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NON-ISOMORPHIC TENSOR PRODUCTS OF 
VON NEUMANN ALGEBRAS 

J. J. WILLIAMS 

1. Introduction. This paper investigates special conditions under which 
the tensor product of two von Neumann algebras will be non-isomorphic to 
the tensor product of two others. The main tools are the algebraic invariants 
property Ax (x ^ 0) (first defined by Powers [18]) and the rm and p sets 
(defined by Araki and Woods [3]). 

We show that if S$x is not purely infinite and *Jt\ is a tensor product of 
finite type I factors with r œ ( ^ i ) 3 {0, 1} (i = 1, 2), then s/i (g) ^ x has 
property Â  if and only if x G rœ(^i); also r^(sé\ (x) <J?i) = rœ(^i) = 
rOT(~#n) for some countable sub-tensor product ^ # n of ^#i , and if rœ(^i) ^ 
rœ{^i) or if p(^é\) T^ p(^#2) and ~#i and *Jti are countable tensor products, 
t h e n s / i (x) ^#i $k J / 2 ® ^2 (Theorems 4.1 and 5.5). We show also that an 
algebra with property Â  (0 < x < 1) is purely infinite (Theorem 4.5 (c)), and 
that there exists a continuum of non-isomorphic, non-hyperfinite, type III 
factors on a separable Hilbert space, each one having its rœ set equal to {0, 1} 
(Theorem 5.6). This last result (with the exception of the rœ part) has also 
been obtained, using other methods, by Ching [6], Connes [7], and Sakai [20]. 

Acknowledgement. The author wishes to acknowledge a very special debt to 
Professor I. Halperin and to express his gratitude to Professor E. J. Woods 
and Dr. G. A. Elliott for many helpful discussions concerning this paper. In 
particular, Theorem 5.5 (b) is the direct result of a remark made by Professor 
Woods. 

2. Definitions and notations. If § is a Hilbert space, then we denote the 
inner product on § by (. , .) which will be linear in the first argument and 
conjugate-linear in the second. We write 3ë {$&), 1(§) and 1(§) to denote the 
algebra of all bounded linear operators on § , the identity operator on § and 
the algebra of all complex scalar multiples of the identity, respectively. If 
X Ç § then we write Proj K to denote the projection operator from § onto 
the closed, linear subspace of § generated by K. If z £ § then we define œz to 
be the linear functional on ^ ( § ) defined by co2(T) = (T z, z). If s/ is a von 
Neumann algebra on § then we say that s is a trace vector iors/ if co2 defines a 
normalized, faithful trace o n j / . 
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VON NEUMANN ALGEBRAS 493 

If n is a positive integer, se is a type In factor on § and 0 9^ z G «£>, then 
there exist Hilber t spaces § 1 and § 2 such t ha t § = § 1 ® § 2 , ^ = < ^ ( § i ) (x) 
1 (^2 ) , and s = 2 ? = A Ï V Ï ® ^ i for some positive integer m ^ n, where 
Xi ^ X2 ^ . . . ^ Xm > 0 and {<pt:i = 1, 2, . . . , m\ and {\pt:i = 1, 2, . . . , m) 
are or thonormal sets in § 1 and § 2 , respectively [2, pp. 164, 165]. Define 
Sp(z,s/)y the spectrum of z in S$', to be the " se t " {Xi, X2, . . . , \m} together 
with n — m zeroes. Although we use set notat ion, the elements of Sp(s , s/) 
are understood to be taken with their multiplicity, so tha t , for example, two 
subsets of Sp(z,s/) will be considered to be disjoint even if they contain the 
same value X, providing tha t the total multiplicity of X in these two subsets 
does not exceed the multiplicity of X in Sp(z, se). 

If we write § = (X) ( § a , za\a G / ) and s/ = (X) ( § a , s/at za\a G / ) , then 
we will assume tha t we have been given an arbi t rary, non-empty index set / 
such tha t for each a G I, &a is a Hilbert space, za G &a with | |za | | = 1, and 
séa is a von Neumann algebra on §« ; § is the tensor product of the Hilbert 
spaces {§«:« G /} relative to the reference family {za\a G /} and £S? is the 
von Neumann algebra on § generated by {Ta£/a:a G /} where ira is the canoni
cal imbedding of & (S£a) into £#(&). If / is an arbi t rary subset of / , then we 
define $(J) = (x) ( § a j za\a G / ) , z(J) = (x) (z a :a Ç J ) 6 § ( / ) , and 
£#{J) = (x) (£>«, - ^a , 2a :« G / ) . If / is a finite subset of / , and wa G £>« for 
each a £ J, then we define w ( J ) = ® ( w a : « £ J) (z &(J)- If / is finite and 
for each a G / , ^ « is a finite type In(a) factor on § a and Sp(s«, s/a) = 
{Xai'.i = lj 2, . . . , n(a)} then 

Sp(z(J),s/(J)) = {U\ai(a)(a ej):i(a) G ( 1 , 2 n ( a ) | , a G / } . 

Suppose tha t 0 ^ x ^ 1 , 7 is a countably infinite index set, and t ha t for 
each a G / , §« is a four-dimensional Hilbert space, ^ ? a is a type h factor on 
§a , va G §« with ||*/a|| = 1 and Sp(z;a, &a) = {(1 + x)~l, x(l + # ) - 1 } - Then 
the algebra(x) ( § a , &a, va\a G 7) depends up to spatial (product) isomorphism 
only on the value of x, and is denoted by &x. If x > 1 then we define 3%x = 

We write = to denote an algebraic *-isomorphism a n d ^ K to denote the set 
of positive integers. 

General discussions are given in Dixmier [8] for von Neumann algebras and 
in von Neumann [15] for tensor products . 

3. Property Ax a n d t h e rœ s e t . 

Definition 3.1. (a) Suppose t ha t x > 0, e > 0,<^#is a von Neumann algebra, 
co is a normal positive linear functional (PLF) on ^ # , and U G ^ . Then the 
pair (co, U) is said to have property (e, Ax) for^ if 

(i) U2 = 0 and U*U+ UU* = 1, and 
(ii) \u(UT) -xœ(TU)\ S e\\T\\,forallTeUir. 
( b ) ~ # is said to have property Ax if for every e > 0, and for every normal P L F 

co on <Jt, there exists a U G ^ such that the pair (co, [/) /zas property (e, Ax) for<Jit. 
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(c) <J( is said to have property Aj if for every e > 0, and for every finite set 
o>i, C02, . . . , oin of normal PL F s on<Jé, there exists a U G ^ such that for each 
i = 1, 2, . . . , n, the pair (œu U) has property (e, A )̂ for<Jé. 

Remark. If 0 S oc ^ 1, then x = X/(l — X) for some 0 ^ X ^ J and 
property Â  is equivalent to the property L\ that was defined by Powers [18, 
Definition 3.1] where he used it to distinguish between the &x. 

PROPOSITION 3.2. Suppose that x > 0, e > 0 ,~# is a von Neumann algebra, 
co is a normal PLF on^té, U Ç ^é and the pair (co, U) has property (e, A )̂ for^JK. 
Then the pair (co, U*) has property (ex-1, A1/x) for<Jt. 

Proof. For all T G ^ , the complex conjugate of co(T) is co(T*). By hypothe
sis, \œ(UT) — xœ(TU)\ ^ e||r| |, for all T Ç ^ . Take complex conjugates, 
divide by x, let S = T*9 and we obtain \a(U*S) - x-1co(5[/*)| S ex-l\\S\\, 
for all 5 £ c / . 

COROLLARY 3.3. If x > 0, then property Ax is equivalent to property Ai/X, and 
property Aj is equivalent to property Ai/a/. 

The asymptotic ratio set (rœ) was defined by Araki and Woods [3, Definition 
6.1] where they used it to give a classification of tensor products of type / 
factors. 

Definition 3.4. Suppose t h a t ~ # is a von Neumann algebra. Then we define 

r^(Jé) = j ^ 0 : ^ ^ ^ ( x ) ^ } , 

A ( ^ # ) = \x ^ 0: <Jéhas property Ax}, 

and 

A' (^ ) = {x ^ 0: . ^ has property A/}. 

It is clear that property A/ implies property Ax, that rœ(s/) Ç rœ(sxf (g) ^ ) 
for any von Neumann algebrasJ / and £?, and that if J / = ^ then rœ(stf) = 
r œ ( ^ ) , A ( y ) = A ( ^ ) , a n d A ' ( j / ) = A ' ( ^ ) . 

THEOREM 3.5. Suppose that x ^ 0 awd that se is any von Neumann algebra. 
Thenstf ®S%X has property Ax . 

Proof. This is an easy generalization of [18, Lemma 3.2], or follows from [1, 
Lemma 3.1]. 

COROLLARY 3.6. Suppose thatsxf is any von Neumann algebra. Then rœ(s/) C 
A! {se) Ç A ( 4 

Araki [1, Theorem 1.3] showed that if stf is a von Neumann algebra on a 
separable Hilbert space, then rœ(sx?) = A'(s/). However, rœ(s/) 9^ A(ssf)y 

in general. Let <£2 be the free group on two generators, and l e t s / ($ 2 ) be the 
von Neumann algebra generated by the left regular representation of <£2. 
Note that s/($2) is a Hi factor on a separable Hilbert space. Schwartz [21, 
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Lemma 10, Corollary 12] showed that 1 G rœ(s/($2)), but [1, Lemma 6.1] 
1 G A(s/($2)). Part of our results are to give conditions under which rœ and 
A are the same (Theorem 4.1(e)). 

Definition 3.7. Suppose that se = (x) (§ a , s/a, za\a G / ) with each S$a a 
finite type i" factor on § a , and that x ^ 0. We call a sequence (Int Knl, Kn2, 
(pn'.n G ^ ) an x-sequence for s/ if {In:n £ ̂ \ are pairwise disjoint, finite 
subsets of I, and for each n G <^V, Kni and Kn2 are disjoint subsets of Sp (z(In), 
se(In)) and <pn is a bijection from Knl to Kn2 such that 0 G Kni, 

£ [ £ À ( À eKnl)] = œ 

and 

limmax {\x — <pn(\)/\\:\ G Knl} = 0. 
n-»<x> 

THEOREM 3.8. Suppose that x ^ O , that se is a countable tensor product of finite 
type I factors, and that there exists an x-sequence for se'. Then x G rœ(s/). 

Proof. See [3, Definition 3.2, Corollary 5.5]. 

Remark. The converse of this theorem is also true [3, Lemma 5.8]. 

Definition 3.9. If 0 < x < 1, define Sx = {0, xn\n = 0, ± 1 , ± 2 , . . .}. 
Define 50 = {0},Si = {l},S0i = {0, l } , a n d S œ = [0, oo). 

It follows from Theorem 3.8 and its converse that for 0 ^ x ^ 1, rm(âlx) = 
Sx and that rœ(&0 (x) â?i) = Soi- There exists a tensor product of finite type / 
factors, &œ, such that rœ(â$œ) = Sœ [3, Lemma 3.13]. 

For the remainder of this section, we will assume that we are given a von 
Neumann algebra S^ described as follows. 

Let Jo be an arbitrary index set and let <JV\ be a countably infinite index set 
such that Jo, ^ \ and ̂ Y are pairwise disjoint, and let I = I0 U JVX. For 
each a G I, let n(a) G ^V, let §«i and ^>a2 be Hilbert spaces with orthonormal 
bases {<paùi — 1, 2, . . . , n(a)} and {^ai:i = 1, 2, . . . , n(a)}, respectively, let 

n(a) 

^ a = S ( w ( « ) ) ~ V « z ( 8 ) ^ a i , 

and 

*>«=]£ (*«<)V«<® *««, 

with Xal ^ Xa2 ^ . . . è Xan(a) ^ 0, ||z/a||
2 = i:îi°ÎXa< = 1, and for each k G ^Vu 

\etn(k) = 2. 
L e t ^ a = ^ ( # « i ) <g> 1(£«2), let $ = (g) (£«i (x) £ a 2 , va:a G J) and let 

y = ® (§ai ® €>a2, J^«, ^a"« G / ) . Note that wa is a trace vector for j ^ a . 

LEMMA 3.10. Suppose that O ^ x ^ l , e > 0 , that Se is a von Neumann 
algebra on a Hilbert space $ , and that z G $ ® § ^ ^ I Nil = L Suppose that 
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there exists a U £ Se ®<5^ such that the pair (co2, U) has property (e, A )̂ for 
Se ®<5^. Then there exist a finite subset J of I and a U\ G 3$ ® J ^ ( / ) ® 
1 ( § ( I — J)) such that the pair (w2, Ui) has property (2e, Ax) for Se ®Sf 
(cf. [18, Lemma 3.5]). 

Proof. Choose some k £ ^Vi and define Wi Ç Se (§*i) as follows: if p £ ê*i, 
then J F ^ = (£, *>*iW Then Wfp = (£, ^ 2 ) ^ 1 , WV = 0 and WVWi + 
WWi* = l($*i) . Let 

Ç = 1(«) ® (Wi ® 1(§*2)) ® 1 ($ ( J - {*})). 

Then Q G ^ ® y({k}) ® 1 (£ ( J - {*})), Ç2 = 0 and <2*<2 + <2<2* = 
1($ ® § ) . By hypothesis, Ï/2 = 0 and IT*[7 + £/[/* = 1($ ® § ) . Therefore, 
{(?*(?» (?(?*} a n d {£/*£/, C/C/*} are each a pair of orthogonal, equivalent, 
complementary projections in Se ® J ^ , and hence, it follows from [12, p. 25, 
Corollary] that Q*Q and U* U are equivalent. Hence, there exists a W G ^ ® J^ 
with W W = £7*1/ and WW* = Q*Q. 

Let F = JF + 0 F t / * . Since (WU)*(WU) = 0 and (IF*<2)* W*<2) = 0, 
it follows that WU = TF*(2 = 0 and U*W* = Q*W = 0. From this, a straight
forward calculation shows that F i s a unitary in Se ® Sf and that V*QV = U. 

Using the spectral theory, F = exp (iwS) for some 

5 G ^ = f r ^ ®y:T = T*, \\T\\ ^ 1}. 

Let 

2 = U {S§ ®y{J) ® 1 (§ ( J - J ) ) : / is a finite subset of / } . 

Then it is easy to see that 2$ is a *-algebra which is strongly dense in SS ® j ^ 7 . 
Hence, it follows from the Kaplansky density theorem that 5 lies in the strong 
closure of S = {T £ ^ : T = T*, | | r | | ^ 1}. The mapping of <g into ^ ® ^ 
defined by T 1—• exp (iVr) is strongly continuous [11, Lemma 2]. There exists 
a net {Sp'.fi ^ r ) C ( f such that 5 = strong limit Sp, and hence, F = exp (iVS) 
= strong limit exp (iwSp). Therefore, there exists a 7 Ç T such that if we let 
X = exp (iirSy) then || ( F - X)/ | | < e/4 for t £ {z, V*QVz, V*Q*Vz\. 
Sy £ < \̂ so 5T and hence X lie in Se ®¥{Jo) ® 1(^ (7 — 70)) for some finite 
subset Jo of I, and X is unitary. Let J = J0 ^ {k}. 

Since X and F are unitary, we have, for any I G ^ ( ^ ® § ) , 

| | ( F * r F - X * r X > | | ^ ||(X - V)(V*TV)z\\ + \\T\\ \\(V - X)Z\\. 

By substituting first Q, then Q* for 7\ we obtain 

\\(V*QV - X*QX)z\\ < c/2, | | (F*Ç*F - X*Q*Z)s|| < c /2 . 

Let Ui = X*QX. Then ^ e f ® ^ ( J ) ® 1 (£ ( J - / ) ) , US = 0 and 
E O T 1 + UxUf = 1(« ® § ) . 

Since F*QF = Ï7, we have ||(C7 - Ui)z\\ < e/2 and ||(L/* - c/^^H < 
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t /2, and since the pair («s, U) has property (e, A )̂ for ^ ® 5 ^ , we have for 
a n y l Ç J ® ^ , 

k ^ r ) - xa,(TUi)\ 

g Ico^C/xD - cc2(f/r)| + \a,(UT) - xct(TU)\ 

+ \xwt(TU) - xu,(TUi)\ 

g |(7z, (£/* - US)z)\ + e\\T\\ + x\«U - Ux)z, T*z)\ 

^2e\\T\\. 

Definition 3.11. Suppose that Se is a von Neumann algebra with a normalized 
finite trace (tr). For any T £ 38 we let A T be the linear functional denned on «^ 
as follows: if S G J> then A r(5) = t r ( rS ) . If P = P* 6 J>, then, by the 
spectral theory, P can be written as 

T = r \dE(\) 
«J-oo 

with E(\) £ & for all X, and the E(\) are right strongly continuous. If 0 < 
6 ^ 1, then we define 

€ r(0) = inf {X:tr (E(X)) ^ 6»}. 

i^mar^ 3.12. If P = Zl=i © *tPt, where Xi ^ X2 ^ . . . ^ \n (real), 
P i , P2, . . . , Pn are orthogonal projections in Se with YTi=\ © Pt = 1 and 
if we let P i + . . . + PA;-I = 0 if * = 1, then for * = 1, . . . , n, eT(6) = \k 

if tr (P1 + . . . + PJC-I) <6£tr(P1 + . . . + Pk). 

LEMMA 3.13. Suppose that 38 is a von Neumann algebra with a normal, nor
malized, finite trace (tr), and that S and T are self-adjoint operators in 38, and 
let A and e be defined relative to this trace, as in Definition 3.11. Then 

f \es(0) - eT(d)\dd< \\As- AT\\ 

(cf. [17, Lemma 5.5, Theorem 5.6]). 

Proof. Let 38 act on the Hilbert space $ . Let A be any self-adjoint operator 
in 3$ and let 

/«CO 

A = \dE{\) 
«J—00 

with the E(\) right strongly continuous. For any real X0, let X —> X0
+. Then 

P(X) —»JE(X0) strongly, and hence ultra-strongly, and hence ultra-weakly. 
We note that the strong and ultra-strong operator topologies coincide on 
bounded subsets of 38 ($i) [8, p. 34]. Since the trace is normal, it is also ultra-
weakly continuous [8, p. 51, Théorème 1] and hence trP(X) —» tr P(X0). This 
fact is needed in order to make the proofs of [13, Lemmas 15.2.1, 15.2.2] valid 
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for Se and its trace. Therefore, for 0 < 0 fg 1, 

(3.1) eA(d) = inf {sup {(Af,f):f G P « , | | / || = 1}:P is a projection in Se 

with tr P è 0}, 
and 

(3.2) f eA(fi)dS = tr (A). 
Jo 

Let i f J 1 and let A = WB be the polar decomposition of A [13, p. 142, 
§ 4.4] where If is a partial isometry, 5 ^ 0 , W, B G ^ , and W*^ = 5 = 
(4*4)*. Then 

(3.3) ||AA|| = sup {|AA(Z>)|:Z> e Se, \\D\\ £ 1} 

^ |AA(W*)| = |tr ( W M ) | = tr [(4*4)*] 

From the spectral theory, we can write S — T = Ci — C2 with Ci, C2 G «â?, 
d and C2 ^ 0, and C\C2 = C 2 d = 0. Let C = 5 + C2. Then C ê Se, and 
it is easy to see that C ^ 5, C ^ 7\ 2C — 5* — r = G + C2, and 

that (d + c2)
2 = (Ci - c2)

2 = (s - ry = (s - r)*(5 - r). 
If 4 , B 6 ^ with 4 = 4* , 5 = 5* and A ^ 5 then it follows from (3.1) 

that for each 0 < 0 S 1, eA(0) g €B(0). This, together with (3.2), (3.3) and 
the above shows that 

f |€fl(0) - eT(6)\dd < f \es(d) - ec(0)| + |ec(0) - er(0)|^0 

= f (2ec(0) - «s(«) - eT(6)dd = tr (2C - 5 - J ) 
«/o 

= tr (Ci + C2) 

= tr [ { ( 5 - T ) * ( 5 - r)}*] 

< iJAs-rll = | |AS - A r | | . 

LEMMA 3.14. Suppose that 0 ^ x ^ l , e > 0 , that J is a finite subset of / , and 
that Se is a von Neumann algebra on a Hilbert space $ with a trace vector /G S. 
Let co = co2 where z — t ® z;(I) and suppose that there exists a 

u ^s§ ®y(j) ® i (£ ( / - / ) ) 
such that the pair (co, U) has property (e, Ax) for Se (x) j ^ 7 . TTzew /Aere exist a 
finite-dimensional Hilbert space ©, a finite type I factor & on ©, a a Ç @ 5̂ cA 
/Aa£ q is a trace vector for &, disjoint subsets K\ and K2 of 

Sp(v(J) ®q,y(J) ®&), 

and a bisection <p:Ki —> K2 such that 0 $ i£i, ^ \ ( X € i^i) è ï and 

max {|x - <p(\)/\\:\ <G i^} < 24e 

(cf. [18, Lemmas 3.3, 3.4]). 

https://doi.org/10.4153/CJM-1974-047-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-047-8


VON NEUMANN ALGEBRAS 499 

Proof. Let St = S ®9*(J) ® 1 (# ( J - / ) ) . Let E = Fn = U*U, F21 = 
[7, F12 = £/*, and F = F22 = UU*. Then for 2, j = 1, 2, i7^ is a partial 
isometry in ^ from F ^ ( $ ® £>) to 7<^($ ® £>). Therefore, it follows from 
[8, p. 25, Proposition 5(ii)] that St = St E ®^ where i f is the von Neumann 
algebra spanned by {E, U, U*, F}. We will identify operators that correspond 
under this isomorphism, hence, if T (E <£?, then 

(3.4) T = (ETE ® £ ) + (U*TE ® U) + (ETU ® [7*) + (U*TU ® i7) 

so that, in particular, [7 = £ ® U and 

(3.5) £ r £ + UTU* = £ r E ® 1. 

For any S £ ^ * it is easy to see that [7(5 ® £ ) = S ® [7, (5 ® E) U = 0, 
[7(5 ® [7*) = 5 ® F, and (5 ® U*) U = 5 ® E. From the hypothesis, 
|a>(#T) - xœ(TU)\ ^ e||r| |, for all T £ St. Hence, by substituting first 
5 ® E, then 5 ® U* for J1, we obtain that, for any 5 £ <^#, 

(3.6) |«(5 ® [7)| ^ e||5||, |co(5®F) - x c o ( 5 ® £ ) | ^ e||S||. 

Let j8 be the linear functional on St that is defined as follows: if T Ç ^ , 
then 0 ( D = (1 + x) - 1 {œ(ETE ® 1) + xœ(U*TU ® 1)}. Since £ + F = 1, 
and the complex conjugate of w(T) is co(r*), we see from (3.4) and (3.6) that 
for any T £ St, 

(3.7) \œ(T) - 0(T)\ ^ (1 + x)~1\xœ(ETE ® E) - œ(ETE ® F)\ 

+ \œ(U*TE ® [7)| + \œ(U*T*E ® [7)| 

+ (1 +x)-1|o)(Z7*rE7 ® £ ) - xœ(U*TU ® £ ) | 

^ 4 e | | r | | . 

We shall now express our functionals u and /? in terms of a trace (tr) on St. 
For each a ^ I and each i = 1,2,... ,n(a), define P t t i = Proj {<£>«*} ® 1 (§«2). 

Then {Pai\i = 1, 2, . . . , #(«)} are orthogonal, equivalent projections in J^a, 
each having trace equal to l/n(a). For each a £ I, let 

#« = E © (»(«)A«<)P««. 

Then Ra ^ 0 and z;a = R^wa. Let 

w = * (g)w(J) ®w(I — J ) , 
and 

R = 1(«) ®{®(i?«:a G / )} ® 1 ( © ( / - / ) ) . 

Note that z = * ® */(/) ® w(7 - 7). Then w G « ® $ , -R G ̂ , i? è 0, and 
s = i^w. It is straightforward to see that w is a trace vector for S!, and that 
for any T £ M, w(T) = tr (TR) and 0 ( D = tr (TD0), i.e., a> = AR and 
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/3 = ADQ, where, by using (3.4) and (3.5), 

D0 = (1 + x)~M (ERE + U*RU) + x(URU* + FRF)} 

= (1 + x)"M (£ftE ®E) + (U*RU ®E) + x(ERE ® F) 

+ x(U*RU ®F)} 

= (ERE + U*RU) ® {(1 + x)~l(E + xF)}. 

Let D = ERE + £/*iW and let 5 = (1 + x ) " 1 ^ 0 xF). Then £> G ^ * , 
S € i f , and 0 ( D = tr (T(D ® 5 ) ) , for all r G 22. 

We shall now approximate D by a finite sum of projections. Since i2 §; 0 
we have D ^ 0, and by the spectral theory, 

J»oo 

\dE(\), 
0 

with E(\) G ^ ^ j for all X. Choose a positive integer p ^ 1/e and let D\ = 
Eï-o(»//>){£((w + l)/p) - E(n/p)\. Since £(X) = E for all X ^ | | £ | | , this 
is a finite sum and hence, we may write 

m 

(3.8) A = £ e *,& 

with m £ -4^, J»I, V2, • • • , ''m = 0, {Ci, Ç2, • • • , Qm\ orthogonal, non-zero 
projections in £%E with JJ=1 ®Qt = E and \\D - £>i|| g 1/p ^ e. 

Let jSi = ADlg)S on ^ . Then, for any T Ç. £#, 

(3.9) 1/3(J) - /SiCDI = |tr [r{ (Z> - DO (x) 5}]| 

= K F I P - ^ ) ®5}a>,îe;)| 

^ i in i i i z j -Dx i i i i s i i iMi» 
Let iV = IIw(a) (a Ç J ) . From the definition, i? can be written as R = 

N T!i=i ®PiEu where {ply . . . , pN} = Sp (»(/), y {J)), ordered so that 
0 ^ pi ^ P2 ^ . . . ^ Piv, {£1, Ei, . . . , Ejv} are orthogonal projections in ^?, 
and for each i = 1, 2, . . . , iV, tr (£<) = I I l/w(a) (a G J ) = 1/iV. 

If */ is a subset of real numbers, we wTrite<3T (J) to denote its characteristic 
function, and if J is an interval, then we write | |« / | | to denote its length. 

For each i = 1, 2, . . . , N, let <f t = ((i - 1)/N, i/N]. Let / = €«. Then, 
using Remark 3.12,/ = Z f = i ^ P ^ (<^*). From (3.8), 

m 

where {Ci (x) £ , Q, (x) F:i, j = 1, 2, . . . , m) are pairwise orthogonal projec
tions in ^ , and for each i = 1, 2, . . . , m, tr (Q* ® E) = tr (EQtE) = 
tr (UEQiEU*) = tr (Ç, (x) F) ^ 0, since Ç, ^ 0. Using Remark 3.12, we see 
that we have the following situation. 

There exists a partition of (0, 1], \&i} 2$t\i = 1, 2, . . . , w}, such that 
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for each i = 1, 2, . . . , m, *$ t and 2f % are each of the form (a, b] for some 

0 ^ a < b S 1, and | | ^ | | = \\@t\\ 9* 0, and if we let g = eDl(S)s, then 

m 

We wish to c o m p a r e / and g, and, as a first step, we will begin to subdivide 
the *io i, 2) t and <£% in order to obtain common end points. 

For i = 1, 2, . . . , m, let Z, = \\<i£t\\ = | | ^ , | | . Then Z, > 0 and 2 J = 1 / , = J. 
Let {Ui'.i = 0, 1, . . . , 2m} be the end points of the intervals 

{^u^t'.i = 1,2, . . . , m } 

so tha t 0 = Wo < #i < • • • < U2m-i < u2m = 1. Let 

Ô = min{2 / m , 6/(1 + 2 E f = ^ ) ) . 

Then ô > 0. For each i = 1,2, . . . , m — 1, let rt be a rational number such 
t ha t rt > 0 and \rt - lt\ < <5/(2m2). Then 

KEtlV,) - ŒZVlôl < «/(2m) < Zm. 
Hence, 

2^=1 r* < ( 2_lz=l ^i) "I" 4* = 2' 

Let rm = \ - (Zr=TV 7 ) . Then rw > 0 and 

m— 1 m—1 

k« - /ml = |i - E ' < - ( * - £ **)l < B/(2m). 
i=l 1=1 

We wish to define a part i t ion of (0, 1], {fëa, 2iïa'.i = 1, 2, . . . , m}, such 
t h a t for each i = 1, 2, . . . , m, *#n and ^ a are each of the form (a, ô] for 
some 0 g a < 6 g 1, a, 6 rational numbers , and | | ^ n | | = | | ^ a | | = n > 0, 
and the relative ordering of the j ^ a , &a'i = 1, 2, . . . , m} is the same as 
t ha t of the {fé%, i ^ : i = 1, 2, . . . , m}. The end points of the intervals 
{^i i , ^ a ^ = 1, 2, . . . , m} will be {<Z,:i = 0, 1, . . . , 2m} so tha t 0 = 

d0 < di < . . . < ^2m-l < d2m = 1. 

Let d0 = 0. Suppose tha t k £ {0, 1, . . . , 2m — 1} and tha t d0, di, . . . , dk 

have been chosen. Then (uk, uk+{\ = 9% (or ^ f ) for some 2* £ {1, 2, . . . , m}. 
Define d*+i = dk + rt and define &n (respectively, @a) = (dk, dk+1]. I t is 
clear t ha t d2m = 2 £JLir< = 1, and tha t our intervals and end points exist 
as required. 

For each i = 1, 2, . . . , 2m, dt = J2rJ> the sum taken over some set of j's 
in which each r j may occur twice, and ut — ^2,1 j , the sum taken over the same 
set of j ' s . Hence \dt — ut\ ^ 2 J27=i\rJ ~ h\ < ô-

If a < b and c < d then it is easy to see tha t 

f \& ((a,b])(6) - 3T Uc,d])(6)\d0< \a-c\ + \b - d\. 
Jo 

Since for each i = 1, 2, . . . , m, there exists a j G {1, 2, . . . , 2m} such t ha t 
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*$i = (Uj-iy Uj] and të a = (dj-i, dj], we have that 

f \3C (&i)(d) - 3T (^tl)(6)\de < \uj-x - dj-xl + \u3- - dj\ < 20, 
Jo 

and similarly for & t and & n. 
Let h = 2 r - i ( l +x)-ht{3r (Va) +x$T (@n)}. Then, 

(3.10) J o |g(0) -h(e)\de 

m pi 

< Z (1 + *)"1"* {I#"(#«)(<>)-#" (#«)(*)I 

+ x|,T (0,)(0) - #" (^a)Wll^ 
m 

< E (l+^)-V,(25 + 25x) 
i= i 

< €. 

For each i = 1, 2, . . . , 2m, 6^ is rational and so dt = ajbi for au bt G ^ / . 
Let b = least common multiple of {bly 62, • • . , &2m}. Then, 6 G ^ and there 
exist Ci, c2, . . . , £2™ G ^ so that dt = ct/ (2bN). 

We now subdivide the fé%i and @ n into subintervals of length l/(2bN). 
Hence, there exists a partition of (0, 1], {& t2, &n-i = 1 , 2 , . . . , 6iV}, such that 
each 9%2 and 2& is of the form ((k - l)/(2bN), k/(2bN)] for some k Ç « / , 
and there exists a partition of {1, 2, . . . , 6iV}, {L(i):i = 1, 2, . . . , m}, such 
that for each i = 1, 2, . . . , m, 

# u = U # , 2 (j G L(i)) , 

For each j = 1, 2, . . . , bN, there exists exactly one i G {1, 2, . . . , m} such 
that j G £(/0, and we define aj = vt. Hence, 

(3.H) h = £ a + « r 1 ^ ^ (^,2) + *<r (^2)}. 

For each i = 1, 2, . . . , N, we define 

L(i,l) = {jG {1,2, . . . ,WV}:<*f , 2 c <f,} 
and 

L( i ,2 ) = {jG { 1 , 2 , . . . , W V } : ^ , 2 C <f<}. 

Then, {L(i, l):i = 1, 2, . . . , N] and {L(i, 2): i = 1, 2, . . . , iV} are each a 
partition of {1, 2, . . . , 6iV}, and if card stands for cardinality, then, 

(3.12) card L(i, 1) + card L(i, 2) = 26. 

For each j = 1, 2, . . . , bN, there exists exactly one i and one & such that 
j £ L(i, 1) and j G £(&, 2), and we define XiX = p* and \j2 = pk. Hence, 

(3.13) / = £ J i V X , i ^ " ( ^ 2 ) + i V X ^ ( ^ 2 ) } . 
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For any a, \ u X2 ^ 0, let a = min {Xi, X2}, let A = max {Xlf X2J, and let 
Q = |iVXi - (1 + x)~V| + |iVX2 - x(l + x)~V|. Then, since 0 ^ x S 1, 

Û ^ \Nx\i - * (1 + x)-V| + |iVX2 - x(l + x)-V| 
è iV>Xi - X2| 
^ iV|x^4 — a| 
= NA\x — a/A\, 

if we define 0/0 = 0. 
For j = 1, 2, . . . , bN, let 

fiji = max {X;1, Xi2}/(26), \i& = min {Xyi, X,2}/(26). 

Then, using (3.11), (3.13), and the above, we obtain 

(3.14) f \f(e)-h(e)\dd 
Jo 

bN 

= E {\N\ji - (1 + xy'ajl + {NX» - x(l + x)-1<ri\}/(2bN) 

bN 

Let ®i and ®2 be Hilbert spaces with orthonormal bases {et:i = 1, 2, . . . , 2b} 
and j jfy.i = 1, 2, . . . , 26}, respectively. Let g = 2<-i(2&)~^i ®/<, and let 
<g = ^ ( © 0 (x) 1 (®2). Then g is a trace vector for ^ . Let ® = ®i <g) ®2. 

The elements of Sp(v(J) ®q,S^(J) <£>&) are identical to those obtained 
by taking the elements of Sp(v(J), Sf (J)) = {pi, . . . , pN], multiplying each 
one by 1/(26) and repeating it 2b times. Using (3.12) and the définitions of 
Xj-i, \j2j pji and fij2, this set is the same as 

{X,i/(2&), \j2/(2b):j = 1, 2, . . . , bN} = {Nl, »j2:j = 1, 2, . . . , bN}. 

Using Lemma 3.13 together with (3.7), (3.9), (3.10), and (3.14), we obtain 
01V 

(3.15) ]£ nji\x - nji/nnl 

f \f(e) - h(e)\de 
Jo 

f \f(o)-g(e)\d$+ f \g(e) - h(8)\de 
•Jo Jo 

< Unie) 
Jo 

3=1 

< 

< 

'0 

< \\AR - ADl®s\\ + e 

= | | CO — ftH + € 

< l l c - ^ l + H/J-^l l+c 

< 6e. 
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For each j = 1, 2, . . . , bN, let a} = \x — fijz/iiji\. Let 

L = { j€ {\,2,...,bN\:ixn ^ 0 } , 

let 

Li = {je L:aj è 24e}( 

and let 

U = [j € L:a, < 24e}. 

Then, from (3.15), 

E ,1,1(7 € i i ) < (24e)"1 £ M,1(z, (j £ Li) 
bN 

< (24e)_1 X) M ^ 

< 1 . 
Since /z;i ^ Mj/2 for each j = 1, 2, . . . , WV, we have 

E M.XO' e L,) = { E Mil} - ! E Mil 0' e ii)} 

= èllK/)(x)g||2-i 
_ i 

Let Ki = {/x î'.j G £2} and let i£2 = {fxj2:j G -^2}- Define a mapping 
<£>:.Ki —> i£2 by <p(fj.ji) = Hj2 for j £ £2. Then <£> is a bijection. Hence, Ku K2 and 
(p satisfy the requirements of the statement of the lemma. 

We now come to the key theorem of the paper. 

THEOREM 3.15. Suppose that x ^ 0, thats/ is a von Neumann algebra with a 
trace vector, and that s/ (x)5^ has property Ax. Then there exists a countable 
subset Iœ of I such that x £ ^ ( j ^ 7 (7œ) (g) £%i). 

Proof. Suppose first that 0 S x ^ 1. Let se act on the Hilbert space $ 0 

and let t0 G & be a trace vector for s/. We will prove, by induction, the 
following: there exists a sequence \Jn\n ^JV\ of pairwise disjoint, finite 
subsets of 7, and for each n £ ^ , there exist a finite-dimensional Hilbert 
space ®n, a finite type I factor &n on ®w, a gn £ @w such that gw is a trace vector 
for ^ n , disjoint subsets i£wi and Kn2 of Sp(v(Jw) (x) gw, S^' (Jn) (x) ̂ n ) and a 
bijection (fn'-Kni -^ Kn2 such that 0 g Xn i , X) M^ £ ^ 1 ) = î> a n d 
max {\x — <^(X)/X|:X £ Knl} < 1/w. 

Suppose that n G ^ and that the Ju . . . , J"n_i have been chosen as required. 
Let K = Uk=iJk (K is empty when n = 1). Let co = w2 with z = /0 ® w(2£) (x) 

- * • 
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v(I — K). Then a? is a normal PLF o n s / ®ff, and by hypothesis, there exists 
a Un0 ££/ (g) y such that the pair (co, Un0) has property ((48w)-1, Ax) for 
sf (g) y . We apply Lemma 3.10 with e = (48w)-\ ^ = s/ ®<?(K), 
Sf{I — K) in place of ff and £/ = Z7w0. Thus, there exist a finite subset 7W of 
/ - I a n d a [ / B l ^ ( g ) ^ ^ ) ® ^ ( 7 J ® 1(£(7 - K - Jn)) such that 
the pair (w, Z7wi) has property ((24w)-1, A )̂ for srf ®S^. We now apply 
Lemma 3.14 with e = (24n)_1, ^ and j ^ 7 as above, 7 = 7», t = t0 ®w(K), 
and £/ = C/Wi. Therefore, there exist @n, ^ w , gw, i£ni, i£„2, and <pn as required. 

For each n £ ^ , let In = 7W W {n\. Let 

^ = (8) (®„^n,g,:^e ^ ) . 

It is straightforward to show that (X) gTO is a trace vector for & y and thus that & 
is a hyperfinite, finite factor on a separable Hilbert space. Similarly, S%x is a 
hyperfinite 7Ti factor on a separable Hilbert space, and so, ^(x)^?i =3%i 
[14, p. 760, Theorem XI and p. 778, Theorem XII] . 

Let Iœ = Un=iJn- It is clear that (In, Knl, Kn2, <pn:n £ ^V ) is an x-sequence 
for S^(Iœ) (x) ^ , which is a countable tensor product of finite type I factors. 
Hence, by Theorem 3.8, x G rœ(y(IJ ® 9) Ç r 0 O (^(J œ ) (g) ^ ® ^ ) = 

If x > 1, then by Corollary 3.3 s/ (x) j ^ 7 has property A1/x. By the above, 
x_ 1 and hence x lie in rœ(S^(Iœ) ®8%\), for some countable subset Iœ of 7 

4. The main result. 

THEOREM 4.1. Suppose thatszf is a von Neumann algebra that is not purely 
infinite, and that<Jé — (x) (^a, ^# a , za:a £ 7) wi//& ~#a a finite type I factor on 
§ a /or each a £ 7. 

(a) Suppose that x ^ 0 a?zd thatstf (x)~# Aas property Ax. There then exists a 
countable subset J(x) of 7 S^C/Ê / t o x G rœ(^ (7(x)) (g) ^ 0 ® ^?i). 

(b) Suppose that 0, 1 G rœ(<J£ ). 7Aew //^re ex^s a countable subset J0 of 7 
such that 7o is independent ofs/, and 

rœ(s/ ®Jt) = A'(sf ®JK) = A(s/ ®Jé) = r œ (uT) 

= A ' M O = A(uT) = rœ(U^(70)) = A ' ( ^ ( 7 0 ) ) = A ( ^ ( 7 0 ) ) . 

LEMMA 4.2. Suppose that x H , ^a / 7 w a^ index se£, and / t o /or eac& 
i G IjS/i is a von Neumann algebra. Let se = ^2 ®^\ ii ë !)• Then s/ has 
property Ax if and only if for each i £ Ij^/t has property Ax. 

Proof. Suppose that s/ has property A .̂ Choose any j £ 7, any e > 0, and 
any normal PLF œ ons/j. Let p be the normal PLF o n j / defined as follows: 
if T G se, then T = Z © ^t with T, G s/1 for each i G J, and let p(7) = 
co(7j). Then, there exists a [ / G ^ such that the pair (p, U) has property 
(e, A*) for s/. U = X) 0 Z7i with £/, G ^ z for each i G 7 It is clear that 
the pair (co, U3) has property (e, A )̂ forJ^y. Hence, s/j has property Ax. 
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Conversely, suppose that each s/1 has property A .̂ Choose any e > 0 and 
any normal PLF œ o n j / . For each i Ç / , we may consider s/1 to be a subset 
ois/, and we define co* to be the restriction of œ tos/t. Then œt is a normal 
PLF ons/t. If T es/, then T = £ © 7 \ with 7 \ G J / * for each i £ / , and 
co(r) = X) Ui(Ti). In particular, co(l) = X) co^(l), and hence, since ||cot|| = 
0)^(1), at most a countable number of the 021 are non-zero, which, we may 
assume, occurs only for i £ ^V\ ^ ^ C\ I. For each k £ *yKi, there exists a 
£/* Ç ^/k such that the pair (cok, Uk) has property (e2~*, Ax) for j ^ f c . Let 
£/ = ^ ® Z7* (k ÇL*SV \). Then it is easy to show that the pair (œ, f/) has 
property (e, A )̂ for J^. Hence, J ^ has property A .̂ 

Remark. The above proof can be modified easily to show that s/ has property 
Ax

f if and only if for each i Ç I,s/1 has property A/. 

LEMMA 4.3. Suppose thats/ is a countably decomposable, finite von Neumann 
algebra. Then there exists a von Neumann algebra s/i with a trace vector, such 
thats/ ^s/x. 

Proof. Suppose that s/ acts on the Hilbert space $ . Then there exists a 
faithful, normal, normalized, finite trace (tr) ons/ [8, p. 99, Proposition 9(h)], 
and there exists a sequence xi, #2, . . . € $ such that ££Li||xw||2 < 00 and 
for each T ^s/, tr (T) = K = i ( ^ w , %n) [8, p. 51, Théorème 1]. Let $2 be 
a Hilbert space with orthonormal basis {en'.n ^JV\. Let $1 = $ (x) $2, let 
j / i = J / (x) 1 ($2), and let t = E«=i fc ® ^ ) - Then t £ $1, / is a trace vector 
f o r j / i a n d j / ^ j / i . 

LEMMA 4.4. Suppose that s/ is a von Neumann algebra that is not purely 
infinite. Then s/ ~ (s/i ® 38 ($£)) © 3? where s/i is a von Neumann algebra 
with a trace vector, $ is a Hilbert space, and Qf is a {possibly zero) von Neumann 
algebra. 

Proof. There exist ei, e2, e% orthogonal, central projections in s/ such that 
1 = £1 © e2 © £3, e± is finite, e2 is properly infinite and semi-finite, and e-6 is 
purely infinite. By hypothesis, e3 9

e 1, i.e., e± © e2 ?*• 0. 
We claim that there exists a non-zero, central projection e in s/, a finite 

von Neumann algebra &, and a Hilbert space $ such t h a t j / e ^ ^ (x) 38{$). 
If 1̂ 7̂  0, then this follows if we let g = elf let ^ = J^e , and let fi be a one-
dimensional Hilbert space. If e2 9

e 0, then this follows from [8, p. 242, Exercice 
5(a), (d)]. It follows from [8, p. 99, Proposition 9 (hi)] that there exists a non
zero, central projection p in & such that &'v is finite and countably decompos
able. By Lemma 4.3, there exists a von Neumann algebra s/\ with a trace 
vector such that ^v =s/i. The result now follows if we let 

2 = ( â ? i _ , ® ^ ( f l ) ) © J / I - . 

THEOREM 4.5. Suppose thats/ is a von Neumann algebra. 
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(a) Suppose that x ^ 0, that s/ is finite, and that S$ has property Ax. Then 
x = 1. 

(b) The following are equivalent: (i) sf is properly infinite, (ii) 0 Ç rœ(&f), 
(iii) 0 € A ' ( J / ) , and (iv) 0 G A (s/). 

(c) Suppose that x > 0, x 9e 1 and that se has property Ax. Thens/ is purely 
infinite. 

Proof, (a). Let co be a finite, normalized, normal trace o n j / . Choose any 
e > 0. Then there exists a U G J / such that £7*17 + Î7J7* = 1 and \a(UT) -
xa>(TU)\ ^ (e/2) | | r | | , for any T 6 s/. Hence, W(J7*I7) = a>(UU*) = £, and 
letting T = £/*, we have that |1 — x| ^ e. Thus, x = 1. 

(b). (i) =» (ii): It follows from [8, p. 25, Proposition 5(h) and p. 298, 
Corollaire 2] that there exists a projection e ins/, equivalent to 1, such that 

s/ Ç^s/e ®@(h(JY)) ^sf ® ^ 0 . Hence, 0 É r œ ( j / ) . (ii) => (iii), and 
(iii) =» (iv) by Corollary 3.6. (iv) => (i): There exist central projections e and 

f ins/ such that 1 = e 0 / , e is finite, a n d / is properly infinite. Then se = 
£0fe ®£?f- If e j± 0, then, by Lemma 4.2, s/e has property A0. However, this 
contradicts part (a), and hence, e = 0, / = 1, and s/ is properly infinite. 

(c). Assume that s/ is not purely infinite. Apply Theorem 4.1(a) with 
7 = {1} and *JKi a type Ii factor. Then x G rœ(&0 ®&i) = Soi. This is a 
contradiction and hence, s/ is purely infinite. 

Remark. Part (c) and Theorem 3.5 show that for x > 0 and x ^ 1, ^ ^ is 
a type 7/7 factor. This was first shown by von Neumann [16] and Pukânszky 
[19]. Part (c) will not be used in the following. 

Proof of Theorem 4.1. We may assume that 7 is disjoint from ^¥. For each 
a G 7, ^a is a type 7„(a) factor on § a for some n(a) £ ~^. Hence, there exist 
Hilbert spaces fQai and ®a with orthonormal bases {<pai'.i = 1, 2, . . . , n(a)} and 
{x«t:^ 6 iVa}, respectively, for some index set Na, a p(a) ^J/ with £(«) ^ 
min {n(a), card iVa}, and real numbers X«i ^ Xa2 è • . . ^ Xa7/(a) > 0 such that 
£« = £«1^® ««, ^ C = ^ ( $ « i ) ® 1(««), {1, 2, . . . , />(<*)} Ç JVa, and sa = 
Y?i=î(^ai)*(Pai ®Xai- Let § a 2 be a Hilbert space of dimension n(a) with 
orthonormal basis {^ai:i = 1, 2, . . . , w(a)}, let Xaf = 0 if p(a) < i ^ «(a), 
and let 

Va = Z) (X«,)V«i® *«i-

For any T G ^ ( $ „ i ) , 

(4.1) (CT ® 1 (£«))*«, sa) = ( ( r ® 1($«2) >«,»«)• 

By Lemma 4.4, j / ^ ( j / i ® ^ ( $ ) ) © ^ where J# i is a von Neumann 
algebra with a trace vector and $ is a Hilbert space. Let 7X be an index set 
disjoint from 7 and^K such that card 7X = dim $ . Let ^ i be a countably 
infinite index set disjoint from 7, 7i, and «yK, and let 7 = 7 W 7X W .y^. For 
each k G 7i \J J/\ let §Ai and §*2 be two-dimensional Hilbert spaces and 
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choose vk e §ki ® §*2 such t h a t Sp (vk, 3$(§ki) ® 1 ( § A 2 ) ) = {1, 0}. Le t 
y = ® (§«i ® §«2, ^ ( § « i ) ® 1(&*2), *>«:« G / ) . Then , using (4.1) and [5, 
Corollary 3.5], we have t h a t if K is any subset of J then y (K) ^Jé (K). 
y(Ii) ^ ^ ( « ) and y(J/i) ^ ^ o [4, Proposition 5.3]. Hence, y 9* 
^ ®3ê(§i) (g)â?o. Also, y satisfies the conditions imposed on the y of 
Theorem 3.15. We are now prepared to prove (a) and (b) . 

(a) We are assuming t ha t stf ®*Jt has proper ty Ax. 

J / ®Jé^L ( J / I ®3#($) ®Jé) © (Of ®Jt), 

and hence, by Lemma 4.2, s/x ( x ) ^ ( J Î ) ®Jt has proper ty Ax. If J * ( $ ) ® ^ 
is finite, then so i s J ^ i ® â ? ( $ ) ® ^ # , and by Theorem 4.5 (a), x = 1, and 
hence, x = 1 G r œ ( ^ i ) Ç r^(Jé (J(x)) ®&o ®&i) for any subset J(x) of 
J. If ^ ( $ ) ® - # is infinite, then by Theorem 4.5 (b) , 0 6 r œ ( ^ ( $ ) ® ^ # ) 
and hence, 

j / i ® ^ > ( $ ) ® ^ # ^ j / i ® J > ( $ ) ® ^ ® ^ 0 = ^ i ® ^ 

and S O J / I ® j ^ has proper ty Ax. Therefore, by Theorem 3.15, there exists a 
countable subset I(x) of / such t h a t x £ rœ(y(I(x)) ®S%i). Let / ( x ) = 
I(x) C\ J, and let J2 = ( / (x) H A ) U ^ i . Then 7(x) C J ( x ) U J2, / ( * ) is 
countable, 5 ^ ( J ( x ) ) ^ ^ ( / ( * ) ) , and y(I2) 9Ë ^ V Therefore, 

x G rœ(^# (J(x)) ®&o ® ^ i ) . 

(b) W e are assuming t h a t 0, 1 G r œ ( ^ # ) . We will first show t h a t there 
exists a countable subset K0 of / such t ha t 0, 1 G rO3(^(K0)). 

Let Ki = {a Ç J\n(a) ^ 2}. Since w(a) = 1 if and only if ^ # a = 1 (§« ) , 
it follows t h a t e ^ = ^ # (i£i) ==<5^(2£i). i£i is infinite, for o t h e r w i s e , ^ would 
be a finite type I factor and rœ(^ ) would be empty . 

Assume t h a t for every countably infinite subset K of Ki t h a t 0 G rœ(y (K)). 
By [3, Lemma 3.8], rœ(y(K)) is non-empty . Since 0, 1 G rœ(â?x) for any x 
with x > 0, x 9* 1, it follows t h a t ^ ( ^ ( i C ) ) = {1}. Therefore, y (K) ^ S%i 
[3, Theorem 9.1], a II\ factor, and hence, by [23, Theorem] , 

£ { E W")~è - Xa<*)2} < oo («6 K). 
a \ i=l J 

Since this is t rue for every countably infinite subset K of K\, it follows t h a t 
the above sum taken over a £ Ki is finite. Therefore, by [4, Proposit ion 5.4], 
y(Ki) is a Hi factor, and hence, 0 £ rœ(y(Ki)) = rœ(*srff). Th i s is a con
tradict ion, and so there exists a countable subset K2 of J such t h a t 
0 6 ^ ( ^ ( X , ) ) . 

Assume t h a t for every countably infinite subset K of Ki t h a t 1 (? r œ ( j ^ ( i £ ) ) . 
Then by [3, Lemma 3.8], £ | 1 ~ Ki\ (a € K) < oo. Hence, 

E | l - Xai| (a G Ki) < oo, 

and by [4, Proposition 5.3], j ^ ( i £ i ) is a type / factor. Therefore, 1 (? 

https://doi.org/10.4153/CJM-1974-047-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-047-8


VON NEUMANN ALGEBRAS 509 

rœ(y(Ki)) = ^oo(^ )• This is a contradiction, and so there exists a countable 
subset Kz of J such that 1 £ rœ(y(Kz)). Therefore, 0, 1 G rœ(^(K0)) if 
i £ 0 = K>2 W i^3-

By Corollary 3.6, r œ ( j / ® ^ ) C A ' ( j / ®Jt ) Ç A ( i ® ^ ) . Suppose 
that x Ç A ( J ^ ®<^# ). By part (a) above, there exists a countable subset J(x) 
of J such that x £ r œ ( ^ (J(x)) ® Sfto ®3%i)- Let ^ ( x ) = J(x) VJ X0. Then 
x G rœ(^(K(x)) ® ^ o ® ^ i ) = rœ(^(K(x))) Qrœ(<Jf) Q rœ(s/ ®Jé). 

This shows that ^ ( j / ® ^ f ) = A ' ( j / ® ^ # ) = A ( J / ®~# ) = rœ(^). 
Letting J ^ be a type / i factor, we have that rœ(^f ) = M(*Jt ) = A(^# ). If 
Jo is any subset of J with J0 3 ^o , then 0,1 G ^ ( « ^ ( J o ) ) a n d ^ # (J0) satisfies 
the conditions of Theorem 4.1(b). Therefore, rœ(^(J0)) = A'(^#(J0)) = 
A ( ^ ( J 0 ) ) . Thus, it remains to show that there exists a countable subset J0 of 
J such that Jo 2 K0 and rœ(^ ) = rœ(<J£(Jo)). 

There exists a countable set of numbers {yn'.n £ - ^ } contained in r œ ( ^# ), 
and whose closure contains r œ (^# ). For each n £ ^F, yn £ rQO(^f) C A(^# ). 
Thus, by the above (with J^/ a type / i factor), there exists a countable subset 
K(yn) of J such that K(yn) 2 i£0 and yn G r œ ( ^# (If (y»))). Let 

Jo = Uï-iK(yn). 

Then, each yn £ rœ(<J? (Jo)) which is closed by [3, Lemma 3.7, Theorem 5.9]. 
Therefore, 

rœ(^) £ closure {yn:« 6 ^ } C rœ(^ (J0)) C rm(~£). 

Remark. Both parts of Theorem 4.1 fail if s/ is purely infinite, and part (b) 
fails if 0 $ r œ ( ~ # ) of if 1 g rœ(^ ) as evidenced by the following: let 
0 < x < 1 ; then ^ œ ® « ^ has property Â  for every y ^ 0, but 

r „ > ( ^ * ® ^ o ® ^ i ) = Sx9*S00;rao(&00 ® ^ , ) = Sœ j*rm{@s) = Sx; 
rœ(â?0 ® Stx) = Soi * rm(@i) = Su rœ(^i ®^o) = Soi * rœ(S?0) 
= 50. 

COROLLARY 4.6. rœ(^ ) is closed for ^ an arbitrary tensor product of finite 
type I factors. 

5. Non-hyperfinite factors. 

Definition 5.1. A von Neumann algebra s/ is said to be hyperfinite if there 
exists a sequence {&/n:n £ ^V } of von Neumann sub-algebras of se such that 
for each n ^^V ,sén is finite-dimensional as a linear space and s/n C j / W + 1 , 
and the von Neumann algebra generated by [S$n\n 6 ^V } iss/. 

Definition 5.2. A von Neumann algebra se on a Hilbert space § is said to 
have property AP if there exists a linear projection of norm one from £${$&) 
ontostf' (the commutant of se). 

Let $2 be the free group with two generators, and let J^(<£2) be the von 
Neumann algebra generated by the left regular representation of <£2. ^ ( $ 2 ) 
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acts on the separable Hilbert space l2($2), and both s/($2) and its com
mutant are type II\ factors [14, Lemmas 5.3.4, 5.3.5, 6.2.2]. 

LEMMA 5.3. Suppose that S% is any von Neumann algebra. Then se'($2) ® 3& 
is non-hyper finite. 

Proof. Suppose t h a t J ^ ( $ 2 ) ® & is hyperfinite. Then it has property AP 
[22, pp. 168-171]. Therefore, J^($ 2 ) has property AP [9, Theorem 3.2], i.e., 
there exists a linear projection of norm one, <p, from 3i (f2ifb2)) onto J ^ ( $ 2 ) / . 
Therefore, for any T Ç ^ ( / 2 ( $ 2 ) ) and any A G J / W , <P(AT) = A<p{T), 
<p(TA) = <p(T)A, <p(T*) = v(T)*t and if T ^ 0 then <p(T) ^ 0 [10, p. 330, 
proof of Lemma 8, p. 331 (bottom) ; 24, Theorem 1]. From this, it follows that 
$2 admits a finite, non-zero, non-negative, finitely additive, right invariant 
measure [22, pp. 171, 172, proof of Lemma 3]; however, this is impossible 
[22, p. 172 (bottom)]. 

Definition 5.4. For any von Neumann algebras/, define 

P ( J / ) = {0 S x g 1:3!x <^&x ®srf\. 

This was defined by Araki and Woods [3, Definition 11.1] where they used 
it to distinguish factors in the Soi class. 

THEOREM 5.5. Suppose that for i = 1, 2, sex is a von Neumann algebra that is 
not purely infinite, *Jt i is a tensor product of finite type I factors indexed by a 
set Ju and rœ(^t) 2 {0, 1}. Suppose that either 

(a) rœ(^#i) 5* rœ(<J?2), or 
(b) p(c^i) 9e p{^2) and J\ and J\ are countable. 
Then se\ ®Jéx $ks/2 ® - # 2 . 

Proof, (a) By Theorem 4.1 (b), 

rœ(s/1 ® Jéx) = r^{Jéx) 5* rœ(e^ 2) = rœ{s/2 ®Jé2). 

(b) Suppose, if possible, that s/\ ® *Jtx ~ s/2 ® ^ 2 . Choose any 
x Ç p(^#i). Then *Jt± ®S%X = £%x- Hence, using Theorem 4.1 (b), 

r œ ( ^ 2 <g> Stx) = rœ(s/2 ®Jt2® 9tx) = rœ(s/± ® Jéx ® &x) 

= r œ ( ^ i ®@x) = rm(0?x) = Sx. 

Therefore, ^#2 ® &x = £%x [3, Theorem 9.1], and x £ p{^2). By symmetry, 
we have that p{^\) = p{^2), a contradiction. 

THEOREM 5.6. (a) {s/($2) ®&x:0 < x < 1} is a continuum of pairwise 
non-isomorphic, non-hyper finite, type III factors on a separable Hilbert space, 
r „ ( ^ ( * « ) ® ^ * ) =SX. 

(b) There exists a continuum of pairwise non-isomorphic, non-hyper finite, 
type III factors on a separable Hilbert space, each one having its rœ set equal to Soi. 

Proof, (a) For any x with 0 < x < l,s/($2) ®£%x is a non-hyperfinite type 7i7 
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factor (Theorems 3.5, 4.5 (c) and Lemma 5.3), and rœ(j^(<ï>2) ® â%x) = 
rœ(&x) = Sx (Theorem 4.1 (b)). The result now follows from Theorem 5.5 (a), 

(b) Araki and Woods have constructed a family { yk:0 ^ k ^ 1} of type 
III factors on a separable Hilbert space such that for each k £ [0, 1], yk is a 
tensor product of type 72 factors, and hence is hyperfinite, 

r*>(y*) = rm(yk®yk) = s0i, 

and for any j , k G [0, 1], ej~k £ rœ(y'3 ®yk) [3, Lemma 10.1, proof of 
Theorem 10.10]. 

We claim that the family ( J / ( $ 2 ) ®yk:0 ^ k ^ 1} satisfies the condi
tions of this theorem. Using Theorem 4.1 (b), we see that for any k £ [0, 1], 
^ ( $ 2 ) ®<5^isnon-hyperfinite (Lemma 5.3), r œ ( j / ( $ 2 ) ®yk) = rœ(yk) = 
Sou and rœ(s/(*2) ®¥k ®s/(**) ®yk) = rœ(yk ®yk) = Sou If j , 
k G [0, 1] with j ^ k, then ej~k $ Sou but 

e'~* G r œ ( ^ , ® j^*) Ç rœ(j/(<ï>2) (x )^ - ® J / ( < Ï > 2 ) ( g ) ^ ) . 

Therefore, j / ($2) ( g ) ^ ^ j / ( $ 2 ) ® ^ . 
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