE2P2\\ = 
\\pi || + ||p21|• Here XEpif) = Jk/d/i Vf G 5. This completes the proof. • 

For the existence of M-ideals in M(X) we need the notion of band of measures. A 
closed linear subspace <B of M(X) is called a band of measures if whenever p £ $ and 1/ G 
M(X) such that 1/ <C //, then 1/ G #. We note that M(X), {0}, the space of all completely 
non-atomic measures /i inM(X) and L](/i) = {1/ : 1/ <C /i} are examples of bands. 

For any band # define L°°((B) to be the collection of all/ = {/̂  } in the Cartesian product 
n{L°°(/i) : p G #} such that if p and z/ G #and/x < Mhen/^ = / ,a.e. //.For/ G L°°(#) 
the norm is defined by |[/"|| = sup{|[/^||oo • M € #}• F o r / i n £°°(#)> if h'® —» C i s 

defined by L/(/i) = jffl dp, then the map/ —> Lf is an isometric isomorphism of L°°(#) 
onto #* [3, p. 79]. If # is a band and $' = {p e M(X) : p ±isVi/ e $} then #' is also 
a band called the complementary band to $ and every p in M(X) can be decomposed as 
p = 1/ + r? with 1/ G # and 7/ G #'. That is, M(X) = <B 0 ^ . It is also easy to see that 
L°°(M(Z)) = L°°(^) 0 L°°(^). 

PROPOSITION 2.If<B is a band of measures on X then (B°, the polar of® in M(X)*, is 
given by #° = L°°('B/)- Moreover, <B can not be an M-ideal in M(X). In fact M(X) has no 
nontrivial M-ideal. 
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PROOF. Note that <B° = {f G Af(X)* : f\v = 0} = {/ G L°°(M(X)) : L^/x) = 0 for 
all /i in <B) = [f G L°°(M(X)) : Jf^dfi = 0 V/i in #}. Clearly L 0 0^ ') C 3°. Now 
let L be a weak* continuous linear functional on L°°(M(X)) annihilating L°°('B/)- We 
show that L annihilates <B0 too. Because L°°(M(X)) = M(X)* there is a measure /x in 
M(X) such that L(f) = J/M dp, V/ in L°°(M(X)). Write /x = i/ + 77, v G £ and 77 G $'. 
Because i/ _L 77, 1/(77) is carried by A(B) where A R B = 8. Then {x/j} is in L 0 0^ ') so 
£(Xs) = SXBdfi = p{B) = K#) + 77(F) = 77(B) = 0. Hence 77 = 0 i.e. /x = 1/ G #. Now 
if/ G £° then L(/) = J/M d̂ x = //„ dv = 0. If ^ is an M-ideal then <£° = L°°('B/) is an 
L-summand in M(X)* = L°°(M(X)). But L0 0^') is an M-summand which is clearly a 
contradiction. 

To show that M(X) has no nontrivial M-ideal assume J is a closed subspace of M(X) 
and let <B be the band generated by J. We then prove that #° = J°. All we need to show 
is that f = <&' since then 7° = L°°{J') = L0 0^') = <BC'. Let /x ± / and r G 0. We can then 
find measures ri , T2,... in / and functions /ii, /12, •.. such that r = £ 5 \ htTi (convergent 
in norm). Because /1 _L /z/T; we see that /x _L r. Therefore /x _L # and the proof is 
complete. • 

4. Strong hulls. Suppose B is a Banach function algebra in C(X). If J is a closed 
ideal in B with £ = hull(7) = {x G X : /(je) = 0 V/ in 7}, then £ is called strong hull if 
there is a constant C (depending on E) such that for each compact set S disjoint from E 
and e > 0 there is a function/ in B such that/(£) = 0, 11 - / ( 5 ) | < e and \\f\\ <C. 

The notion of a strong hull in a Banach function algebra was introduced in [4] where 
the connection between this concept and peak sets for uniform algebras is shown. In 
particular they generalize a result of T. W. Gamelin [5] concerning uniform algebras and 
obtain a peaking criterion for strong hulls which we state without proof. 

THEOREM 3. Suppose B is a Banach Junction algebra in C(X) and let Ebea strong hull 
for B. Let p be a positive continuous function such that p = 1 on E and \\p\\oo - 1- Then 
there exists f in B, \\f\\oo = 1 satisfying E C {x G X : f(x) = 1} C {x G X : p(x) = 1} 
and\f(x)\ < \p(x)\\/xinX. 

Recall that a closed subset £ of X is a /?-set, or generalized peak set, if it is the 
intersection of peak sets. It is clear that each strong hull is a p-set (take p to be the 
identity function in the statement of the theorem). On the other hand each p-set is a 
strong hull if B is a uniform algebra. Therefore the two notions coincide for uniform 
algbras. But for Banach function algebras the situation is quite different. 

THEOREM 4. Suppose B = C^O, 1] is the Banach algebra of continuously differen
tiate functions on the unit interval [0, 1] equipped with the norm ||/|| = ||/||oo + 11/1100» 
/ G B. Then each closed set in [0, 1] is a peak set and B has no non-trivial strong hull. 

PROOF. Let £ be a closed set and write E' as the disjoint union E' = USi ^ 

where /„ = (an, bn). Let gn(t) = exp[-( l / (f - an) + \ /(t - bn)) ] and define fn(x) = 

2~n(gn(x)/\\gn\\} Vx in In and 0 elsewhere. Let / = Y%L\fn- Then/ is in B since each/n 
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is. Clearly/ = 0 on E and \f(x)\ < 1 on E'. If g = 1 — / then g peaks on E, so E is a peak 
set. 

This follows from the previous theorem. First we suppose that S = {1 /2} is a strong 
hull for B and we letp(jt) = 2x on [0,1 /2] and = 2(1 - * ) on [1 /2 ,1] . Then the function/ 
in the theorem can not be differentiable and so / is not in B. From which we conclude that 
S is not a strong hull for B. On the other hand if E contains more than one point and XQ 
is not in E then we define a = sup{j G E : y < xç>} and f3 = inf{y G E : j > Jto}. Using 
these values we define a function/? by /?(*) = 1,1, (x—xo)/(a—jco),and(x—JCO )/(/?—*o)if 
x < a, x > /3, a < x < xo, and *o < x < (3 respectively. Then/ cannot be differentiable 
and E is not a strong hull for B. • 

REMARK. The above result is mentioned in [4] but no proof is given. 
In the case of a Banach function algebra we can prove the following 

PROPOSITION 3. Let B be a normal Banach function algebra on X and let E be a 
closed subset ofX such that J = {f G B : f\E = 0} is an M-ideal. Then E is a strong hull. 

PROOF. By [10] J has an approximate identity {ea} with \\ea\\ < 1. Let S be a 
compact subset of X disjoint from E and let e > 0 be given. Since B is normal, there is 
g in B such that g = 0 on E and g = 1 on S. Therefore g £ J and by definition of the 
approximate identity there is «o such that a > c*o and x G S imply 

\ea(x)g(x) - g(x)\ < \\eag - g\\oo < \\eag - g\\ < e. 

Because g = 1 on S we have \ea(x) — 1| < e for all x in S. If we le t / = eao in the 
definition of the strong hull then we are done. • 

The following example shows that the normality of B can not be omitted. 

EXAMPLE. Let D = {z : \z\ < 1} denote the open unit disk and let A be the disc 
algebra; the space of all functions continuous on D and analytic in D. Let X = {z : \z\ < 
2}, B = {f G C(X) : / | D G A} and £ = {z : \z\ < 1/2}. Then B is a uniform algebra on 
X and Mfl = X, where M# is the maximal ideal space of B. 

To see this, note that the restriction map B —•» A(/* —>/|D) is a continuous surjection 
with kernel 7 = {f G C(X) : / | D = 0}. Hence B/J * A. So D = /*(J) [9, Theorem 3.1.17] 
where h(J) = {</> G Mfl : </> = 0 on 7}. Now M5 \ /z(7) = Mj by [9, Theorem 3.1.18]. 
Hence MB \ D = My. Regard / as C0(A) where A = {z : 1 < |z| < 2} and get My = A. 
Therefore MB = X. 

If JE = {/ G B : f\E = 0} then JE is a closed ideal with h{JE) = D but £ is not a /?-set. 
To see this, note that since X is metrizable the two notions of peak set and /?-set coincide. 
If E is a peak set then there i s / in B such that/ = 1 on E and [/*| < 1 on X \ E. Since 
/ = 1 on D we obtain a contradiction. • 

The following lemma shows that the converse is not true. 

LEMMA 2. Suppose T is the unit circle and M(T) is the Banach algebra of all regular 
Borel measures on T with convolution as multiplication. Let A be the maximal ideal 
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space ofM(T) and E = A \ Z be the complement of integers. Then E is a strong hull for 
M(T) and J = {fi G M(T) : /zO/O = 0 W? in E} is a closed ideal in M(T) which is not an 
M-ideal. m 

PROOF. Since Z is the dual group of T [9, A.3.2] it follows from [7, Theorem 38.4] 
that J = radL^r). That is, J is the intersection of all maximal ideals of M(T) which 
contain L{(T). Therefore Ll(T) C J. Suppose e > 0 is given and S is a compact set 
disjoint from E. Then S C Z, so 5 is finite. 

Now Lj(T) contains an approximate identity {ea} with ||ea | | < 1 [9, p. 321]. Since 
S is finite there is g £ Ll(T) with g - 1 on S. Let ao be such that \\e*ag — g\\ < £ for 
a> a0Afje S a n d a > a0then \ea(j)g(j) - g(j)\ < \\eag-g\\oo < \\e*ag-g\\ < e. But 
§ = 1 on S so | ̂ a — 11 < E V/ in S. We conclude that E is a strong hull by setting/ = eao. 

The fact that J is not an M-ideal follows from the second Proposition of Section 3. 
Another way to prove this is to note that Af(T) = Md(T) © MC(T) by [4, Theorem 19.20] 
where Af̂ (T) (MC(T)) is the set of all purely discontinuous (continuous) measures in 
M(T). In fact, Md(T) and MC(T) are complementary non-trivial L-summands of M(T). It 
now follows from [2, Corollary 1.14, p. 28] that / is not an M-ideal. • 
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