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A FUNCTION THEORETIC PROOF OF AXLER'S ZERO 
MULTIPLIER THEOREM 

BY 

KEIJIIZUCHI 

ABSTRACT. A function theoretic proof of Axler's zero multiplier 
theorem of Bergman spaces is given. 

Let G be an open, connected, nonempty subset of CN. Let dA be the 
normalized Lebesgue measure on CN and w be a positive continuous function 
on G. For 0 < p ^ oo, we denote by LP(G, wdA) the usual Lebesgue space. The 
Bergman space Lp

a(G, wdA) is defined by 

Ifa(G, wdA) = {g e LP(G, wdA); g is analytic in G}. 

We note that L™(G, wdA) coincides with the space of bounded analytic 
functions on G. F o r / e Lp

a(G, wdA), put 

ll/IL 

( sup{ | / (2) |; z e G} if/» = oo 

IJG \f\"wdA\ " if 1 â /» < oo 

L\f\pwdA ÏÎ0 <p < 1. 

Then Z^(G, w<i4 ) becomes a complete metric space with the metric defined by 
d(f, g) = 11/ - g\\p f o r / g e Ifa(G, wdA). 

In [1], Axler showed the following zero multiplier theorem. His paper [1] gives 
good references for multiplier theorems on Bergman spaces. 

THEOREM 1. Suppose that L*a(G, wdA ) has dimension greater than 1 for each 
0 < t < oo. Let 0 < p < s ^ oo, and let g be an analytic function on G such 
that 

gL
p
a(G,wdA) c Ls

a(G,wdA). 

Then g = 0. 
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To prove this theorem, Axler used the Fredholm alternative from operator 
theory as a major tool. In this paper, we shall prove the above theorem without 
using operator theory, giving a purely function theoretic proof. The following is 
our main theorem. As a corollary we can get Theorem 1. 

THEOREM 2. Let 0 < p < oo. Suppose that Lp
a(G, wdA) has dimension 

greater than 1. Let g be an analytic function on G such that 

gL
p
a(G,wdA) c L?(G,wdA). 

Then g = 0. 

PROOF. TO show g = 0, suppose not. We shall get a contradiction. Since 
dim Lp

a(G, wdA) ^ 2, there exists a function h in Lp
a(G, wdA) such that gh is 

nonconstant. Since gh e L™(G9 wdA), we may assume 

(1) HgAlloo = 1-

Hence there is a sequence {\„}™=o in G such that 

(2) | (gh)(Xn) | - M (n -> oo). 

We shall show the existence of increasing positive integers {£„}^Li such that 

oo 

(3) 2 riln{ghf»h e Lp
a(G, wdA) 

n = \ 

and 

(4) g ( S n2\gh)k«h\ £ O G , wdA). 

Then these contradict our assumption. 
To show the existence of {kn} satisfying (3) and (4), first we show by in

duction that there are increasing sequences of positive integers {kn}^=l and 
{in}^L\ such that 

(5,«) || te/i)*»*!!,, < (1/3)", 

(6, n) \(gh)k»(\j)\<(\/3T 

for every j with 0 ^ j ^ *w-i> 

( 7 , i ) \{gh)k»{\)\ > 1 - \/nl\ 

For convenience, we put i0 = 0. We only prove the general step. We can 
get the first step by the same way. Suppose that there exist kn and in satisfy
ing (5, n), (6, n) and (7, n). Since gh is a nonconstant analytic function with 
llg l̂loo = 1» (gh)n converges 0 uniformly on each compact subset of G. Since 
h e Lp

a(G, wdA), by the dominated convergence theorem, we can take a 
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sufficiently large positive integer kn+l satisfying (5, n + 1) and (6, n + 1). 
Next, by (2), we can take in + l satisfying (7, n + 1). This completes the 
induction. 

Now we get 

oo 

2 n2"(gh)k"h 
U U 

=i 2 «2"||(g«)H|L 
n = l 

^ 2 «(2/3)" 
n = l 

by (5, it) 
< OO. 

The first inequality is easy to see for 1 ^ p < oo. If 0 < p < 1, it follows 
from 

I OO M OO 

2 «2"(g«)*»« L =ê 2 \\n2n(ghf"h\\p 

oo /• 

= 2 (nlnY J | {gh)k"h\pwdA 

by the definition 

â 2 «2" | | (g/0^IL because «2" ^ 1. 
/!«1 

Hence we get (3). 
Also we have the following inequalities for sufficiently large j . 

g ( \ ) ( 2 n2"{gh)k»h\(\A 

^ I (gh){\) \\jV\ {gh)\\) | 

7 - 1 oo » 

- 2 «2"| (g/*M) | - 2 »2"| (g«M,) | 
« = 1 y n=j+\ ' I 

{ v'-i °° \ 

M l - 1//2'') - 2 "2" - 2 «(2/3)" 
„ = 1 «=7 + 1 J 

by (7,7), (1) and (6, «) 
^ I (g«)(\.) | {y2^ - 1 - ( y ^ - j) - 1} 

= i (g«)(\,) i a - 2). 
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The last inequality follows from 

2 «(2/3)" < 1 

for sufficient large y, and 

7-1 j - \ 

2 nln ^ (j - 1 ) ^ 2 " = 0" - 1)(27 - 1) 
« = 1 n=\ 

= j2J -j - V + 1 <jlJ -j. 

Hence, by (2), we get 

/ O O v I 

ig(\)(2 ^"(gA^W.) 
7 \ „=1 / J 

Thus we get (4). This completes the proof. 

PROOF OF THEOREM 1. Let / be a positive number such that \/s + \/t = \/p. 
For e a c h / G Ls

a(G, wdA) and h e 4 ( G , >W£4), we h a v e ^ G Z£(G, wdA) by 
the generalized Holder's inequality. For each k e Lp

a(G, wdA), by our assump
tion, gk e L^(G, wdA). Hence 

(gh)k = (gk)h e Ifa(G9wdA). 

Thus 

(gh)Ifa(G, wdA) c Lp
a(G9wdA). 

By Lemma 11 of [2], gA G L~(G, W<£4). Hence g4(G, w<£4) c L^°(G, M*£4). 

By Theorem 2, g = 0. 
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