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Abstract

It is known that the transport capacity of a dense wireless ad hoc network with n nodes
scales like

√
n. We show that the transport capacity divided by

√
n approaches a

nonrandom limit with probability 1 when the nodes are uniformly distributed on the
unit square. To show the existence of the limit, we prove that the transport capacity
under the protocol model is a subadditive Euclidean functional and use the machinery of
subadditive functions in the spirit of Steele.

Keywords: Subadditive Euclidean functional; transport capacity; ad hoc network

2010 Mathematics Subject Classification: Primary 60D05
Secondary 46N30; 47N30

1. Introduction

Consider a wireless network of n radio transceivers (nodes) Xn = {x1, . . . , xn} distributed
uniformly and independently on the unit square (xi is used to identify both the node and its
location). Since the medium is wireless, the signal transmitted by any node effectively spreads
throughout the complete space and interferes with other concurrent transmissions. We use the
protocol model introduced by Gupta and Kumar [3] to model the connectivity between a source
and destination in the presence of interference.

Protocol model. A node xi can transmit information to a node xj if and only if the closed
disk centered around the receiver xj with radius β‖xi − xj‖, β > 1, has no other transmitter.
This is to make sure that there are no interferers close to the receiver. If the set of transmitters
is denoted by S and the receivers by R, and S ∩ R = ∅, then, by the protocol model, if

B(xj , β‖xi − xj‖) ∩ S = {xi} (1)

then the transmitter xi can communicate with the receiver xj . Here B(x, r) denotes a closed
disc of radius r centered at x. Also, we allow each transmitter to communicate with only one
receiver, i.e. broadcasting is not permitted. A node can either transmit or receive at a given
instant but not both.

We can immediately observe that one can choose transmitter–receiver pairs in numerous
ways such that (1) holds for all these pairs. So a metric called the transport capacity (TC) was
introduced in [3] and the transmitter–receiver pairs are chosen so as to maximize the TC. The
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TC of the node set Xn using single hop is defined as

T(Xn) = max
r∈RS
S⊆Xn

∑
x∈S

‖x − r(x)‖1(x → r(x), S), (2)

where RS is the set of all injective functions from S to R. Here 1(x → r(x), S) is equal
to 1 if (1) is satisfied for the transmitter x and receiver r(x) when the transmitting set is S,

and 0 otherwise. We showed in [2] that (2) is equivalent to the multi-hop transport capacity
where information can be transmitted using multiple hops between a source and destination.
While it has been proved that the TC scales like

√
n [1], [3], the question of whether the limit

limn→∞ T(Xn)/
√

n exists remains open. In this paper we prove the following.

Theorem 1. Let Xn = {x1, x2, . . . , xn} denote n nodes independently uniformly distributed in
[0, 1]2. For the transport capacity, we have

lim
n→∞

T(Xn)√
n

= D2 (3)

with probability 1 and

P(|T(Xn) − E T(Xn)| ≥ t) ≤ C exp

(
−C1

t4

n

)
, (4)

where D2, C, and C1 are positive constants that do not depend on n.

The technique in this paper can be easily extended to show that

lim
n→∞T(Xn)n

−(d−1)/d = Dd almost surely

when the nodes xi are independently uniformly distributed in [0, 1]2, and Dd is a constant
depending only on β and the dimension d .

2. Proof

We prove Theorem 1 by showing that T is a subadditive Euclidean functional and, hence,
the limit in (3) follows from the results of Steele [6] and Rhee [5], which we state here for
convenience.

Theorem 2. ([6].) Suppose that T is a monotone, subadditive Euclidean functional on R
d with

finite variance. Then there is a constant δ(T) such that

lim
n→∞

T(Xn)

n(d−1)/d
= δ(T).

Theorem 3. ([5].) If, in addition to the conditions in Theorem 2, for any finite subsets F and
G of [0, 1]d , there exists a constant C2 such that

T(F ∪ G) − T(F ) ≤ C2|G|(d−1)/d ,

where |G| is the cardinality of the set G, then, for some constants C3 and C4,

P(|T(Xn) − E T(Xn)| ≥ t) ≤ C3 exp

(
−C4t

2d/(d−1)

n

)
.
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We will use (x → y) to denote the transmission with x as the transmitter and y as the
receiver.

Lemma 1. For a transmitter receiver pair (x, y), define

D(x, y) =
⋃

z∈line(x,y)

B

(
z,

β − 1

2
‖x − y‖

)
,

i.e. the (β − 1)‖x − y‖/2 neighborhood of the line joiningx andy. If (x1 → y1)and (x2 → y2)

are two pairs of successful transmissions, then D(x1, y1) ∩ D(x2, y2) = ∅.

Proof. The proof of the above is identical to the proof of Theorem 3.3 of [4].

Lemma 1 indicates that each successful transmission occupies a certain area of the Euclidean
plane which is disjoint with the corresponding region of other successful transmissions. Let
(xi → yi), 1 ≤ i ≤ m, be a set of transmissions in a square of area A. So from Lemma 1 we
have the following necessary condition for all the transmissions to be successful:

π

4

(β − 1)2

4

m∑
i=1

‖xi − yi‖2 < A. (5)

For the above necessary condition, we use the fact that a ball of radius (β − 1)‖xi − yi‖/2
around each receiver (for a successful transmission) should be disjoint from each other. The
factor π/4 arises because a receiver may be located on the vertex of the square A. Using (5)
and the Cauchy–Schwarz inequality, it was first shown in [4] that the transport capacity of n

nodes in a square of area A is upper bounded by

T(Xn) < c
√

An. (6)

Lemma 2. Consider a square A = [0, t]2. Consider the scenario in which transmitters in
A can only communicate with receivers outside the square A. If we restrict the maximum
transmitter–receiver distance to be c1t (to prevent the case where a single transmitter in A can
communicate with a receiver at an arbitrary distance located outside A), then the transport
capacity in this setup is upper bounded by c2t .

Proof. See Figure 1. For all the successful transmitter–receiver pairs (x, y), the regions
D(x, y) are disjoint. In our case the transmitters are inside the square [0, t]2. Let the contending
transmitter receiver distances be {r1, r2, . . . , rn}. Since the receivers are outside the box and
each transmission cuts the boundary, we have

2
β − 1

2
(r1 + r2 + · · · + rn) ≤ 4t.

Hence, the transport capacity in this case is upper bounded by max{4t/(β − 1), c1t}.
Lemma 3. Consider a square A = [0, t]2, and let Xn = {x1, . . . , xn} ⊂ A denote a set of n

nodes. Divide A into m2 squares of equal sides with length t/m, and denote the subsquares by
A1, . . . , Am2 . Then

T(Xn) ≤
m2∑
i=1

T(Xn ∩ Ai) + Cmt.
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Figure 1: Illustration of the proof of Lemma 2. The sausage regions represent D(x, y) for different
transmitter–receiver pairs.
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Figure 2: Proof technique for Lemma 3. The dark hashed circles correspond to (Ai → Ai) and the TC
contribution can be bounded by T(Ai). The unhashed circles correspond to (Ai → Ac

i ). However, these
cannot contribute much to the TC by Lemma 2. The maximum contribution from these is cm2t/m = cmt .
Observe that when the transmitter–receiver distance is greater than a = 2

√
2t/(m(β − 1)), there can be

a maximum of one transmission per square (as in the top-right comb circle).

Proof. We focus on a single square Ai . There are three types of transmissions, (Ai → Ai),
(Ai → Ac

i ), and (Ac
i → Ai). See Figure 2. The contribution of transmissions from Ai into

Ai towards the total distance that the information is transmitted can be upper bounded by
T(Xn ∩ Ai). Hence, the total contribution by (Ai → Ai), 1 ≤ i ≤ m2, is upper bounded

by
∑m2

i=1 T(Xn ∩ Ai). The only transmissions which involve Ai to be accounted for are
(Ai → Ac

i ) and (Ac
i → Ai). The contribution of these transmissions towards the total distance

that information propagates is denoted by T̃ , and T̃ upper bounds the TC. Let F(Ak) denote a
set of feasible transmitters in square Ak with receivers in Ac

k . By the sphere-packing bound (5)
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we have
m2∑
k=1

∑
x∈F(Ak)

‖x − r(x)‖2 ≤ Ct2.

Let bk = ∑
x∈F(Ak)

‖x − r(x)‖. So we require to bound T̃ = sup{∑m2

k=1 bk}, where the supre-
mum is taken over all the feasible sets of transmissions. Let the number of squares with all of
their transmission distances less than a = 2

√
2t/(m(β − 1)) be η (so in each of these squares,

every transmitter chooses a receiver outside the square at a distance less than a). Denote this set
of squares by Ca ⊂ {1, . . . , m2}. So we have |Ca| = η and T̃ = sup{∑k∈Ca

bk + ∑
k∈Cc

a
bk},

where | · | denotes the cardinality of the set. Let Ak ∈ Cc
a . We then have |F(Ak)| = 1. Since

the maximum number of transmitters is m2 − η, we have
∑
k∈Cc

a

bk ≤ c1t
√

m2 − η.

For the other set Ca with transmitter–receiver distances less than a, by Lemma 2, the transport
capacity is upper bounded by ∑

k∈Ca

bk ≤ c2
t

m
η.

So we have
T̃ ≤ c1t

√
m2 − η + c2

t

m
η, 0 ≤ η ≤ m2.

The maximum value of the right-hand side for the given range of η is ctm, which concludes
the proof.

Proof of Theorem 1. We have the following conditions.

(A1) T(aXn) = aT(Xn) for all a > 0. This follows from the definition.

(A2) T(Xn + x) = T(Xn) for all x ∈ R
2, where Xn + x = {x1 + x, x2 + x, . . . , xn + x}. This

follows from the definition.

(A3) T(Xn ∪ {x}) ≥ T(Xn), since the supremum in (2) is taken over a bigger set (we may just
neglect the newly added point).

(A4) Finite variance: var T(Xn) < ∞, follows from (6).

(A5) For F, G ⊂ [0, 1]2 and F , G finite (observe that F and G need not be disjoint), we have

T(F ∪ G) − T(G) < c
√|F |,

where c is a constant that does not depend on F and G. The transmissions can be
partitioned into (G → G), (F → F), (G → F), and (F → G). The contribution
of the transmission (G → G) to TC can be upper bounded by T(G). Observe that the
maximum cardinality of the remaining transmissions can be |F |. So we have

T(F ∪ G) < T(G) + c
√|F |.

Conditions (A1), (A2), (A3), and (A4) indicate that T is a monotone, subadditive Euclidean
functional with finite variance. Hence, (3) follows from Theorem 2, and (4) follows from
Theorem 3 and (A5).
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Lemma 4. The limit D2 in Theorem 1 is positive (i.e. D2 > 0) when the nodes are uniformly
i.i.d. on the unit square.

Proof. We will prove that E T(Xn) > C
√

n for some C > 0. Then D2 > 0 follows from (4).
Consider a tessellation of the unit square by subsquares of side length 1/

√
n. Each subsquare

is denoted by si,j , where i represents the row number and j represents the column number.
Each subsquare might have a point (even more than one) or none. Let the transmitter set be

S = {x : x ∈ Xn ∩ skδ,lδ and ‖x − (kδ, lδ)‖ ≤ ‖y − (kδ, lδ)‖
for all y ∈ Xn ∩ skδ,lδ, k, l ∈ Z

+},
where δ = 
√10β + 4� (alternatively, S can formed by choosing a node at random from each
subsquare). For each transmitter, choose a node (if it exists) in the second right adjacent cell
as its receiver. So all the transmitter–receiver pairs are successful by our choice of transmitter–
receiver pairs. So we have

T(Xn) >
1√
n

∑
S

1(skδ,lδ is not empty)1(skδ+2,lδ is not empty).

Taking the expectation we have

E T(Xn) >

√
n

δ2 P(s0,0 is not empty, s2,0 is not empty)

>

√
n

δ2 [1 − P(s0,0 is empty) − P(s2,0 is empty)]

=
√

n

δ2

[
1 − 2

(
1 − 1

n

)n]
.

So we have

D2 = lim
n→∞

E T(Xn)√
n

>
1 − 2e−1

δ2 > 0.

3. Conclusion

In this paper we have shown that the transport capacity of n nodes distributed uniformly on a
unit square, when normalized by

√
n, approaches a nonrandom limit. We have used the theory

of subadditive Euclidean functionals to show the existence of the limit and a concentration
inequality of the TC around its mean.
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