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Abstract. We present a new 3D MHD code for the simulation of solar
magnetoconvection. The code is designed for use on parallel computers
and in the choice of methods emphasis has been laid on efficient paral-
lelization. We give a description of the numerical methods and discuss
the non-local and non-grey treatment of the radiative transfer. Test cal-
culations underlining the importance of non-grey effects and first results
of the simulation of a solar plage region are shown.

1. Introduction

The interaction between convective motions and magnetic fields in the solar pho-
tosphere and in the uppermost layers of the convection zone plays an important
role for many observable phenomena of solar activity and for the large heating
of the upper atmospheric layers. Since any observation of the sun can only give
a two dimensional map of quantities integrated along the line of sight, and since
sub-photospheric layers are not amenable to direct observation, numerical sim-
ulations are necessary to obtain a full three dimensional picture of the relevant
physical processes.

Furthermore, the hydrodynamic and magnetic Reynolds numbers of the
convective flows result in the formation of magnetic structures with scales much
smaller than the resolution limit of presently used telescopes, so simulations pro-
vide a way to gather information about the physics of these otherwise inacces-
sible scales. Realistic simulations of solar magnetoconvection require a detailed
non-local and non-grey radiative transfer and need to include compressibility
and the effects of partial ionization. The large range of spatial scales to be
covered calls for simulation codes designed for use on parallel computers. We
have developed a 3D MHD code for applications in the solar photosphere and
convection zone that meets these requirements. The choice of a domain decom-
position parallelization model in combination with a short characteristics solver
for the radiative transfer leads to efficient parallelization, especially of the time
consuming radiative transfer calculations. In section 2. we describe the code and
discuss methods and tests of the non-grey radiative transfer. In section 3. we
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present first results of the simulation of a solar plage region obtained with the
code.

2. Equations and numerical methods

2.1. Basic equations and integration scheme

We set out from the MHD equations consisting of the continuity equation,

apat + \7 . (pu) == 0 ,

the equation of motion,

apu ( (IBI
2

) BB)at + \7. puu + p + 81r 1 - 41r == pg + \7 . I: '

the energy equation,

(1)

(2)
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-\7·(Bx1]\7xB) + \7·(u·Z) + \7. (Xp\7-)
41r - p

+ p(g. u) + Qrad ,

and the induction equation,

aB
7ft + \7. (uB - Bu) == -\7 x (1]\7 x B) . (4)

Here p is the mass density, u the flow velocity, B the magnetic field and
e == eint + ekin + em ag the total energy density per volume, i.e., the sum of
internal, kinetic and magnetic energy densities. p is the gas pressure, g the
vector of gravitational acceleration, and Qrad the radiative source term which
is discussed in detail in Sec. 2.3.,1] is the (constant) magnetic diffusivity, I. the
viscous stress tensor and X the thermal diffusivity. The system of equations (1)-
(4) is solved on a three-dimensional cartesian grid. All spatial derivatives except
those involving I. and X are discretized using 4th order centered differences on a
53 point stencil. -Typical values for the Reynolds number in the solar photosphere
and upper convection zone lead to structures much smaller than any affordable
grid resolution. In order to supress unresolved structures that would destabilize
the numerical scheme we adopt the methods described by Caunt & Korpi (2001)
and Stein & Nordlund (1998). The terms involving I. and X are discretized using
2nd order centered differences and contain artificial diffusivities which prevent
the build-up of energy at small scales while leaving resolved scales unaffected.

The code is parallelized by means of domain decomposition. The compu-
tational domain is decomposed into a three dimensional array of rectangular
subdomains , each of which is equipped with two layers of ghost cells at each of
its boundaries, as required by the 4th-order scheme. Time stepping is explicit,
using a 4th-order Runge-Kutta scheme. The code was tested with a series of
standard test problems.
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(6)

(5)

2.2. Equation of state

The equation of state closes the system of equations (1)- (4) by specifying the
relations between the thermodynamical quantities of the fluid. In the solar
photosphere and upper convection zone, the deviations from the ideal gas law
due to partial ionization of the fluid are important since transport of latent heat
contributes significantly to the total convective energy transport. We take into
account the first ionization of the eleven most abundant element. The internal
energy per mass unit E == eint/P can then be written as

E == 2
3

(n e + na ) kT + ~ L n:Xil
p p

where the sum runs over the particle species (labeled with index i) , ni is the
number density of ionized particles of type i, and Xi the corresponding ionization
energy. na == L:ni is the number density of nuclei, n e the number density of elec-
trons. Defining the ionization degree, Xi == ni [tu, and the relative abundance,
Vi == ni/na, Eq. (5) can be rewritten as

3kT ( ) 1
E == --- 1 + LXiVi +-- LXiViXi,

2/-Lama /-Lama

where /-La == 1.29 is the mean molecular weight of the neutral gas and ma is the
atomic mass unit. The ionization degrees, Xi, are determined by the set of Saha
equations

~ L . . - Uil (T) /-Lama 2 (21rme kT )3/2 (_ ·/kT) (7)
1 X~V~ - (T) h3 exp X~ .

- Xi Uia P
Up to a temperature of 16000 K the temperature dependence of the partition
functions Uil, Uia was taken from Irwin (1981), for higher temperatures the ele-
ments considered are almost fully ionized and the temperature dependence can
be neglected. In order to obtain the temperature, the nonlinear system of equa-
tions (6) and (7) is solved iteratively. Once the temperature is known, the gas
pressure follows from

p == (n e + na) kT == _P- (1 + LXiVi) kT. (8)
/-Lama

The equation of state is stored in tables from which the required quantities are
interpolated during a simulation run.

2.3. Radiative transfer

The radiative source term in Eq. (3) is written as

Qrad=-lC\l · Fv)dv=47rPl(Jv-Sv)dv. (9)

The numerical evaluation requires either the radiation flux vector, F v ==
Iv Iv(~)~dw, or the average intensity, i; == 4~ I Iv(~)dw, to be calculated. Ei-
ther of the quantities can be determined by solving the radiative transfer equa-
tion,

(10)
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for the specific intensity L, along rays for a number of directions and frequen-
cies ("'v is the opacity and Bv == B; for LTE). In order to keep the radiative
transfer numerically tractable, the frequency dependence must be accounted for
in a statistical way. The simplest and most time-efficient approach would be
the grey approximation. While it can be expected to describe the interaction
between convective motions and radiative cooling in the layer around contin-
uum optical depth unity with sufficient accuracy, it neglects the effects of line
cooling and backwarming, which have a strong influence on the temperature
structure of the upper photosphere. As we shall show below, the errors of the
grey approximation become particularly pronounced in situations strongly devi-
ating from a plane-parallel atmosphere, where lateral heating effects come into
play. Such situations are typically encountered in simulations of magnetocon-
vection. Following Nordlund (1982), Ludwig (1992) and Ludwig et al. (1994)

Figure 1. Illustration of the frequency sorting scheme. The solid
curve indicates the height in a reference atmosphere where Tv == 1 is
reached. Frequencies which reach Tv == 1 in the same height interval
(Zi, Zi+l) are binned into one frequency set.

we take into account the non-grey character of the radiative transfer by using
the 'opacity binning'. The basic idea is to sort frequencies into sets (typically
4 - 6) according to the geometrical depth in a ID reference atmosphere at which
optical depth Tv == 1 is reached (see Fig. 1). Then for each frequency set i a
transfer equation

(11)

with a set-integrated source function, Bi, and a set-averaged opacity, "'i, is
solved. We use the Rosseland mean (taken over the frequency set) in optically
thick regions and make a smooth transition to the Planck mean in optically thin
layers, based on an estimate of the local optical depth given by Ti ~ ~i,RosP/g.

For the angular discretization we use the quadrature formulae of set A by
Carlson (1963). At a given grid point, the radiative flux and average intensity
are then calculated as (dropping the set index) F j == 47r L:l Wl!1jlll (j == x, Z, y)
and J == L:l wlIl, respectively, where the sum runs over the ray directions. The
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coefficients Wz are the weights normalized to unity and J-ljZ is the direction cosine.
For the calculations presented in Sec. 3. the A4 quadrature set with 3 directions
per octant was used.

We solve the radiative transfer equation (11) for each frequency set and
each direction using the short characteristics scheme as described by Kunasz &
Auer (1988). It is based on the formal solution of the transfer equation, here
stated for a given cosine J-l of ray inclination, along the ray segment between
neighbouring height levels i and i + 1

(12)

In order to evaluate ~Ti == Ti - Ti+l and the integral contribution to Eq. (12),
the values of n; p and B are interpolated linearly along the ray segment. This
results in polynomial expressions, which can be evaluated analytically; alter-
natively a parabolic interpolation can be used for "'- and B. In plane-parallel
calculations, the upwind intensity I; has been obtained in the previous step of
the computation. In 2D and 3D, the ray is traced back from point i + 1 until
it reaches a cell boundary. At the point of intersection, the upwind intensity
Ii is interpolated from the values at the neighbouring grid points. In 2D, lin-
ear or parabolic interpolation can be used; for 3D calculations we use bilinear
interpolation.

In the context of the domain decomposition used by the code, the short
characteristics scheme requires an iteration for each ray direction and each fre-
quency set: for a given ray direction the scheme starts in each subdomain at
those boundaries through which the radiation flows in (the 'upwind' boundaries).
The intensity values at these boundaries are assumed to be known. Then the
traversal of the subdomain proceeds in the downwind direction, systematically
moving away from the upwind boundaries, thus making sure that the upwind
intensities required for the interpolation are always known. However, on those
upwind boundaries of a subdomian which do not coincide with the top or bot-
tom boundary of the computational box, the intensities are a priori unknown.
Therefore, the scheme is iterated until convergence at the boundaries is obtained.
After each iteration the intensities at a given upwind boundary are updated with
the new values provided by the neighbouring subdomain. We found that 2 - 3
iteration steps per set and direction are usually sufficient, if one chooses as initial
guess for the intensities on the upwind boundaries a linear extrapolation of the
values of the previous two time steps.

As an example for the importance of non-grey effects and a test of the opacity
binning method, we consider a simple 2D magnetic flux sheet model. Using a ID
reference atmosphere (Maltby et al. 1986), the stratification in the interior of the
sheet is shifted 200 km downwards relative to the surrounding. Consequently
the sheet is cooler and less dense than the outside atmosphere at the same
geometrical height level. The width of the sheet as a function of height results
from flux conservation together with the condition of total pressure balance at
the interface. At the height z == 0, corresponding to continuum optical depth
unity outside the sheet, a width of 150 km has been specified. The sheet fans out
with increasing height as the magnetic pressure necessary to balance the jump
in gas pressure decreases. At the sheet boundaries the transition is smeared out
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Figure 2. Horizontal cut of Qrad at a height of 250 km through the
2D atmosphere with embedded flux sheet. x == 0 corresponds to the
symmetry axis of the sheet. The sheet interior is shaded in grey. The
opacity binning models yield a much better approximation of the lateral
heating and cooling near the interface than the grey solution.

horizontally over a distance of 40 km. Fig. 2 shows Qrad for a horizontal cut
through the sheet at height of 250 km starting from the symmetry axis at x == o.
Results for the grey (Rosseland) mean and for opacity binning models using 3
and 5 sets are shown. The reference solution was obtain with opacity distribution
functions (ODFs) by Kurucz (1979). The 3- and 5-set solutions approximate
the 'reference' solution rather well. Both reproduce the characteristic heating
peak on the inner side and stronger cooling peak outside the sheet boundary,
the 5-set model performing slightly better. The grey solution, however, does
not even capture the qualitative behaviour of the reference. The heating peak
inside the sheet is missing; instead, heating takes place immediately outside the
sheet, where the correct solution shows considerable cooling. The reason for
the failure of the grey solution lies in the fact that at a height of 250 km the
interior of the sheet is largely transparent when the Rosseland mean opacity is
used. As a result, the interaction between gas and radiation inside the sheet is
very weak and the values of Qrad are accordingly small. In the optically denser
regions immediately outside the sheet, radiation which originates from deeper,
hotter regions at the opposite sheet boundary and which crosses the sheet almost
unattenuated, leads to a net heating. In the opacity binning models, on the other
hand, the sheet is still opaque for those frequency sets which represent larger
opacity (spectral lines). The situation is illustrated schematically in Fig. 3. The
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Figure 3. In the grey approximation (left) the upper parts of the
flux sheet are almost transparent. At the same height, the sheet still
appears opaque for opacity binning models (right).
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error of the grey solution far outside the sheet (x = 500 km) is in accordance
with the results of 1D calculations in the plane-parallel reference atmosphere
atmosphere.

3. First results

In this section we show some results of a first simulation run with the new
code. The dimensions of the computational domain are 1400 km in the ver-
tical direction and 6000 km in both horizontal directions, with a resolution of
100 x 288 x 288 grid points. The top and bottom boundaries of the domain are
closed with stress free boundary conditions for the horizontal velocity compo-
nents; the implementation of more realistic transmitting upper and open lower
boundaries is under development. The magnetic field is assumed to be vertical
at the top and bottom boundaries, the footpoints of field lines are allowed to
move freely. The horizontal directions are taken to be periodic. In this first run
we have used the grey Rosseland approximation for the radiative transfer. The
simulation starts with a plane-parallel standard solar atmosphere (Spruit 1974)
extending from 800 km below to 600 km above the level of continuum optical
depth unity. After convection has fully developed, a upward-directed homoge-
neous magnetic field of 200 G is introduced. Within a few minutes of simulated
time (approximately one turnover-time of the convection) most of the magnetic
flux has been transported to the downflow lanes of the convection (granulation)
pattern. Fig. 4 shows a horizontal cut at the (7) = 1 level several turnover
times after the start of the magnetic phase. Thin sheet-like magnetic structures
extend along intergranular downflow lanes, while larger structures with diam-
eters of 800 - 1000 km (comparable to small pores on the sun) are formed at
granule vertices where several downflow lanes merge. Typical field strengths in
these field concentrations at a height corresponding to optical depth unity are
between 1700 and 2000 G. In the intensity picture, the 'mini-pores' appear dark
owing to the reduced efficiency of convective energy transport and hence lower
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Figure 4. Intensity picture and horizontal cuts at (T) == 1 of verti-
cal magnetic field, temperature and vertical velocity (clockwise, from
top left). Light and dark shades indicate higher and lower values, re-
spectively. The V z plot shows granular upflows shaded in light grey
separated by intergranular downflow lanes shown in dark shades. In
the B, plot, the 'meso-scale' network of strong sheet- and pore-like
magnetic field concentrations is shown in white.
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Figure 5. Statistical properties of a layer of 100 km thickness around
(7) == 1. Top panel: Probability distribution function (PDF) for IBI,
signed with vertical orientation. Bottom panels: correlation diagrams
(joint PDFs); the grey-scaling shows the probability on a logarithmic
scale. theta(B) is the inclination angle of B with respect to the hori-
zontal.
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temperature at optical depth unity. In the thin sheets, lateral heating effects in
combination with the depression of the (7) == 1 level lead to a brightening with
respect to the surrounding downflow regions. The larger magnetic elements re-
veal internal small-scale structure with bright hot upflows in regions of reduced
field strength. The network of magnetic structures is organized on a 'meso-scale'
which typically comprises 4-6 granules. While this magnetic pattern is rather
stable (it evolves on a time scale much larger than the granule lifetime), the
small-scale pattern of the field concentrations is highly time-dependent, with
magnetic flux being constantly redistributed within the magnetic network. Fig.
5 shows some statistical properties of a layer of 100 km thickness around (7) == 1
corresponding to the snapshot shown in Fig. 4. The probability distribution
function (PDF) for the field strength (Fig. 5, top panel) reveals two compo-
nents: a weak-field component with an approximately exponential distribution,
occupying most of the volume considered, and a gaussian component of strong
upward-directed field with a peak at 1400 G, representing the pore- and sheet-
like field concentrations. The correlation diagram of magnetic field strength and
inclination angle of B with respect to the horizontal plane (Fig. 5, bottom right
panel) shows that almost all the field with a field strength exceeding 1000 G is
vertical. The orientation of weak fields is more widely distributed, but a clear
trend towards a horizontal orientation can be observed. The bottom-left panel
of Fig. 5 shows the influence of strong fields on fluid motions: while up- and
downflows with velocities up to 7 km/s (the maximum is reached in downflows)
can be observed in weak-field regions, the velocity amplitudes are significantly
reduced in the presence of strong fields. However, motions are not completely
supressed and downflows prevail inside flux concentrations.

4. Outlook

The first results of our new code look promising. They are in agreement with
the basic picture of solar magnetoconvection obtained by previous simulations,
but the closed-box boundary conditions and the grey radiative transfer must be
regarded as unsatisfactory over-simplifications. Therefore the next steps of our
project will be the development of open vertical boundaries and the use of our
implementation of the non-grey radiative transfer.

5. Discussion

STEPIEN: Do you identify regions of the strong magnetic field obtained in the
simulations with pores?
VOGLER: Based on the typical size of 800-1000 km of these structures, one
could identify them with micro pores. A detailed comparison with observations
remains to be done, however.

TITLE: On the sun the luminosity does not drop in plage? What do you predict?
VOGLER: In principle the net effect of magnetic fields on luminosity should
depend on the size distribution of magnetic structures. However, in our simula-
tion we prescribe the total energy transported across the simulated layers, so I
cannot make a statement about plage luminosity based on this simulation.
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