Primitive permutation groups containing

A CYCLE OF PRIME-POWER LENGTH

Richard Henry Levingston

An old problem in the theory of permutation groups is the classification of primitive groups which contain an element with a given cycle decomposition. The case that has received the most attention is of an element containing just one cycle of length greater than one. To be specific, let G be a primitive group, not the alternating or symmetric group, of degree $m+k$, containing an element x which is an m-cycle fixing k points. Jordan proved that G is ($k+1$)-transitive ([1]). Then Marggraff showed that $m \geq k$ ([3]). The only further progress on the problem in this generality is the result of Williamson ([8], Theorem 1) that $m \geq k!$. The present knowledge of 4-transitive groups makes it natural to conjecture that $k \leq 2$.

Now suppose that m is a prime power, say $m \neq p^{n}$. Then the theorems of Sylow and Witt ensure that x lies in tractable proper subgroups of G, and we expect to be able to prove more. Jordan showed that when $n=1$ then $k \leq 2$ ([7], Theorem 13.9). In a recent series of papers ([4], [5], [6]) it is proved that for any $n, k \leq 2$. Here we consider what more can be said.

In Chapter 3, we consider the case $p=2, k=0$. As our hypothesis is not inductive to subgroups, we classify permutation groups of degree 2^{n}, which contain a 2^{n}-cycle x and have minimal degree greater than 2^{n-2}. (This includes the primitive groups.) The basis of the proof is the observation that, for such a group G with $n \geq 6$, every

Received 21 July 1980. Thesis submitted to the University of Sydney, December 1979. Degree approved: July 1980. Supervisor: Dr T.M. Gagen.
elementary abelian 2-subgroup of G normalized by x has order at most 8 and any subgroup D of exponent 4 , with $\Phi(D) \leq Z(D)$, which is normalized by x is abelian. Hence we have control of the action of elements of odd order on $O_{2}(G)$. The proof proceeds by choosing a minimal counterexample G and considering the set M of maximal subgroups of G which contain x. Since, by induction, the structure of elements of M is known, we can show that G does not exist. Our conclusion is that if G is primitive, then $G=\mathrm{PGL}_{2}(q)$, where q is a Mersenne prime with $2^{n}=q-1$.

In Chapter 4 we consider the case $k \geq 1$ for all primes. We begin by supposing that $k=1$, and show that either G has cyclic Sylow p-subgroups, or $p=2$ and the Sylow 2-subgroups of G are dihedral or semidihedral. It is then easy to show that, if $p=2$ and $k=1$, then G is soluble, while if $p=k=2$, then either G is $\operatorname{PGL}_{2}(q), q$ a Fermat prime or G is a subgroup of $\mathrm{PGL}_{2}(9)$. For p odd, we show that G is 3 -transitive if $k=1$ and 5 -transitive if $k=2$. We also prove that $p \neq 3$ and that if $p=5$, then $k=1$ and n is even.

We note that some of the results of Chapter 4 have already appeared in [2].

References

[1] C. Jordan, "Théorèmes sur les groupes primitifs", J. Math. (2) 16 (1871), 383-408.
[2] Richard Levingston, "Primitive permutation groups containing a cycle of prime power length", BuZZ. London Math. Soc. 10 (1978), 256-260.
[3] B. Marggraff, Ueber primitive Gruppen mit transitiven Untergruppen geringeren Grades (Buchdruckerei 0. Lange, Berlin, [1888/1889]).
[4] Peter M. Neumann, "Primitive permutation groups containing a cycle of prime-power length", BuZZ. London Math. Soc. 7 (1975), 298-299.
[5] Peter Rowlinson, "Primitive permutation groups containing a 2^{λ}-cycle", J. London Math. Soc. (2) 10 (1975), 225-227.
[6] Peter Rowlinson and Alan Williamson, "On primitive permutation groups containing a cycle, II", Bull. London Math. Soc. 6 (1974), 149-151.
[7] Helmut Wielandt, Finite permutation groups (Academic Press, New York, London, 1964).
[8] Alan Williamson, "On primitive permutation groups containing a cycle", Math. 2. 130 (1973), 159-162.

