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Abstract

In this article we show that finite loops with nilpotent inner mapping groups are centrally nilpotent.
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1. Introduction

Let Q be a groupoid with a neutral element e. If each of the two equations ax = b and
ya = b has a unique solution for any a, b ∈ Q, then we say that Q is a loop. It should
be noted that groups are precisely associative loops. The two mappings La(x)= ax
(left translation) and Ra(x)= xa (right translation) are permutations on Q for every
a ∈ Q. The permutation group M(Q)= 〈La, Ra : a ∈ Q〉 is called the multiplication
group of Q. The stabilizer of the neutral element e is denoted by I (Q) and is called
the inner mapping group of Q. Clearly, M(Q) is transitive on Q, and if Q is a group,
then I (Q)= Inn(Q), the group of inner automorphisms of Q. Note that I (Q)= 1 if
and only if Q is an abelian group.

A subloop H of Q is normal in Q if x(y H)= (xy)H , (H x)y = H(xy) and
x H = H x for any x, y ∈ Q. Normal subloops are naturally kernels of loop
homomorphisms. A loop Q is solvable if it has a series 1= Q0 ⊂ · · · ⊂ Qn = Q
where, for each i , Qi−1 is a normal subloop of Qi and Qi/Qi−1 is an abelian group.
If α ∈ M(Q) and H 6= Q is a nontrivial normal subloop of Q, then α(x H)= α(x)H
for every x ∈ Q; hence H is a block of M(Q) and M(Q) is imprimitive on Q.

In 1996 Vesanen [11] proved the following important result.

THEOREM 1.1. If Q is a finite loop and M(Q) is a solvable group, then Q is a
solvable loop.

The centre Z(Q) of a loop Q consists of all elements a which satisfy the
conditions ax = xa, (ax)y = a(xy), (xa)y = x(ay) and (xy)a = x(ya) for every
x, y ∈ Q. Clearly, Z(Q) is an abelian group, and it is not difficult to show that
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Z(Q)∼= Z(M(Q)) (for the details, see [10, Lemma 6.1]). If we write Z0 = 1,
Z1 = Z(Q) and Zi/Zi−1 = Z(Q/Zi−1), then we obtain a series of normal subloops
of Q. If Zn−1 is a proper subloop of Q and Zn = Q, then Q is said to be centrally
nilpotent of class n. Kepka and Niemenmaa [6, 7, 9] managed to show that if Q is a
finite loop and I (Q) is abelian or a dihedral 2-group, then Q is a centrally nilpotent
loop. The purpose of this paper is to show that these results can be generalized in
the following way: if I (Q) is a nilpotent group, then Q is a centrally nilpotent loop.
An important role in our proof is played by a recent result of Mazur [8] on connected
transversals to nilpotent subgroups. We formulate our main result first in terms of
group theory by using connected transversals, and then we obtain our loop-theoretical
main result as a corollary.

Section 2 contains some basic facts about connected transversals and the proof of
our main result. We also present an open problem on the nilpotency class of Q and
compare that situation with the one where I (Q) is abelian. In Section 3 we see that
certain nilpotent groups are not possible as inner mapping group loops. The proof of
the aforementioned result of Mazur depends on the classification of the finite simple
groups; in Section 4 we indicate how Mazur’s result can be proved without using the
classification.

In this paper all groups and loops are finite. For basic facts about loop theory and
its connections to group theory, the reader is advised to consult [2, 5, 10].

2. Connected transversals and nilpotent inner mapping groups

Let G be a group and let H ≤ G. By HG we denote the core of H in G (the largest
normal subgroup of G contained in H ). If A and B are two left transversals to H in
G and [A, B] ≤ H , then we say that these two transversals are H -connected in G. In
fact, if A and B are H -connected transversals, then A and B are both left and right
transversals to H in G [5, Lemma 2.1]. In what follows, we will need the next few
results from [5].

LEMMA 2.1. Let C ⊆ A ∪ B and K = 〈H, C〉. Then C ⊆ KG .

LEMMA 2.2. If HG = 1, then NG(H)= H × Z(G).

THEOREM 2.3. If H is cyclic and G = 〈A, B〉, then G ′ ≤ H.

For the proofs, see [5, Lemma 2.5, Proposition 2.7 and Theorem 3.5].
Connected transversals appear in loop theory in the following way: if A = {La | a

∈ Q} and B = {Ra | a ∈ Q}, then A and B are I (Q)-connected transversals in M(Q).
As M(Q) is transitive on Q, it follows that the core of I (Q) in M(Q) is trivial.
The following characterization theorem was proved by Kepka and Niemenmaa [5,
Theorem 4.1] in 1990.

THEOREM 2.4. A group G is isomorphic to the multiplication group of a loop if and
only if there exist a subgroup H of G satisfying HG = 1 and H-connected transversals
A and B such that G = 〈A, B〉.
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It should be noted that in the role of the loop elements we have the left cosets
of H , and the subgroup H is isomorphic to the inner mapping group of the loop.
All of the results mentioned in the introduction (on the relation between the structures
of M(Q), I (Q) and Q) were proved by means of group-theoretical arguments and
connected transversals. A recent result which is crucial to our investigation is one due
to Mazur [8].

THEOREM 2.5. Let H be a nilpotent subgroup of a finite group G which has H-
connected transversals. Then G is solvable.

The following lemma is a generalized version of the Frattini argument.

LEMMA 2.6. If K is a finite normal solvable subgroup of a group G and R is a Hall
subgroup of K , then G = K NG(R).

We also need the following lemma in the proof of our main theorem.

LEMMA 2.7. If Q is a finite loop, I (Q) is nilpotent and I (Q) is a maximal subgroup
of M(Q), then Q is a cyclic group of prime order and I (Q)= 1.

PROOF. By Theorem 2.5, M(Q) is solvable. From Theorem 1.1 it follows that Q is a
solvable loop. If N 6= Q is a nontrivial normal subloop of Q, then M(Q) is imprimitive
on Q and I (Q) as a one-point stabilizer is not a maximal subgroup of M(Q). Thus
we may conclude that Q is both simple and solvable, and hence is a cyclic group of
prime order. It is then also clear that I (Q)= 1. 2

THEOREM 2.8. Let H be a nilpotent subgroup of a finite group G and assume that
there exist H-connected transversals A and B in G. If G = 〈A, B〉, then H is
subnormal in G.

PROOF. Let G be a minimal counterexample. If HG > 1, then H/HG is subnormal
in G/HG and our claim is true. Thus we may assume that HG = 1. By Theorem 2.4,
G ∼= M(Q) and H ∼= I (Q) for some loop Q.

If H is a maximal subgroup of G, then by Lemma 2.7, H ∼= I (Q)= 1 and H is
subnormal in G. We may thus assume that H is not maximal in G. By Theorem 2.5,
G is a solvable group. If T < G and H is a maximal subgroup of T , then TG > 1 by
Lemma 2.1. Now H TG/TG = T/TG is nilpotent, and by induction T/TG is subnormal
in G/TG ; hence T is subnormal in G. This naturally means that NG(H)= H . Let
N ≤ TG be a minimal normal subgroup of G. As G is solvable, N is an elementary
abelian p-group. Clearly, T = N H . We write H = P R, where P is a Sylow p-
subgroup of H , R is a Hall subgroup of H and P ∩ R = 1. As NG(H)= H , it
follows that NT (R)= H . Since T is subnormal in G, we have a subgroup F > T
such that T is normal in F . If NF (R) > H , then we have a subgroup L ≤ NF (R)
such that H is maximal in L and L 6= T . Clearly, L is subnormal in G and then
H = L ∩ T is subnormal in G. Thus we may assume that NF (R)= H . Now R is a
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Hall subgroup of T , so we can apply Lemma 2.6 and get F = T NF (R)= T H = T ,
which is a contradiction. We therefore conclude that H is subnormal in G. 2

REMARK. The mapping f : I (Q)→ I (Q/Z(Q)) defined by

f (α)(x Z(Q))= α(x)Z(Q)

is a surjective homomorphism, and

K = Ker( f )= {α ∈ I (Q) | α(x)Z(Q)= x Z(Q) ∀x ∈ Q}.

(For the details, see [2, pp. 279–280].)

COROLLARY 2.9. If Q is a finite loop and I (Q) is nilpotent, then Q is a centrally
nilpotent loop.

PROOF. By Theorem 2.8 and Lemma 2.2, Z(M(Q)) > 1 and thus Z(Q) > 1. If K is
as in the preceding remark, then we have I (Q/Z(Q))∼= I (Q)/K . We conclude that
Z(Q/Z(Q)) > 1. We may continue in this manner, and it follows that Q is centrally
nilpotent. 2

Now it is quite natural to pose the following question.

PROBLEM. Let I (Q) be a nilpotent group of class n. What can we say about the
nilpotency class of the loop Q?

We wish to point out that, even in the case where I (Q) is a finite abelian group, it
is not clear how the nilpotency class of Q is determined. If p is a prime number and
I (Q)∼= C p × C p or I (Q)∼= C p × C p × C p, then Q is centrally nilpotent of class two
(for the details, see [3, 10]). In 2007, Csörgö [4] constructed an example of a loop Q
of order 27 with an elementary abelian I (Q) of order 26 and with nilpotency class
three. It is not known if there exist loops with abelian inner mapping groups and with
nilpotency class four.

3. Loop capable nilpotent groups

Groups that are isomorphic to inner automorphism groups of groups are called
capable groups. We shall call groups which are isomorphic to inner mapping groups
of loops loop capable groups, and we will investigate the following problem: which
nilpotent groups are (or are not) loop capable groups? We shall next show that if at
least one of the primary components of a finite nilpotent group H is cyclic, then H is
not a loop capable group. We assume that A and B are H -connected transversals.

THEOREM 3.1. Let H ∼= C × T , where C > 1 is cyclic, T is nilpotent and
gcd(|C |, |T |)= 1. If G = 〈A, B〉, then HG > 1.

https://doi.org/10.1017/S0004972708001093 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708001093


[5] Finite loops with nilpotent inner mapping groups 113

PROOF. Let G be a minimal counterexample and hence assume that HG = 1. By
Theorem 2.3, we may assume that T > 1. From Lemma 2.2 and Theorem 2.8 it follows
that Z(G) > 1. Take z ∈ Z(G) such that |z| = p, where p is a prime number; then
consider the factor groups G/〈z〉 and H〈z〉/〈z〉. Since G is a minimal counterexample,
there is a normal subgroup K of G such that 〈z〉< K ≤ H〈z〉 and C ≤ K . Thus
|K | = |C |tp, where t divides |T |. As Sylow subgroups of K are normal in G and
HG = 1, we may conclude that t = 1, K = C × 〈z〉 and C is a p-group.

Since H is nilpotent, it follows from Theorem 2.5 that G is solvable. This
guarantees the existence of Hall subgroups. Let 5 be a set which contains exactly
those prime numbers that divide |T |, and let S ≥ T be a Hall 5-subgroup of G; then
write F = K NG(S). If E ≥ F is a maximal subgroup of G, then E > H and, by
Lemma 2.1, EG > 1. By Theorem 2.8, H EG/EG = E/EG is subnormal in G/EG ;
hence E is subnormal and, in fact, normal in G. By using the generalized Frattini
argument, we get G = E NG(S)= E , which is a contradiction. Thus F = G.

If g ∈ G, then g = kn, where k ∈ K and n ∈ NG(S). Now K ≤ CG(T ) and thus
T g
= T kn

= T n
≤ Sn

= S. Since M = 〈T g
: g ∈ G〉 is normal in G and T ≤ M ≤ S,

it follows that H M/M is cyclic. By Theorem 2.3, (G/M)′ ≤ H M/M and hence
G ′ ≤ H M . Therefore H M is normal in G and H M ∩ K = C is normal in G. But
this clearly contradicts the assumption that HG = 1, so the proof is complete. 2

Upon combining Theorem 3.1 with Theorem 2.4, we get the following result.

COROLLARY 3.2. Let H be as in Theorem 3.1. Then H is not a loop capable group.

In the case of finite nonnilpotent groups, we formulate the following conjecture.

CONJECTURE. Assume that H is a finite nonnilpotent group which is loop capable.
Then H × C, where C is a nontrivial finite cyclic group such that gcd(|H |, |C |)= 1,
is not loop capable.

4. Some remarks

In the proof of Theorem 2.5 (that is, [8, Theorem 1]), Mazur starts with the
assumption that G is a minimal counterexample. Thus G is a nonsolvable finite
group with a nilpotent subgroup H and H -connected transversals A and B. As in
[8, Section 2], it then follows that H is a maximal subgroup of G and G = DH ,
where D is a minimal normal subgroup of G. Furthermore, H is a Sylow 2-subgroup
of G and D is a nonabelian simple group. After this, in [8, Section 3], the classification
of finite simple groups is used to conclude that D ∼= P SL(2, q), where q = 2n

± 1≥ 7
is a prime number.

We can, however, avoid the use of the classification by applying the following result
of Baumann [1] from 1976 (we follow the original article written in German).

THEOREM 4.1. Let G be a nonsolvable finite group with a nilpotent maximal
subgroup. Then O2(G/F(G)) is a direct product of simple groups whose Sylow
2-subgroups are dihedral.
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Here O2(X) denotes the smallest normal subgroup with a factor group which is a
2-group, and F(X) is the largest nilpotent normal subgroup of X . The simple groups
which are the components of the direct product are isomorphic to P SL(2, q), where
q = 2n

± 1≥ 7 is a prime number or q = 9. The application of Baumann’s theorem
therefore gives us directly the structure of D (the q = 9 case does not cause any
problems). We may then proceed as in [8, Section 4], and the solvability of G follows.
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[3] P. Csörgö, ‘On connected transversals to abelian subgroups and loop theoretical consequences’,

Arch. Math. (Basel) 86(6) (2006), 499–516.
[4] , ‘Abelian inner mappings and nilpotency class greater than two’, European J. Combin.

28(3) (2007), 858–867.
[5] T. Kepka and M. Niemenmaa, ‘On multiplication groups of loops’, J. Algebra 135 (1990),

112–122.
[6] , ‘On connected transversals to abelian subgroups in finite groups’, Bull. London Math. Soc.

24 (1992), 343–346.
[7] , ‘On connected transversals to abelian subgroups’, Bull. Aust. Math. Soc. 49 (1994),

121–128.
[8] M. Mazur, ‘Connected transversals to nilpotent groups’, J. Group Theory 10 (2007), 195–203.
[9] M. Niemenmaa, ‘On loops which have dihedral 2-groups as inner mapping groups’, Bull. Aust.

Math. Soc. 52 (1995), 153–160.
[10] M. Niemenmaa and M. Rytty, ‘Connected transversals and multiplication groups of loops’,

Quasigroups Related Systems 15 (2007), 95–107.
[11] A. Vesanen, ‘On solvable loops and groups’, J. Algebra 180 (1996), 862–876.

MARKKU NIEMENMAA, Department of Mathematical Sciences,
University of Oulu, PL 3000, 90014 Oulu, Finland
e-mail: mniemen@cc.oulu.fi

https://doi.org/10.1017/S0004972708001093 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708001093

