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Abstract
Measuring inequalities in a multidimensional framework is a challenging problem, which is common to most field
of science and engineering. Nevertheless, despite the enormous amount of researches illustrating the fields of appli-
cation of inequality indices, and of the Gini index in particular, very few consider the case of a multidimensional
variable. In this paper, we consider in some details a new inequality index, based on the Fourier transform, that can
be fruitfully applied to measure the degree of inhomogeneity of multivariate probability distributions. This index
exhibits a number of interesting properties that make it very promising in quantifying the degree of inequality in
datasets of complex and multifaceted social phenomena.

1. Introduction

Among other approaches, the description of social phenomena in a multi-agent system can be success-
fully obtained by resorting to statistical physics, and, in particular, to methods borrowed from kinetic
theory of rarefied gases. The main goal of the mathematical modelling is to construct master equations
of Boltzmann type, usually referred to as kinetic equations, suitable to describe the time-evolution of
some social characteristic of the agents, like wealth, opinion, knowledge or others [11, 28, 29].

The building block of kinetic theory is represented by the details of microscopic interactions, which,
similarly to binary interactions between particles velocities in the classical kinetic theory of rarefied
gases, describe the elementary variation law of the selected agent’s traits. Then, the kinetic description
consequent to the microscopic law of variation is able to capture both the time evolution of the num-
ber density and the steady profile, an important equilibrium distribution that should resume at best the
characteristics of the phenomenon under investigation.

Once the emergent steady profile relative to a social phenomenon has been identified, various features
allow to have a more precise measurement of its social characteristics, to better understand in this way
the macroscopic effect of the microscopic behavioural interactions of agents.

Among the various features that can be introduced to measure properties of equilibria emerging from
kinetic equations modelling social phenomena, a relevant importance has been assumed by inequality
indices, quantitative scores that take values in the unit interval, with the zero score characterising perfect
equality.

To better clarify the point, we refer to a classical example provided by the kinetic description of
wealth distribution in a western society. Among the kinetic models introduced in recent years to study
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2 G. Toscani

the evolution of wealth distribution in a multi-agent society [29], a Fokker–Planck type equation assumed
a leading role. This equation, that reads

∂f

∂t
= σ

2

∂2

∂w2

(
w2f

)+ λ
∂

∂w
((w − 1)f ) , (1.1)

describes the evolution of the wealth distribution density f (w, t) towards a steady state.
In equation (1.1), λ and σ denote two positive constants related to essential properties of the trade

rules of the agents, linked to the saving propensity and, respectively, the risk. Equation (1.1) has been
first derived by Bouchaud and Mezard [9] through a mean field limit procedure applied to a stochastic
dynamical equation for the wealth density. The same equation was subsequently obtained by the present
authors with Cordier and Pareschi [13] via an asymptotic procedure from a Boltzmann-type kinetic
model for trading agents.

The unique stationary solution of unit mass of (1.1) is given by the inverse Gamma distribution
[9, 13]

f∞(w) = (μ − 1)μ

�(μ)

exp
(−μ−1

w

)
w1+μ

, (1.2)

where

μ = 1 + 2
λ

σ
> 1.

This stationary distribution, as predicted by the analysis of the italian economist Vilfredo Pareto [31],
exhibits a power-law tail for large values of the wealth variable.

In this context, the classical feature is to quantify the degree of economic inequality contained in
the wealth distribution associated to this equilibrium shape in terms of the parameters λ and σ , a quan-
tification that is usually done by resorting to the Gini index, a well-known measure of inequality first
proposed by the Italian statistician Corrado Gini more than a century ago [20, 21].

In economics, inequality indices quantify the socio-economic divergence of a given wealth measure
from the state of perfect equality. Their relevance is certified by the fact that, in addition to Gini index,
many other inequality indices have been proposed to classify wealth measures [8, 14, 15, 23].

However, as recently discussed in ref. [7, 17, 18], the challenge of measuring the statistical hetero-
geneity of measures is not limited to economics, but arises in most fields of science and engineering,
and it is one of the fundamental features of data analysis.

A marked limitation in this type of analysis is that the inequality indices mainly used in the literature
work well for one-dimensional features, while their extension to many dimensions presents several diffi-
culties. This is in contrast with the fact that in several problems arising from socio-economic phenomena
the prevailing interest is related to understanding multidimensional phenomena.

Remaining in the field of the kinetic description of socio-economic phenomena, we quote here some
examples in which the social aspects of the society under study are intimately connected and have been
treated resorting to a kinetic framework that naturally give rise to multivariate equilibria. The first one
refers a kinetic equation for the evolution of the probability distribution of two goods among a huge
population of agents [33], where binary exchanges are characterised by Cobb–Douglas utility functions
and the Edgeworth box for the description of the common exchange area in which utility is increasing
for both agents. This leads to a drift-diffusion equation of Fokker–Planck type in two dimensions for the
joint distribution of the two goods.

The second example is related to a deep understanding of the joint action of knowledge and wealth
in the formation of stationary wealth profiles [30]. There, the underlying Fokker–Planck equation drives
the system towards a steady profile which depends of both the knowledge and wealth variables.

The last example refers to a fully coupled mathematical model in which knowledge and social status
of individuals in a western society influence each other [16]. Also in this case, one has to deal with
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a bivariate equilibrium profile from which one would extract global informations without resorting to
one-dimensional inequality measures applied to the marginal distributions.

Measuring inequalities in a multidimensional framework is a question which is nowadays a priority
also in the European agenda [3, 4, 25]. Indeed, as outlined in introduction to this action, ‘the pursuit of
a more equal and fairer Europe requires extensive knowledge on prevailing inequalities across multiple
life domains. Inequality is a complex and multifaceted phenomenon, and every attempt to assess mul-
tidimensional inequalities comes with a number of conceptual and empirical challenges. For example,
inequality and poverty do not necessarily move in the same direction: low poverty levels in a society
may be combined with high inequality due to large differences between those at the top and those in
the middle of the distribution. Against this backdrop, the EU Multidimensional Inequality Monitoring
Framework aims to contribute to the measurement, monitoring and analysis of a wide range of different
aspects of inequality’.1

Currently, the literature on multidimensional inequality measures is vast, as can be seen by taking
a look at the extensive references of some recent contributions [1, 5]. However, as listed below, most
of these approaches to multidimensional indices are based on classical arguments, derived by classical
economical indices.

An indispensable tool to build inequality indices is the Lorenz function and its graphical representa-
tion, the Lorenz curve [26]. The Lorenz curve plots the percentage of total income earned by the various
sectors of the population, ordered by the increasing size of their incomes. The Lorenz curve is typically
represented as a curve in the unit square of opposite vertices in the origin of the axes and the point (1, 1),
starting from the origin and ending at the point (1, 1).

The diagonal of the square exiting the origin is the line of perfect equality, representing a situation in
which all individuals have the same income. Since the diagonal is the line of perfect equality, the closer
the Lorenz curve is to the diagonal, the more equal is the distribution of income.

This idea of closeness between the line of perfect equality and the Lorenz curve can be expressed in
many ways, each of which gives rise to a possible measure of inequality. Thus, starting from the Lorenz
curve, several indices of inequality can be defined, including the Gini index [20, 21]. Various indices
were obtained by looking at the maximal distance between the line of perfect equality and the Lorenz
curve, either horizontally or vertically, or alternatively parallel to the other diagonal of the unit square
[12, 17].

Starting from this framework, different multivariate indices have been proposed in the pertinent liter-
ature. Most of them are based on the notion of Lorenz zonoid [24], a multi-dimensional generalisation
of the Lorenz curve.

Despite the enormous amount of research illustrating the fields of application in social sciences,
the use of arguments based on Fourier transforms appears rather limited. Among the (few) interesting
examples, we quote the contribution [27], where Fourier series are introduced as a tool for characterising
the existence of Nash equilibria in two-dimensional spatial majority rule voting games with large elec-
torates. In particular, although the Gini index can be easily expressed in terms of the Fourier transform,
its expression in Fourier seems not considered at all in applications.

The importance of expressing inequality measures in terms of the Fourier transform of measures
has been recently outlined in ref. [35], not only by expressing well-known one-dimensional inequality
measures in terms of the Fourier transform but also introducing and studying a novel inequality index
directly expressed in terms of the Fourier transform.

In the rest of the paper, we will show how this new inequality measure can be easily generalised
to cover multivariate probability distributions, by enlightening its main properties. We restrict the
forthcoming analysis to theoretical considerations only, referring the interested reader to the related
contribution [22], where applications in the field of multivariate statistics are presented.

1https://composite-indicators.jrc.ec.europa.eu/multidimensional-inequality
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2. A new inequality index for multivariate distributions

The goal of this section is to present in some details a novel inequality index, which can be applied
to measure the heterogeneity of multivariate distributions [22]. This index is obtained by suitably
generalising a new one-dimensional index introduced in ref. [35].

In what follows, for a given 1 ≤ n ∈N, we denote by Ps(Rn), s ≥ 1, the class of all probability measures
F = F(x) on the Borel subsets of Rn such that

ms(F) =
∫
R

|x|sdF(x) < +∞,

where, for a given column vector x of dimension n, xT = (x1, x2, . . . , xn) is a point in R
n, and |x| = √

xTx
is the modulus of the vector, i.e. the distance of the point x from the origin of the cartesian axes.

Further, we denote by P̃s(Rn) the class of probability measures F ∈ Ps(Rn) which possess a mean
value vector m with positive components mk, k = 1, 2, . . . , n, i.e.

mk(F) =
∫
Rn

xk dF(x) > 0, k = 1, 2, . . . , n,

and with P+
s (Rn) the subset of probability measures F ∈ Ps(Rn) such that F(x) = 0 if at least one

component xk ≤ 0, k = 1, 2, . . . , n.
On the set P̃s(Rn) of probability measures, we consider the set F n

s of their n-dimensional Fourier
transforms, where, for F = F(x) ∈ P̃s(Rn),

f̂ (ξ ) =
∫
Rn

e−ixT ξ dF(x). (2.1)

In equation (2.1), we denoted by ξ the n-dimensional column vector of components ξk, k = 1, 2, . . . , n.
When n = 1, in alternative to well-known inequality indices, for a given distribution F ∈ Ps(R), the

following measure of heterogeneity was proposed in ref. [35]

T(F) = 1

2m
sup
ξ∈R

∣∣∣∣∣ d̂f (ξ )

dξ

∣∣∣∣
ξ=0

f̂ (ξ ) − d̂f (ξ )

dξ

∣∣∣∣∣ . (2.2)

In definition (2.2), m > 0 denotes the mean value of the distribution F.
Apparently, the index (2.2) is not clearly connected with others most used indices, including the well-

known Gini index [20, 21], strongly related to Lorenz curve [17]. However, looking at Gini index from
the Fourier transform side, an interesting relationship appears.

Let us consider a probability measure F ∈ P+
s (R), of mean value m > 0. As shown in ref. [35], the

classical Gini index

G(F) = 1 − 1

m

∫
R+

(1 − F(x))2 dx. (2.3)

can be expressed in terms of one-dimensional Fourier transform as follows:

G(F) = 1 − 1

2πm

∫
R

|1 − f̂ (ξ )|2

|ξ |2
dξ . (2.4)

Expression (2.4) clarifies that the Fourier expression of the classical Gini index is a function of a certain
distance between probability measures F and G [34], namely

d2(F, G) =
∫
R

|̂f (ξ ) − ĝ(ξ )|2

|ξ |2
dξ .

Resorting to this analogy, in ref. [35], new inequality measures have been introduced, some of them
related to the supremum distance

d∞(F, G) = sup
ξ∈R

|̂f (ξ ) − ĝ(ξ )|
|ξ | . (2.5)
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This type of metrics have been extensively studied in connection with the convergence to equilibrium
of kinetic equations, as alternatives to more classical entropies [10, 19, 34].

Let X be a random variable, of mean value m > 0 characterised by a differentiable probability measure
F ∈ P+

s (R), and denote by f (x) = dF(x)/dx its probability density. In this case, in addition to the classic
expression (2.3), Gini index can be expressed in alternative forms, one of which is particularly interesting
to enlighten contact points with the T-index defined by (2.2). This alternative expression reads

G(F) = 2
∫
R+

(1 − F(x))
(

f (x) − x

m
f (x)

)
dx. (2.6)

Indeed, ∫
R+

(1 − F(x)f (x) dx = −1

2

∫
R+

d

dx
(1 − F(x)2 dx = −1

2
(1 − F(x)2

∣∣∞
0

= 1

2
,

while, integrating by parts∫
R+

(1 − F(x)f (x)
x

m
dx = −1

2

∫
R+

x

m

d

dx
(1 − F(x)2 dx = 1

2m

∫
R+

(1 − F(x)2 dx.

Consequently, if we set H(x) = 1 − F(x), thanks to Plancherel identity we obtain

G(F) =2
∫
R+

(1 − F(x))
(

f (x) − x

m
f (x)

)
dx =

1

mπ

∫
R

Ĥ(ξ )

(
d̂f (ξ )

dξ

∣∣∣∣
ξ=0

f̂ (ξ ) − d̂f (ξ )

dξ

)
, (2.7)

where Ĥ(ξ ) is the complex conjugate of the Fourier transform of 1 − F(x), given by

H(ξ ) = 1 − f̂ (ξ )

iξ
.

Consequently, the value of the Gini index depends on the product of two different quantities, working
in opposite directions. Indeed, according to (2.5), the term Ĥ(ξ ) quantifies the distance of f̂ (ξ ) from the
state of perfect inequality, represented by the value 1, the Fourier transform of a Dirac delta function
located in x = 0. On the contrary, the term

d̂f (ξ )

dξ

∣∣∣∣
ξ=0

f̂ (ξ ) − d̂f (ξ )

dξ
,

that vanishes in correspondence to e−imξ , the Fourier transform of a Dirac delta function localised in
the mean value m of f (x), quantifies the distance of f̂ (ξ ) from the state of perfect equality. This clarifies
both the nonlinearity of Gini index and the advantages of the choice of the inequality index (2.2) as
alternative measure of the heterogeneity of the distribution. A further advantage is represented by the
possibility to easily extend the measure (2.2) to higher dimensions.

Following [22], we introduce on F n
s the multivariate inequality index Tn(F), expressed by the

formula

Tn(F) = 1

2|m| sup
ξ∈Rn

∣∣∇ f̂ (ξ = 0)̂f (ξ ) − ∇ f̂ (ξ )
∣∣ . (2.8)

In definition (2.8), ∇ f̂ (ξ ) denotes the gradient of the scalar function f̂ (ξ ). Indeed, F ∈ Ps(Rn) implies
that f̂ (ξ ) is continuously differentiable.

It is immediate to show that the functional Tn(F) is invariant with respect to the scaling (dilation)

F(x) → F(cx), c > 0.

However, as one can easily verify by direct inspection, in the multivariate setting the invariance holds
under a scaling transformation like AxT , where A is a square orthogonal matrix.
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Moreover, as shown in ref. [35] for the one-dimensional index, Tn is bounded from above by 1. Indeed,
since for any given F ∈ P+

s (Rn) it holds |̂f (ξ )| ≤ f̂ (0) = 1, and

∂̂f (ξ )

∂ξk

= −i
∫

(R+)n

xke
−ixξ dF(x), k = 1, 2, . . . , n,

one obtains the bound ∣∣∣∣ ∂̂f (ξ )

∂ξk

∣∣∣∣≤ ∫
(R+)n

xk

∣∣e−ixξ
∣∣ dF(x) = mk, (2.9)

which implies |∇ f̂ (ξ )| ≤ |∇ f̂ (ξ = 0)| = |m|.
Hence, by the triangular inequality one concludes that Tn(F) satisfies the usual bounds

0 ≤ Tn(F) ≤ 1, (2.10)
and Tn(F) = 0 if and only if f̂ (ξ ) satisfies the differential equations

∂̂f (ξ )

∂ξk

= ∂̂f (ξ )

∂ξk

∣∣∣∣
ξ=0

f̂ (ξ ), k = 1, 2, . . . , n,

with f̂ (0) = 1.
Thus, as in the one-dimensional case, Tn(F) vanishes if and only if f̂ (ξ ) = e−imξ , namely if f̂ (ξ ) is the

Fourier transform of a Dirac delta function located in the point x = mT(F). Note however that, even if
the functional F is defined in the whole class P̃s(Rn), the upper bound is lost if the probability measure
F /∈ P+

s (Rn), since in this case inequality (2.9) is no more valid.
It is remarkable that the functional Tn(F) defines a measure of inequality for multivariate densities

which satisfies most of the properties satisfied by its one-dimensional version T(F).
Proceeding as in the one-dimensional case, we can check that the upper bound in equation (2.10)

is reached simply by evaluating the value of the multivariate index in correspondence to a multivariate
random variable X taking only the two values a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in R

n with
probabilities 1 − p and, respectively p, where 0 < p < 1. As we will see in Section 3, this example clar-
ifies the advantages in measuring multidimensional heterogeneity by means of this new index, with
respect to the use of existing generalisations of Gini index to the multidimensional setting [5, 6]. For
this reason, we will give it into details.

The Fourier transform of the distribution F of X is given by
f̂ (ξ ) = (1 − p)e−iaξ + pe−ibξ . (2.11)

Consequently,
∇ f̂ (ξ ) = −i

[
(1 − p)aTe−iaξ + pbTe−ibξ

]
and

∇ f̂ (ξ = 0) = −i
[
(1 − p)aT + pbT

]
,

so that
∇ f̂ (ξ = 0)̂f (ξ ) − ∇ f̂ (ξ ) = i p(1 − p)(bT − aT)

[
e−iaξ − e−ibξ

]
.

Therefore,

Tn(F) = 1

2|m|p(1 − p)|bT − aT | sup
ξ∈Rn

∣∣e−iaξ − e−ibξ
∣∣=

1

2|m|p(1 − p)|bT − aT | sup
ξ∈Rn

∣∣1 − e−i(b−a)ξ
∣∣= 1

|m|p(1 − p)|bT − aT |.
Hence, expanding the value of the mean m we get the formula

Tn(F) = p(1 − p)|bT − aT |
|(1 − p)aT + pbT | . (2.12)
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This expression has a structure that does not differ from the one-dimensional formula computed in [35],
that reads

T(F) = T1(F) = p(1 − p)|b − a|
(1 − p)a + pb

.

In fact, when the mean is fixed, the value of the index does not depend on the positions of the two points
a and b, but only on their distance.

To show that formula (2.12) can be used to reach the upper bound, let us now consider the case in
which, for a given positive constant ε 
 1, p = ε, the point a = 0, while b = m/ε is located far away, but
leaving the mean value m unchanged. In this case, Tn(F) = 1 − ε, a value which, as ε → 0 converges to
the upper bound expressed by the value 1.

As its one-dimensional version, we can further show that the inequality index Tn satisfies a number
of properties [22].

Let F, G ∈ P̃s(Rn) two probability measures with the same mean value, say m. Then, for any given
τ ∈ (0, 1) it holds

Tn(τF + (1 − τ )G) ≤ τ Tn(F) + (1 − τ )Tn(G). (2.13)

Inequality (2.13) shows the convexity of the functional Tn on the set of probability measures with the
same mean.

Another interesting property characterising the inequality index Tn is linked to its behaviour when
evaluated on convolutions. Let X and Y independent multivariate random variables with probability
measures in P̃s(Rn), and mean values mX (respectively mY). Then if f̂ (ξ ) and ĝ(ξ ) denote the Fourier
transforms of their respective probability measures, the Fourier transform ĥ(ξ ) of the distribution
measure of the sum X + Y is equal to the product f̂ (ξ )̂g(ξ ).

Then, it can be shown that [22]

Tn(X + Y) ≤ |mX|
|mX + mY|Tn(X) + |mY|

|mX + mY|Tn(Y). (2.14)

It is remarkable that, at difference with the one-dimensional case, in equation (2.14), the sum of the
coefficients in front of the inequality indices Tn(X) and Tn(Y) is always greater that one. Nevertheless,
one can extract from (2.14) some useful consequences.

In particular, if X and Y belong to P+
s (Rn) and Y is a random variable that takes the value m with

positive components with probability 1 (so that ĝ(ξ ) = e−imξ and T(Y) = 0),

Tn(X + Y) = |mX|
|mX + mY |Tn(X) < Tn(X), (2.15)

since in this case the length of the sum of two vectors with positive components is bigger than the length
of both. It is remarkable that the same result holds even if only one component of the Y variable is bigger
than zero, while the others are not. The meaning of inequality (2.15) is clear. Since in this case X + Y
is nothing but X + m, which corresponds to adding constant values mk to Xk, for k = 1, 2, . . . , n, this
property asserts that adding a positive constant value to one or more components to each agent decreases
inequality.

Also, if the independent random variables X1 and X2 are distributed with the same law of X, so that
their mean values are equal, thanks to the scale property

Tn

(
X1 + X2

2

)
= Tn(X1 + X2) ≤ Tn(X), (2.16)

while the mean of (X1 + X2)/2 is equal to the mean of X.
A third important consequence of inequality (2.14) is related to the situation in which the random

variable Y = N represents a noise (of mean value m > 0) that is present when measuring the inequality
index of X. The classical choice is that the additive noise is represented by a Gaussian variable of mean
m and covariance matrix 
.
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8 G. Toscani

We have in this case

Tn(X + N) ≤ |mX|
|mX + m|Tn(X) + |m|

|mX + m|Tn( N). (2.17)

Hence, a precise upper bound can be obtained once we know the explicit value of the inequality index
Tn(N). This leads to the interesting question relative to the (explicit) evaluation of the inequality index
Tn of a random multivariate Gaussian variable.

The evaluation is direct. The Fourier transform of the distribution function F of a multivariate
Gaussian variable N = (N1, N2, . . . , Nn) in R

n, n > 1, is given by the expression

f̂ (ξ ) = exp

{
−imTξ − 1

2
ξ

T

 ξ

}
, (2.18)

where m is the vector of the mean values 〈Nk〉, and 
 is the n × n symmetric covariance matrix, with
elements

σij = 〈(Ni − mi)(Nj − mj)〉.
Let us first consider the simple case in which the covariance matrix 
 is diagonal, so that σij = 0 if i 
= j,
and let us set, for simplicity σii = σi. Then ξ

T

 ξ =∑n

k=1 σkξ
2
k , and

∇ f̂ (ξ ) = (−im − 
 ξ) f̂ (ξ ), (2.19)

where 
 ξ is the n-dimensional vector with components σkξk, k = 1, 2, . . . , n. Consequently, ∇ f̂ (ξ =
0) = −im, and

Tn(F) = 1

2|m| sup
ξ∈Rn

∣∣∣∣
 ξ exp

{
−imTξ − 1

2
ξ

T

 ξ

}∣∣∣∣=
1

2|m| sup
ξ∈Rn

∣∣∣∣
 ξ exp

{
−1

2
ξ

T

 ξ

}∣∣∣∣
By definition, ∣∣∣∣
 ξ exp

{
−1

2
ξ

T

 ξ

}∣∣∣∣2 =
(

n∑
k=1

σ 2
k ξ 2

k

)
exp

{
−

n∑
k=1

σkξ
2
k

}
.

On the other hand,
n∑

k=1

σ 2
k ξ 2

k ≤ max
1≤i≤n

σi

n∑
k=1

σkξ
2
k ,

while

sup
ξ∈Rn

(
n∑

k=1

σkξ
2
k

)
exp

{
−1

2

n∑
k=1

σkξ
2
k

}
= 1

e
.

Therefore, we conclude with the expression

Tn(F) = 1

2
√

e

1

|m|
√

max
1≤i≤n

σi. (2.20)

We outline that in the one-dimensional case the inequality index (2.20) coincides with a quantity propor-
tional to the coefficient of variation, with constant of proportionality equal to 1/(2

√
e). It is remarkable

that this constant is independent of the dimension.
The general case in which the covariance matrix is not diagonal can be easily treated in the same

way, by observing that, since the matrix 
 is symmetric and positive definite, we can diagonalise it. To
this extent, let us set ξ = Aη, where A is an orthogonal matrix, so that ATA = A−1A = I.

Then

ξ
T

 ξ = (Aη)T
Aη = ηTAT
A η.
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Now, let us choose the orthogonal matrix A in such a way that the matrix D = AT
A is diagonal, and
the elements λk on the diagonal, k = 1, 2, . . . , n, are the positive eigenvalues of the matrix 
.

In this case,
ξ

T

 ξ = ηTD η.

In addition,
mTξ = mTA η = (ATm)Tη,

where, since the matrix A is orthogonal,
(ATm)T(ATm) = mTAATm) = mTIm = mTm.

Moreover, the gradient of the Fourier transform, since the matrix 
 is symmetric, is expressed by formula
(2.19). Then, since the matrix A is orthogonal,

|
 ξ |2 = |
A η|2 = ∣∣AT
A η
∣∣2 = |D η|2 =

n∑
k=1

λ2
kη

2
k .

Now, taking the supremum over all values of ξ is the same as to take the supremum over η. Therefore,
for the multivariate Gaussian distribution, one obtains the expression

Tn(N) = 1

2
√

e

1

|m|
√

max
1≤i≤n

λi, (2.21)

where the λk’s are the positive eigenvalues of the covariance matrix of the multivariate Gaussian
distribution.

Going back to formula (2.17), in the presence of a additive noise represented by a Gaussian variable
of mean m and covariance matrix 
 one has the bound

Tn(X + N) ≤ |mX|
|mX + m|Tn(X) + 1

2
√

e|mX + m|
√

max
1≤i≤n

λi (2.22)

It is interesting to remark that formula (2.22) continues to hold in presence of a centred Gaussian random
noise of covariance matrix 
, and in this case

Tn(X + N) ≤ Tn(X) + 1

2
√

e|mX|
√

max
1≤i≤n

λi. (2.23)

3. About the Gini-type index for multivariate distributions

Sections 2 has been devoted to the definition of a new multivariate inequality index, to its main prop-
erties, and to its evaluation in correspondence to a multivariate Gaussian distribution. This analysis
takes a great advantage from the possibility to express the index in terms of a multidimensional Fourier
transform.

It is therefore fair to ask whether the use of the Fourier transform can also bring advantage in the
definition of a multivariate Gini index. As a matter of fact, the extension of the classical Gini index
to measure inequality in multivariate distributions has shown numerous attempts, as certified by the
references of the recent paper [6], in which the author is motivated by the objective of designing a
multidimensional Gini index of inequality, to quantify of standard of living, that would satisfy all of a
number of reasonable properties. This in reason of the fact that, as noticed in the introduction of [6],
many existing multidimensional inequality indices of Gini type proposed by economists from time to
time have remained elusive in this respect.

To better understand the difficulties that appear when trying to build a multidimensional generalisa-
tion of the Gini index, following the line considered in this paper, we will build a multivariate version
of the index obtained by resorting to its Fourier one-dimensional transform. Indeed, the Fourier expres-
sion of the one-dimensional Gini index considered in ref. [35] appears ready to be extended to higher
dimensions.
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As shown in Section 2, for any probability measure F ∈ P+
s (R) of mean value m > 0, Gini index has

a simple expression in Fourier transform, given by (2.4).
Considering that the value zero in equation (2.4) is obtained when f̂ (ξ ) = e−imξ , Gini index can be

fruitfully rewritten as

G(F) = 1

2πm

[∫
R

|1 − e−imξ |2

ξ 2
dξ −

∫
R

|1 − f̂ (ξ )|2

ξ 2
dξ

]
. (3.1)

Expression (3.1) can be easily extended to measure the inequality of a multivariate distribution F ∈
P+

s (Rn), n > 1 by setting

Gn(F) = μn

|m|
[∫

Rn

|1 − e−imξ |2

|ξ |n+1
dξ −

∫
Rn

|1 − f̂ (ξ )|2

|ξ |n+1
dξ

]
, (3.2)

where the constant μn is such that

1

μn

= 1

|m|
∫
Rn

|1 − e−imξ |2

|ξ |n+1
dξ . (3.3)

Evaluating the integral on the right-hand side by resorting to a n-dimensional spherical coordinate
system, one realises that the value of the constant μn does not depend on the vector m and equals

μn = �

(
n − 1

2
+ 1

)√
(2π )n−1,

where �(·) denotes as usual the Gamma function. Formula (3.2) is valid for all values of n ∈N, including
n = 1, that consistently gives μ1 = 1.

Resorting to (3.3), we can express the multivariate Gini-type index (3.2) in the (simpler) form

Gn(F) = 1 − μn

|m|
∫
Rn

|1 − f̂ (ξ )|2

|ξ |n+1
dξ . (3.4)

The same idea can be applied to recover an expression for a multivariate Pietra index [32, 35]. However,
despite their eventual theoretical interest, does not seem that this type of expressions, if compared to the
multivariate Tn index considered in this paper, share good properties.

The problems that appear when passing from the one-dimensional version (2.4) to its natural mul-
tivariate version (3.4) can be easily understood by evaluating the value of the Gini index Gn, n > 1, in
correspondence to the multivariate random variable X taking only two values, introduced in Section
2. This variable is characterised by the Fourier transform (2.11), so that, to compute the value of Gini
index, as expressed by formula (3.4), we need to evaluate the integral

In(F) = μn

|m|
∫
Rn

|1 − (1 − p)e−iaξ + pe−ibξ |2

|ξ |n+1
dξ ,

where |m| = |(1 − p)aT + pbT |. It is immediate to show that the integral In can be split into three
terms, i.e.

In(F) = μn

|m|
∫
Rn

2(1 − p)(1 − cos aξ )

|ξ |n+1
dξ+

μn

|m|
∫
Rn

2p(1 − cos bξ )

|ξ |n+1
dξ + μn

|m|
∫
Rn

2p(1 − p)(1 − cos(b − a)ξ )

|ξ |n+1
dξ . (3.5)

The three integrals on the right-hand side of (3.5) can be easily evaluated by resorting to a n-dimensional
spherical coordinate system to give

In(F) = 1

|m|
[
(1 − p)|aT | + p|bT | − p(1 − p)|(bT − aT |] ,
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so that

Gn(F) = 1 − 1

|m|
[
(1 − p)|aT | + p|bT | − p(1 − p)|(bT − aT |]=

|(1 − p)aT + pbT | − [
(1 − p)|aT | + p|bT |]+ p(1 − p)|(bT − aT |
|(1 − p)aT + pbT | ≤

p(1 − p)|(bT − aT |
|(1 − p)aT + pbT | = Tn(F). (3.6)

Hence, at difference with the Tn multivariate index, the multivariate Gini index Gn does not coincide,
even in the case of a simple two-valued distribution, with the n-dimensional extension of the univariate
index. In other words, while the unidimensional indices depend only on the modulus of the difference
between the two values assumed by the random variable, in the multivariate case only the Tn index
retains this property, while the multivariate Gini index Gn, apparently derived from a natural extension
of the one-dimensional index by maintaining the scaling property, does not.

In fact, the additional term appearing on the numerator of formula (3.6) is given by

|(1 − p)aT + pbT | − [
(1 − p)|aT | + p|bT |] ,

even in the presence of two vectors with positive components, in dimension n > 1 is dependent on the
position of the points a and b on the space Rn, and it is equal to zero if and only if the two vectors a and
b are parallel. This unpleasant fact shows that even the passage to Fourier transform does not allow a
simple extension of the Gini index to multivariate distributions.

On the contrary, the presence of heavy difficulties in defining a easy to treat inequality index able to
measure multivariate distributions characterises the Tn index introduced in this paper as a good candidate
for future applications.

4. Conclusions

The description of social phenomena in a multi-agent system by means of kinetic equations often
leads to the identification of multidimensional universal steady profiles, equilibrium distributions of
paramount importance that should resume at best the characteristics of the phenomenon under investi-
gation, dependent in general on several factors. Among the various features considered to have a more
precise measurement of the social characteristics of the steady profile, multivariate inequality indices
represent a primary tool [1, 3–5].

In this paper, we enlightened various properties of a new inequality index Tn, considered in ref.
[22], characterised in terms of the multidimensional Fourier transform, which appears to have a number
of good properties in the general case of multivariate distributions. The interest in applications of the
index Tn, is amplified by the fact that the Fourier transform natural generalisation of the one-dimensional
Gini index to multivariate distribution does not lead to a definition which satisfies the basic properties
required to inequality indices.
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