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Introduction. This paper is devoted to the determining of the irreducible linear
representations of the generalized symmetric group B™ (elsewhere written as C^Sn,
Cm \ Sn or G(m, 1, n)) by considering the conjugacy classes of B™ and then constructing
the same number of inequivalent irreducible linear representations of fl™. These have
previously been determined by Kerber [2, Section 5] using Clifford's theory applied to
wreath products.

An independent approach is given here which does not use Clifford's theory, and
some of the results of Kerber [2], Puttaswamaiah [4] and Osima [3] are obtained in a
much easier and more elementary way. The analogous problem of determining the
irreducible projective representations of the generalized symmetric group has been
treated in [6].

Elementary knowledge of representation theory is assumed. The symbol C* will
denote the multiplicative group of non-zero complex numbers, N the set of natural
numbers and N* = N U {0}.

2. The group B™ and its conjugacy classes. A set of generators and relations for B™
is given by

B? = {ru . . . , rn : r? = 1 = C , / = 1, . . . , n - 1; (r,r,+1)
3 = 1, i = 1, . . . , n - 2;

(rn-irn)
2 = (rnrn_j)2, far,)2 = 1, i, j = 1, . . . , n, j # i, i + 1}

(see Coxeter [1]).
We may identify r, (i = 1 , . . . , n — 1) with the transposition (i, i + 1) and therefore

the group generated by ru . . ., rn_x is the symmetric group Sn.
The generator rn may be identified with the mapping

defined by

/ -* /» /= 1. • • • ,n-l and «-»§«,

where £ is some primitive mth root of unity.
Consequently an element

r,. . . rn_!rnrn_i. . . rh i = 1, . . . , n - 1

corresponds to the mapping
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denned by

j-*j,j = l, • • • , i-1, i + 1, • • • ,n and i - » l f i .

An arbitrary element a e fl™ may be expressed uniquely as the product of disjoint
cycles a = 6X. . . 0,, where

bn bi2 . . . bitj
i n b i 2 %kt2bi3 . . . ^k<"bi

by e {I, . . . , n}, kjj e { 1 , . . . , m} and tt is the length of the cycle 0,, i = l, . . . , t. (See
Read [5] for more details.)

DEFINITION 2.1. Let a = 8X. .. 6, as above. Define /(#,-) = E ktj and put f{o) =

E /(0,)- Let ars(a) denote the number of cycles 0, of a such that /(0,) = r(modm),
1=1

l ^ r ^ m , l^s^n. Then the m x n matrix (flre(a)) is called the type of a, and will be
written as type(cr).

LEMMA 2.2. Two elements a and a' of B™ are conjugate if and only if type(a) =
type(a').

Proof. See Kerber [2, 3.7].

LEMMA 2.3. Let tt e M* and let p(t() be the number of partitions of t( if f, e N and
p(0) = 1. Then the number of conjugacy classes of B™ is given by

m

where the summation is taken over all the m-tuples (tx, . .., tm) such that E U = n.
;=i

Proof. We prove the lemma by establishing a one-to-one correspondence between
the set of all the conjugacy classes of B™ and the set of all the m -partitions of n. By an
m-partition of n we mean an m-tuple (^(t^,... , n(tm)), tt e N* such that tx + . . . + tm -

n

n and each n(tj) is an w-tuple (an, . . . , ain), where a,7 e Î J* and E jatj = tt.

If a conjugacy class is of type(a(,-), we associate with it an m-partition given by
n

(^(^), . . . , n{tm)), where f, = E jay and n(t,) = (an,. .., ain). Clearly, this partition is

uniquely defined and conjugacy classes of different types correspond to different
m-partitions of n.

Conversely, let {n{tx),. .., n{tm)) be an m-partition of n, where n{tt) =
(an,..., ain). Then it can be easily seen that the set { l , . . . , n } can be uniquely

n

expressed as a disjoint union of E a*, subsets such that exactly E au of these subsets have j
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elements. On each of these subsets define a cyclic permutation as follows. For example, if
A = {bx, . . . , bj) is one of the subsets having/ elements, define

where k = 1 for the first ay subsets having j elements, k = 2 for the next a2j subsets having
j elements and so on. Let a be the product of all such cycles. Clearly type(a) = (a,-,). This
completes the proof.

3. Generalized Young subgroups and basic representations.

DEFINITION 3.1. Let (tl, . . . , tk) be a A>tuple such that tte {0, 1, . . . , n) and
tx +. . . +tk = n. We shall call (tx,...,tk) a permissible fc-tuple. Define po = 0 and

Pi = E tj, i = 1, . . . , k. If tj # 0, let B™ be the generalized symmetric group on the f,
7 = 1

symbols P = ( + 1 1 = 1 k

and let B™ = I, the trivial subgroup of B™.
The group B™ x B™ x . . . x B?k is called the generalized Young subgroup determined

by the A:-tuple (tu . . . , tk). We denote this group by B™h lk).

Let

o =

where blt . . . , bn e {1, . . . , « } and the A:, are positive integers. Define <p '• B™ —• Sn by

2

Then 0 is an epimorphism and it can be verified by induction on i that the kernel of <j> is
an abelian group generated by

{r,. . . rn_1rnrn_l. . . r, :i = 1, . . . , n).

The kernel of 0 is in fact the direct product of n cyclic groups each of order m generated
by r,. . . rn-xrnrn-x. . . rh i = 1 , . . . , n (respectively).

LEMMA 3.2. Let k^m and 0 = a : . . . ake fi™, , t ) , where a, e B™, i = 1, . . . , k.

Define
X(»,,...,rt)V°^ 5 »

vv/iere § « 5ome primitive m-th root of unity. Then
(0 X(tu...,tk) is an irreducible linear representation of B™h ,k) and

(") *f,, ,t)(-c)^ifCi '*)(*) for some xekeT(t> and for all geB™ unless
{tu ... ,tk) = {t[,... ,t'k) in which case this holds for all g e 5™\5(?, ,k).
(We shall call X(i,,...,tk) the basic linear representation of B™h ,ky)
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Proof, (i) Let o = ox... ok, a' = o[. . . o'keB^ ,k) such that CT,, a/efl,. , i
1, . . . , k. Then

[. . . oko'k)

Thus X(r,,...,rt) is a homomorphism from B™h . ^) into C*, which proves (i).
(ii) If (f!, . . . , tk) =£ (t[,. . . , 4) , let / be the least index such that t\ # th We may

assume, without any loss of generality, that f, < t\, that is, Pt (= P-. If g e B™ is such that
<f>(g)Pt = Pi, let j e Pl\Pi; then (p(g)(j) e P,, l*i, and we define

/ l 2 . . . y . . . «N = / / N

\1 2 ... % ... n) V&r
If 0 ( g ) ^ =?«= /̂  then there exists / e /»• <= P,' such tha t <p(g)(j) eP, 1^1^ k, l¥=i, and for
t h i s ; we define x as above . In each case X(t\ rk)(x) = %', but

&

If ( f j , . . . , t'k) = (tu . . . ,tk) and g e B™\B™1 ,k) then there exists at least one index
i, l^i^k, and an integer jePt such that (f>(g)(j) ePh l^i. Once again we define
x e ker (/> as above for this particular /. Clearly

*fi, rk)(x) = ll± % - X«\ rk)(x),

which completes the proof.

4. Representations of B™. It is well known that the number of inequivalent
irreducible linear representations (henceforth abbreviated as i.l.r.) of a Young subgroup
5(/l ,t) = S, x . . . x S/Jt is equal to p(ti). . . p(tk). This enables us to state our main
result.

THEOREM 4.1. A full set of inequivalent i.l.r. of B™ is given by

{(*(„ ,.,)®P)t*-},
where (ji, . .. , tm) ranges over all permissible m-tuples, X(t, im) is the basic linear
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representation of B^ ,m) and P is an i.l.r. of B™1;...,,m) lifted from an i.l.r. P of 5((l ,m),
w/iere P ranges over a complete set of inequivalent i.l.r of 5(ri_ (ni) and f denotes
induction of a representation.

Proof. It is clear from Lemma 2.3 that the cardinality of the above set is equal to the
number of inequivalent i.l.r. of B™.

Let (*! , . . . , tm) and (t[, . . . , t'm) be two arbitrary permissible m-tuples and #(,,,...,,„,)>
X(t\ t'm) the basic linear representations of B™, ,m) and B™., ,m) respectively. Let P and
P ' be two i.l.r. of Bft tm) and B£. ,m) lifted from the i.l.r. P and P' of S(Il ,m)

and 5(r', ,'m) respectively. If \p, xp', rp and ip' denote the characters of P , P ' , P and P'
respectively, then we prove that

((*<„ ,„)*) t fi^1, 0f(,-, »'m)̂ ') t B?)B- = 0
unless (ft, . . . , fm) = (t[,. . . , t'm) and ip = ip' in which case it is equal to 1. This will
complete the proof of the theorem.

By Frobenius' reciprocity theorem and Mackey's subgroup theorem, the above inner
product is equal to

* *') t B?) | flj, ,J)BTll ,m)

* ,-m)V>r i Hx) t Bo",....,,m))^ ,m)

where Hx = B^.^Ox^B™^ ,m)x and x ranges over all representative elements of a
double coset decomposition of B™ relative to the generalized Young subgroups B™, , )

& ,.„)•

We claim that each of the terms in the above summation is zero except in the case
noted earlier. For, if for some x

(X(tl ,m)V0 I Hx and (xo\ .m^'Y 4 Hx

have an irreducible component in common then so do

and (x^ ,-m)V')* i k e r <t>-
(Note that ker <p c B ^ ,m)nx~lB^ t,jc for all x.)

But in this case these representations are multiples of

*&, < m ) l t f and xU-...?m) I ke r ̂
respectively. Both of these representations being irreducible, we get

*(», O = *(<'. , 'm )onker0.

By Lemma 3.2, this implies that

(tu...,tm) = (t[,...,t'm) and xeB^ ,m).
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Thus the possibility of getting a nonzero term arises from the inner product

which is equal to

1

*<?1 ' J ,
1

7, ,
VI""1 '

(since xih ,m){°)%(h >m)(°) = IZ(«, rm)(C T)l2 = 1)

and this is nonzero if and only if ip = ip', in which case it is equal to 1 because xp and ip'
are both irreducible.
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