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ABSTRACT

Tontines, retirement products constructed in such a way that the longevity
risk is shared in a pool of policyholders, have recently gained vast attention
from researchers and practitioners. Typically, these products are cheaper than
annuities, but do not provide stable payments to policyholders. This raises the
question whether, from the policyholders’ viewpoint, the advantages of annu-
ities and tontines can be combined to form a retirement plan which is cheaper
than an annuity, but provides a less volatile retirement income than a tontine.
In this article, we analyze and compare three approaches of combining annu-
ities and tontines in an expected utility framework: the previously introduced
“tonuity”, a product very similar to the tonuity which we call “antine” and a
portfolio consisting of an annuity and a tontine. We show that the payoffs of a
tonuity and an antine can be replicated by a portfolio consisting of an annuity
and a tontine. Consequently, policyholders achieve higher expected utility lev-
els when choosing the portfolio over the novel retirement products tonuity and
antine. Further, we derive conditions on the premium loadings of annuities and
tontines indicating when the optimal portfolio is investing a positive amount
in both annuity and tontine, and when the optimal portfolio turns out to be a
pure annuity or a pure tontine.
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1. INTRODUCTION

Annuities provide (life-)long payment streams to the policyholder and thus,
constitute a possible way to build protection against the increasing threat of
the individual’s incapability to keep her living standards at older ages. They
have been considered as very desirable retirement products from a policy-
holder’s perspective (see, e.g., Yaari, 1965; Mitchell, 2002; Davidoff et al.,
2005; or Peijnenburg et al., 2016). However, in practice, annuitization rates
have remained rather low (see, for instance, Hu and Scott 2007 and Inkmann
et al. 2010). This phenomenon is already well known as the “annuity puzzle” in
the academic world, and there exists a variety of literature exploring the main
drivers responsible for this puzzle. Literature reviews can be found, for exam-
ple, in Brown (2007) or Milevsky (2013). An overview of existing puzzles in
life insurance can be found in Gottlieb (2012). Recent attempts to tackle the
annuity puzzle include but are not limited to Poppe-Yanez (2017), Caliendo
et al. (2017), Chen et al. (2018) and O’Dea and Sturrock (2019). Due to the
tightening solvency regulation and the low interest rate environment, it yet
seems unlikely that retirees are going to annuitize more of their wealth in the
near future. Consequently, insurers and customers are searching for new, more
attractive retirement products. In this context, tontine products, which were
a popular source of retirement income back in the 17th, 18th and 19th cen-
turies (see Milevsky and Salisbury, 2015), have attracted vast attention from
academics and practitioners. For details about tontines, we refer the interested
reader, for instance, to Sabin (2010), Milevsky (2015), Milevsky and Salisbury
(2015, 2016), or Li and Rothschild (2019).1 One of the main properties of
tontines, in contrast to annuities, is that a pool of policyholders shares the
longevity risk. In this sense, tontines and annuities are two extreme types of
retirement products constructed in such a way that the longevity risk is, in the
case of tontines, (almost) fully borne by the policyholders or, in the case of
annuities, fully by the insurer.

Naturally, the question arises whether the advantages of annuities and ton-
tines can be combined to form a product which is cheaper than an annuity
and shifts the longevity risk not completely, but only partially toward the
policyholder. Possible ways of combining annuities and tontines are already
examined in Weinert and Gründl (2017) and Chen et al. (2019). Chen et al.
(2019) present a new retirement product called “tonuity” which is a tontine at
early retirement ages, but switches to an annuity at a predetermined switching
time. Weinert and Gründl (2017) focus on how the policyholder can optimally
invest fractions of her wealth in tontines and annuities in a cumulative prospect
theory framework, where the tontine design is taken from Sabin (2010). In
this article, we compare various combinations of annuities and tontines in
a classical expected utility framework to find the “best” product from the
policyholder’s viewpoint, where we focus on the tontine design from Milevsky
and Salisbury (2015). For this, we include not only the tonuity and a portfolio
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consisting of an annuity and a tontine, but also a new product which we call
“antine”. The antine works similarly as the tonuity: it provides annuity-like
payments at early retirement ages and, after a prespecified switching time,
switches to tontine-like payments at older ages. All these three combinations
of tontines and annuities contain the original products (annuity and tontine)
as special cases.

In contrast to Chen et al. (2019), we extend their study by additionally
considering and analyzing the portfolio and the novel concept of the antine,
and comparing them with the tonuity. Further, we analytically investigate
the impact of premium loadings on the decision about the optimal retirement
product. Our resulting findings are hence all-new and importantly contribute to
the discussion on optimal retirement products. Our article can also be consid-
ered as a straightforward extension toMilevsky and Salisbury (2015), where we
take more retirement products into consideration. Compared to Sabin (2010)
who deals with different ages, genders and initial contributions, we consider a
simplified case with homogeneous policyholders. However, while Sabin (2010)
focuses on how a fair tontine between members of different groups can be
designed, we go beyond this and study utility-maximizing payoffs of various
products.

According to Milevsky and Salisbury (2015), in an actuarially fair pric-
ing framework, annuities yield a higher level of expected utility than tontines.
However, more realistically, by adding appropriate safety loadings to the
prices of these products, it is possible that tontines outperform annuities (see
Milevsky and Salisbury 2015 or Chen et al. 2019). In the present article, we
set ourselves in this more realistic setting and determine the utility-maximizing
payoffs of the tonuity, the antine and the portfolio of an annuity and a tontine
for a risk-averse policyholder with no bequest motive. While for the tonuity
and the antine an explicit solution is available, the case with the portfolio
requires us to rely on numerical procedures to determine the optimal annuity
and tontine payoffs. The optimal payoff of the tonuity can be considered as a
direct generalization of the optimal tonuity payoff in Chen et al. (2019) who
derive the utility-maximizing payoff without incorporating safety loadings.
The antine payoff can be determined analogously to the payoff of the tonuity.
While, in the portfolio, the optimal payoff of the tontine coincides roughly with
optimal tontine designs discussed in the literature (cf. Milevsky and Salisbury,
2015; Chen et al., 2019), the corresponding annuity payoff structure deviates
substantially from this literature as it first increases and then decreases rather
strongly, leading to a bell-shaped curve. The reason for this structure is that
the annuity provides secure payments at times when the tontine provides the
most volatile payments. At rather advanced retirement ages, the tontine pay-
ments are relatively high due to the few surviving policyholders, which leads to
a decrease in the annuity payoff. Based on these optimal income streams, we
can implicitly determine the fractions of wealth initially invested in the annuity
and the tontine, respectively.
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Our main theoretical result shows that, from the policyholder’s point of
view, a portfolio consisting of an annuity and a tontine can outperform any
tonuity and antine. The reason for this is that, under the considered structure of
the (loaded) premiums, any tonuity and antine payoff can be replicated by such
a portfolio, given the initial premiums of the three retirement plans are iden-
tical. Throughout this article, we incorporate safety loadings in the premiums
using the expected value principle. Nevertheless, this main theoretical result
remains valid when other premium calculation principles, like the variance or
the standard deviation principle, are applied. Moreover, we derive conditions
for the loadings of the tontine and the annuity, under which a pure annuity,
a pure tontine, or an investment in both of them is utility-maximizing: if the
annuity loading is smaller than or equal to the tontine loading, it is optimal to
invest all initial wealth in the annuity. If the annuity loading drastically exceeds
the tontine loading, a pure investment in the tontine is optimal. Under realis-
tic loadings, that is, the annuity loading is reasonably larger than the tontine
loading, an investment in both annuity and tontine yields the maximal utility.

In our numerical analysis, the expected lifetime utility of the optimal tonu-
ity does get very close to that of the optimal portfolio. Given that the optimal
payoffs of the tontine and the annuity in the portfolio are rather complex,
this finding indicates that a single switch from tontine to annuity might be a
more useful and simpler way for practice, although the optimal combination of
annuities and tontines is, in fact, not the tonuity. Further, the newly proposed
antine seems not to be a desirable product from the policyholder’s perspec-
tive and is frequently outperformed by the tonuity. This is probably due to the
design of the antine which leaves policyholders with volatile payments in the
advanced retirement ages and is still rather expensive compared to tontines.

The remainder of the article is structured as follows: Section 2 describes
the basic model setup, where, in particular, the assumptions regarding the
mortality model and the design of the considered retirement products are dis-
cussed. In Section 3, we derive the optimal payoffs of the different retirement
products and the optimal level of expected utility of each retirement plan. In
Section 4, we theoretically and numerically compare the attractiveness of the
different combinations of annuities and tontines from a policyholder’s per-
spective. Section 5 concludes the article and is followed by appendices, where
supplementary proofs and a pseudocode for the numerical determination of
the optimal annuity and tontine payoffs in the portfolio are provided.

2. MODEL SETUP

In this section, we describe the basic model setup used throughout the remain-
der of our article. We start by describing our mortality model and continue by
introducing the designs of the retirement plans under consideration.
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2.1. Mortality model

We consider a simple mortality model which allows us to distinguish between
two types of mortality risk: unsystematic or idiosyncratic mortality risk stems
from the fact that the lifetime of a person is unknown, but still follows a certain
mortality law, and can thus be diversified. Systematic or aggregate mortal-
ity risk stems from the fact that the true underlying mortality law cannot be
determined with certainty. This type of mortality risk cannot be diversified and
affects all the policies of an insurer in the same direction. Further explana-
tions on these two different aspects of mortality risk are given, for example,
in Piggott et al. (2005). We use the usual actuarial notation tpx for the best-
estimate survival curve of an x-year-old policyholder over time t≥ 0. These
best-estimates can be computed from continuous-time mortality laws which
are usually obtained from publicly available life tables. We follow Lin and
Cox (2005) to incorporate the systematic mortality risk in the mortality law by
applying a random shock ε to the best-estimates. The shocked survival curve is
then given by tp1−ε

x . The shock ε is a continuous random variable, whose density
is denoted by fε( · ) and which takes values in (− ∞, 1). Note that by restricting
the shock ε to the interval (− ∞, 1), the shocked survival probabilities tp1−ε

x
still possess all the important properties we require from survival probabili-
ties: first of all, they are still probabilities as they lie between zero and one.
Furthermore, they fulfill the property tp1−ε

x = sp1−ε
x · t−sp1−ε

x+s for all 0≤ s≤ t. As
the shock affects all the policyholders in the same direction, it cannot be diver-
sified by choosing the initial pool size large enough and is thus an important
component in our model to capture the systematic mortality risk. The special
case with no longevity shock is obtained by setting ε = 0.

2.2. Retirement products

We consider an individual endowed with an initial wealth amounting to v> 0
who can buy one of the following five retirement plans. The first two are the
annuity and the tontine. The remaining three are then combinations of the
annuity and the tontine and contain the annuity and the tontine as special
cases. In this section, we introduce the payoffs of the retirement products and
determine their gross premiums obtained using the expected value principle.

2.2.1. Annuity and tontine
Let us first consider an annuity contract. Following Yaari (1965), we assume
that by buying such a contract, the policyholder continuously receives the
deterministic payment c(t) which starts immediately and continues until her
death. To denote the random remaining future lifetime of the policyholder,
we use Tε that takes account of the random longevity shock ε introduced
above. Then, the payoff of the annuity to the policyholder at any time t can
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be expressed as

bA(t)= 1{Tε>t}c(t). (2.1)

Here, 1B is the indicator function that is equal to one if event B occurs and zero
otherwise. By deploying the expected value principle, we can write the initially
charged gross premium for the annuity as follows:

P̃A
0 = (1+CA)PA

0 , (2.2)

where CA ≥ 0 describes the proportional risk loading applied in the context of
the annuity. The corresponding net premium PA

0 can be obtained, by noting
that

(
1{Tε>t}

∣∣ε)∼Bernoulli
(
tp1−ε
x

)
, as (see also Equation (2.4) in Chen et al.,

2019 for a detailed derivation)

PA
0 =E

[∫ ∞

0
e−rtbA(t) dt

]
=

∫ ∞

0
e−rt

tpx mε(− ln tpx) c(t) dt, (2.3)

where r is the risk-free interest rate and mε(s)=E [esε ] for s ∈R is the moment-
generating function of ε.

Next, let us consider a tontine contract. We use n ∈N to denote the initial
number of homogeneous policyholders holding the same tontine contract. The
policyholders can be considered as identical copies of each other. Note that,
as we focus on the comparison between the different combinations of annu-
ities and tontines, we keep the tontine modeling rather simple. Nevertheless,
dealing with heterogeneity between the individuals in our context surely opens
up an interesting perspective for future research (cf. Milevsky and Salisbury,
2016). By choosing the pool size n large enough, it is possible for the insurer
to diversify the unsystematic mortality risk. However, it is not possible for the
insurer to diversify the systematic mortality risk for this risk influences all the
members in the pool in the same way. At older ages, when the pool size has
decreased, the remaining policyholders are left with both systematic and unsys-
tematic risk. We useNε(t) to denote the random number of policyholders in the
pool who are still alive at time t. Following Milevsky and Salisbury (2015), the
continuous payoff at any time t to a single policyholder in the pool, who holds
a tontine contract, is then given by

bOT (t)= 1{Tε>t}
n

Nε(t)
d(t), (2.4)

where d(t) is a deterministic payoff function specified at contract initiation.
When Nε(t) equals zero, the tontine payoff is set equal to zero. While an annu-
ity provides a deterministic payoff to a living policyholder, the future tontine
payment to a living policyholder is a random variable depending on the num-
ber of pool members alive. Note that the payoff in (2.4) is paid out to a single
policyholder. From the insurer’s perspective, the payment nd(t) is made at each
time t. This payment is made until the last policyholder has died. The insurer
carries the longevity risk of the last living policyholder in the pool. That is,
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while in an annuity, the insurer promises a guaranteed payment to each single
policyholder, in the tontine it is only promised to the pool, which leaves the
policyholders with most of the mortality risk.

Conditional on the considered policyholder still being alive, given the
longevity shock ε, and assuming the lifetimes of the policyholders to be inde-
pendent, the number of surviving individuals follows a binomial distribution,
that is,

(Nε(t)− 1|Tε > t, ε) ∼Bin
(
n− 1, tp1−ε

x

)
. (2.5)

Similar to the case of the annuity described above, the gross premium for the
tontine initially charged is specified through

P̃OT
0 = (1+COT )POT

0 , (2.6)

where COT ≥ 0 describes the proportional risk loading applied in the context
of the tontine. Using the property in (2.5) and the binomial theorem, the net
premium POT

0 of the tontine is computed as (see also Equation (2.5) in Chen
et al., 2019 for a detailed derivation)

POT
0 =E

[∫ ∞

0
e−rtbOT (t) dt

]
=

∫ ∞

0
e−rt

∫ 1

−∞

(
1− (

1− tp1−ϕ
x

)n)
fε(ϕ) dϕ d(t) dt.

(2.7)

In general, note that, for the magnitudes of the proportional risk loadings,
it makes sense to assume CA >COT . This is due to the fact that within an annu-
ity product, the insurer carries the entire longevity risk, while the policyholders
carry most of the longevity risk within a tontine product. Additionally, it is
reasonable to assume that the loading for the tontine decreases in the pool size
as less unsystematic risk is then involved in the tontine product. Note that,
typically, the risk loadings should carefully reflect the risks associated with a
retirement product. The setting we consider allows for very general risk load-
ings and still allows us to determine explicit solutions for the optimal payoffs
of at least some of the retirement products, but is, due to its simplicity, not as
accurate as the one in Chen et al. (2019). We solve this issue by carefully set-
ting the loadings according to the values provided in Chen et al. (2019) in the
numerical section.

2.2.2. Portfolio
Assume now that the policyholder can combine an annuity and a tontine by
initially investing in both products. The resulting payoff of this portfolio at
any time t is given by

bAT (t)= 1{Tε>t}

(
cAT (t)+ n

Nε(t)
dAT (t)

)
, (2.8)
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where cAT (t) and dAT (t) are the payoff functions of the annuity and the tontine
constituting the portfolio, respectively. In caseNε(t) is equal to zero, the payoff
in (2.8) is defined to be zero, similarly as the tontine payoff. The more wealth is
invested in the annuity, the closer the payoff of the portfolio gets to an annuity-
like payoff, and analogously for the tontine. The initial single gross premium
for the portfolio is plainly given by

P̃AT
0 = P̃A,AT

0 + P̃OT ,AT
0 = (1+CA)P

A,AT
0 + (1+COT )P

OT ,AT
0 , (2.9)

where PA,AT
0 and POT ,AT

0 are defined similarly as in Equations (2.3) and (2.7)
with the payoffs c(t) and d(t) replaced by cAT (t) and dAT (t), respectively. That
is, the gross premium of the portfolio corresponds to the gross premium of
the contained annuity plus the gross premium of the contained tontine. Hence,
both proportional loading factors CA and COT appear in the above formula.

2.2.3. Tonuity
As the second way of combining the tontine and the annuity, we consider the
tonuity with a prespecified switching time τ ≥ 0, originally introduced in Chen
et al. (2019). Until time τ , the payoff to the policyholder coincides with that of
the tontine. From time τ on, the payoff switches to the payoff of the annuity.
Note that τ is not a random variable, but a constant fixed at contract initia-
tion. This product provides the policyholder a secure payoff at more advanced
retirement ages. At any time t, the payoff of a tonuity to a policyholder having
a residual lifetime Tε is given by

b[τ ](t)= 1{0≤t<min{τ ,Tε }}
n

Nε(t)
d[τ ](t)+ 1{τ≤t<Tε }c[τ ](t), (2.10)

where d[τ ](t) and c[τ ](t) are the payoff functions of the tontine and the annuity
constituting the tonuity, respectively. Recall that Nε(t) is the number of partic-
ipants still alive at t and n is the initial number of participants. When choosing
τ = ∞, we obtain the payoff of a tontine and when choosing τ = 0, we deal
with an annuity. To determine the gross premium of a tonuity, we assume that
the insurer again applies the expected value principle with proportional loading
COT to the part of the payoff which corresponds to the tontine and the expected
value principle with loading CA to the part of the payoff which corresponds to
the annuity. Consequently, the total premium for a tonuity is given by

P̃[τ ]
0 = (1+COT)POT ,τ

0 + (1+CA)P
A,τ
0 , (2.11)

where the tonuity-specific premium parts POT ,τ
0 and PA,τ

0 are implicitly defined
via the corresponding overall net premium which can be taken from Equation
(4.2) in Chen et al. (2019):

P[τ ]
0 =E

[∫ ∞

0
e−rtb[τ ](t) dt

]
=

∫ τ

0
e−rt

∫ 1

−∞

(
1− (

1− tp1−ϕ
x

)n)
fε(ϕ) dϕ d[τ ](t) dt
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+
∫ ∞

τ

e−rt
tpx mε(− ln tpx) c[τ ](t) dt

=POT ,τ
0 +PA,τ

0 .
(2.12)

Note that using the two safety loading factors COT and CA also for
the tonuity allows us to make reasonable comparisons between the different
combinations of annuities and tontines, as is done in Section 4.

2.2.4. Antine
Inspired by tonuities, the third way of combining the tontine and the annuity
is to start with annuity-like payments until a prespecified switching time σ ≥ 0,
after which tontine-like payments are made. Due to its structure, we name this
new contract antine. At any time t, the payoff of an antine to a policyholder
having a residual lifetime Tε is given by

b[σ ](t)= 1{0≤t<min{σ ,Tε }}c[σ ](t)+ 1{σ≤t<Tε }
n

Nε(t)
d[σ ](t), (2.13)

where c[σ ](t) and d[σ ](t) are the payoff functions of the annuity and the tontine
constituting the antine, respectively. When choosing σ = ∞, we obtain the pay-
off of an annuity and when choosing σ = 0, we deal with a tontine. The gross
premium of an antine is determined similarly as for the tonuity. We assume
that the insurer again applies the expected value principle with proportional
loading CA to the part of the payoff which corresponds to the annuity and
the expected value principle with loading COT to the part of the payoff which
corresponds to the tontine. Consequently, the total premium for the antine is
given by

P̃[σ ]
0 = (1+CA)P

A,σ
0 + (1+COT)POT ,σ

0 , (2.14)

where the antine-specific premium parts PA,σ
0 and POT ,σ

0 are implicitly defined
via the corresponding overall net premiumwhich can be computed analogously
as for the tonuity:

P[σ ]
0 =E

[∫ ∞

0
e−rtb[σ ](t) dt

]
=

∫ σ

0
e−rt

tpx mε(− ln tpx) c[σ ](t) dt

+
∫ ∞

σ

e−rt
∫ 1

−∞

(
1− (

1− tp1−ϕ
x

)n)
fε(ϕ) dϕ d[σ ](t) dt

=PA,σ
0 +POT ,σ

0 .

(2.15)

Similarly as for the tonuity, we, for reasons of comparison, use the two distinct
loading factors CA and COT also for the antine.
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3. OPTIMAL PAYOFF AND EXPECTED UTILITY

In this section, we derive the optimal payoff and the corresponding optimal
level of expected utility for each of the retirement plans introduced in the pre-
vious section. To avoid redundancy, we only focus on the tonuity, the antine
and the portfolio consisting of an annuity and a tontine. Note that the pure
annuity and the pure tontine are contained in each of these three combined
products, which is why there is no need to study them separately.

Before we start with the detailed consideration, let us first, in the style,
for example, of Yaari (1965), generally introduce the policyholder’s expected
discounted lifetime utility as

U
({χ(t)}t≥0

)=E

[∫ ∞

0
e−ρtu (χ(t)) 1{Tε>t} dt

]
, (3.16)

where

χ(t)=

⎧⎪⎪⎨⎪⎪⎩
cAT (t)+ n

Nε (t)
dAT (t), for portfolio,

1{0≤t<τ } n
Nε (t)

d[τ ](t)+ 1{τ≤t}c[τ ](t), for tonuity,

1{0≤t<σ }c[σ ](t)+ 1{σ≤t} n
Nε (t)

d[σ ](t), for antine,

(3.17)

denotes the payoff of each retirement plan to a living policyholder. Note that
we do not include a bequest motive in the utility of the policyholder. Instead,
we assume that the policyholder has already set aside money to take care of the
bequest motive beforehand, for example, by buying an insurance contract. The
initial wealth v in our setting is therefore not the entire wealth she holds. This
stipulation also allows us to compare our results with, for instance, Milevsky
and Salisbury (2015), where the bequest motive is neglected as well. Further,
we assume that u(z)= z1−γ

1−γ
for z> 0 is a constant relative risk aversion (CRRA)

utility function with a risk aversion parameter γ > 0 adhering to γ �= 1 and ρ

is the subjective discount rate of the policyholder. The policyholder chooses
the deterministic payoff functions c·(t) and d·(t) in χ(t), so that (3.16) is max-
imized under the following budget constraint: her initial wealth v is fully used
to purchase the corresponding retirement product. The purchase prices of the
three products coincide with the different gross premiums and are thus given in
(2.9), (2.11) and (2.14). Consequently, for j=AT , [τ ], [σ ], the budget constraint
is generally given by

v= P̃j
0. (3.18)

As the optimal payoffs of the tonuity and the antine can be determined explic-
itly, in contrast to the optimal payoff of the portfolio, we first discuss the
optimization problems of the tonuity and antine before we deal with the
portfolio. Let us start with the tonuity.
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3.1. Tonuity

Translating the outlined policyholder’s goal into the framework of the tonuity
leads to the following optimization problem:

max
(c[τ ](t), d[τ ](t))t∈[0,∞)

E

[ ∫ ∞

0
e−ρt

(
1{0≤t<min{τ ,Tε }}u

(
n

Nε(t)
d[τ ](t)

)

+1{τ≤t<Tε }u
(
c[τ ](t)

) )
dt

]
subject to v= P̃[τ ]

0 = (1+COT)POT ,τ
0 + (1+CA)PA,τ

0 .

(3.19)

Theorem 3.1 provides the solution to optimization problem (3.19).

Theorem 3.1. For a tonuity with a switching time τ , the optimal payoff functions
are given by

d∗
[τ ](t)=

e
(r−ρ)t

γ

(
κn,γ ,ε(tpx)

)1/γ
λ
1/γ
[τ ] (1+COT)

1/γ
(∫ 1

−∞
(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ for all t ∈ [0, τ )

(3.20)

and

c∗
[τ ](t)=

e
(r−ρ)t

γ

λ
1/γ
[τ ] (1+CA)

1/γ
for all t ∈ [τ ,∞), (3.21)

where the optimal Lagrangian multiplier λ[τ ] is given by

λ[τ ] =
⎛⎜⎝1
v

⎛⎜⎝∫ τ

0
(1+COT)

1− 1
γ e

(
1
γ

−1
)
rt− 1

γ
ρt

(
κn,γ ,ε(tpx)

)1/γ(∫ 1
−∞

(
1−

(
1−tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1 dt

+
∫ ∞

τ

(1+CA)
1− 1

γ e
(

1
γ

−1
)
rt− 1

γ
ρt
tpx mε(− ln tpx) dt

))γ

(3.22)

and κn,γ ,ε(tpx) by

κn,γ ,ε(tpx)=
n∑

k=1

(
n
k

)(
k
n

)γ ∫ 1

−∞

(
tp1−ϕ
x

)k (
1− tp1−ϕ

x

)n−k
fε(ϕ) dϕ. (3.23)
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TABLE 1

BASE CASE PARAMETER SETUP.

Initial wealth Pool size Risk aversion
v= 300 thousand euros n= 1000 γ = 6

Risk-free rate Subjective discount rate Risk loadings
r= 0.01 ρ = r CA = 4%, COT = 0.01%

Initial age Gompertz law Longevity shock
x= 65 m= 88.721, β = 10 ε ∼N(−∞,1)

(−0.0035, 0.08142
)

The expected discounted lifetime utility is then given by

U[τ ] =E

[ ∫ ∞

0
e−ρt

(
1{0≤t<min{τ ,Tε }}u

(
n

Nε(t)
d∗
[τ ](t)

)

+ 1{τ≤t<Tε }u
(
c∗
[τ ](t)

) )
dt

]
= λ[τ ]

1− γ
v.

(3.24)

Proof. See Appendix A.1. �
Note that the special cases τ = ∞ and τ = 0 lead to the tontine and the annuity,
respectively. A further important observation resulting from Theorem 3.1 is
that the optimal annuity payoff (3.21) is constant for all switching times if ρ =
r, which is in line with Yaari (1965). It is also shown, for example, in Yagi
and Nishigaki (1993) that constant annuities are suboptimal for individuals,
whose subjective discount rate differs from the risk-free interest rate. If the
subjective discount rate exceeds (falls below) the risk-free interest rate, that is,
ρ > r (ρ < r), the annuity payoff (3.21) is decreasing (increasing) over time.

As Theorem 3.1 holds for any τ , it is also possible for a specific policy-
holder to numerically find the optimal switching time τ ∗ for the tonuity such
that the highest lifetime utility is achieved for this policyholder. More detailed
explanations on the optimal switching time of a tonuity can also be found in
Chen et al. (2019). We denote the optimal payoff functions resulting from τ ∗

by d∗
[τ ∗](t) and c

∗
[τ ∗](t). In order to obtain τ ∗, we can compute the expected utility

levels for sufficiently many values of τ increasing from 0 to, for example, 55,
and then choose the switching time τ ∗ which yields the highest expected life-
time utility. More details on the behavior of the optimal switching time τ ∗ can
be found in Section 4.2.

In order to illustratively show how the optimal payoff of the tonuity can
look like, we fix the parameter values summarized in Table 1 as our base case
parameter setup.

Note the following remarks about our choice of parameters:

• To determine the value of the initial wealth v, we follow the estimation of
Royal London (2018). They state that an average (British) employee needs
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to invest around 260 thousand pounds sterling, which approximately corre-
sponds to 300 thousand euros, in the private pension provision to keep her
standard of living in the retirement phase beginning at the age of 65 years.

• In their simulation study of group self-annuitization schemes, Qiao and
Sherris (2013) frequently apply a pool size of 1000 which we adopt for our
analyses.

• For the risk-free rate, we choose a fairly low value to conform with the
current situation in many European countries. As an example, consider
Germany, where the average risk-free rate of investment in 2019 equals only
1.1% (see Statista, 2019).

• The values of the risk loadings are guided by the results for the risk capital
charge in Chen et al. (2019). In this way, the reasonable assumption that
CA >COT discussed in Section 2.2.1 remains in force.

• The best-estimates tpx of the survival probability are assumed to follow
the well-known Gompertz law (see Gompertz, 1825) as used, for example,
in Gumbel (1958) or Milevsky and Salisbury (2015). In other words, we
assume that

tpx = e
e
x−m

β

(
1−e

t
β

)
, (3.25)

with β > 0 being the dispersion coefficient and m> 0 being the modal age
at death. The chosen values for β and m stem from Milevsky and Salisbury
(2015).

• Regarding the chosen probability distribution for the shock ε, we comply
with Chen et al. (2019) and assume that it follows a truncated normal distri-
bution on (−∞, 1), that is,N(−∞,1)

(
μ, ν2

)
. In accordance with the European

Solvency II Directive, the parameters μ and ν are determined in such a way
that the expected survival probabilities E

[
tp1−ε
x

]
from our simple internal

model are close to the best-estimate survival probabilities tpx.

For the base case, the optimal switching time of the tonuity is given by τ ∗ = 27
as the maximal utility is attained at this time when considering {0, 1, . . . , 54, 55}
as the possible choices for τ . Figure 1 shows the mean and the range bordered
by the 0.01- and the 0.99-quantiles of the appropriate optimal tonuity payoff
to the policyholder with respect to her age. The determination of all depicted
quantities is done numerically and is based on the assumption that the individ-
ual is always alive, so that, at any time t, the applied optimal tonuity payoff is
here given by

1{0≤t<τ ∗}
n

Nε(t)
d∗
[τ ∗](t)+ 1{τ ∗≤t}c∗

[τ ∗](t). (3.26)

As the only randomness in the optimal payoff stems from the uncertain
future number of living policyholders in the pool, it is clear that, after the
switch to the annuity at time τ ∗ = 27, that is, when the policyholder turns 92
years, the two examined quantiles coincide and equal the constant annuity pay-
ment. As long as the tontine defines the tonuity, that is, while the individual
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FIGURE 1: Mean and 0.01-/0.99-quantile range of the optimal payoff of the tonuity with τ ∗ = 27 depending
on age. The parameters are chosen as in Table 1 and the constant discretization step size of the age range as

0.05. The plot is based on the assumption that the considered policyholder is always alive.

is between 65 and 92 years old, the payoff uncertainty overall increases as
time goes by, where the possible upward movement, especially if the age gets
closer to 92 years, intensifies considerably faster. This growing volatility trend
is accompanied by a slight increase in the average payoff to the policyholder
which however drops weakly afterward to also match the constant annuity
payment for the remaining time.

3.2. Antine

The optimization problem for antines can be presented very similarly as for
tonuities. Here, c[σ ](t) and d[σ ](t) are chosen in such a way that the correspond-
ing expected discounted lifetime utility is maximized and that the appropriate
budget constraint is met:

max
(c[σ ](t), d[σ ](t))t∈[0,∞)

E

[ ∫ ∞

0
e−ρt

(
1{0≤t<min{σ ,Tε }}u

(
c[σ ](t)

)
+1{σ≤t<Tε }u

(
n

Nε(t)
d[σ ](t)

))
dt

]
subject to v= P̃[σ ]

0 = (1+CA)PA,σ
0 + (1+COT)POT ,σ

0 .

(3.27)

Theorem 3.2 provides the optimal payoff and expected discounted lifetime
utility for the antine by analogy with Theorem 3.1.

Theorem 3.2. For an antine with a switching time σ , the optimal payoff functions
are given by

c∗
[σ ](t)=

e
(r−ρ)t

γ

λ
1/γ
[σ ] (1+CA)

1/γ
for all t ∈ [0, σ ) (3.28)
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and

d∗
[σ ](t)=

e
(r−ρ)t

γ

(
κn,γ ,ε(tpx)

)1/γ
λ
1/γ
[σ ] (1+COT)

1/γ
(∫ 1

−∞
(
1−

(
1−tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ for all t ∈ [σ ,∞),

(3.29)

where the optimal Lagrangian multiplier λ[σ ] is given by

λ[σ ] =
(
1
v

(∫ σ

0
(1+CA)

1− 1
γ e

(
1
γ

−1
)
rt− 1

γ
ρt
tpx mε(− ln tpx) dt

+
∫ ∞

σ

(1+COT)
1− 1

γ e
(

1
γ

−1
)
rt− 1

γ
ρt

·
(
κn,γ ,ε(tpx)

)1/γ(∫ 1
−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1 dt

⎞⎟⎠
⎞⎟⎠

γ
(3.30)

and κn,γ ,ε(tpx) is defined as in (3.23). The expected discounted lifetime utility is
then given by

U[σ ] =E

[ ∫ ∞

0
e−ρt

(
1{0≤t<min{σ ,Tε }}u

(
c∗
[σ ](t)

)
+1{σ≤t<Tε }u

(
n

Nε(t)
d∗
[σ ](t)

))
dt

]
= λ[σ ]

1− γ
v.

(3.31)

Proof. The proof can be carried out in the same way as the proof of
Theorem 3.1. �
Note that the optimal annuity and tontine payoffs within the antine, (3.28)
and (3.29), structurally coincide with those of the tonuity ((3.21) and (3.20))
and differ only in the intervals on which they are defined. In particular, the
optimal annuity payoff is again decreasing, constant, or increasing over time if
ρ > r, ρ = r, or ρ < r, respectively.

As Theorem 3.2 holds for any σ , it is again possible, by the same
method as before, to numerically find the integer optimal switching time σ ∗ ∈
{0, 1, . . . , 54, 55} for the antine such that the highest lifetime utility is achieved
for a specific policyholder. The resulting optimal payoff functions are then
denoted by c∗

[σ ∗](t) and d
∗
[σ ∗](t).

Similar to the case of the tonuity, we subsequently briefly analyze the opti-
mal payoff of the antine graphically when applying the base case parameter
setup specified in Table 1. The corresponding optimal switching time of the
antine is given by σ ∗ = 0 as the highest lifetime utility is attained at this time
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FIGURE 2: Mean and 0.01-/0.99-quantile range of the optimal payoff of the antine with σ ∗ = 0 depending on
age. The parameters are chosen as in Table 1 and the constant discretization step size of the age range as 0.05.

The plot is based on the assumption that the considered policyholder is always alive.

when considering {0, 1, . . . , 54, 55} as the possible choices for σ . That is, opti-
mally, the antine coincides with a tontine as the (theoretical) switch from the
annuity to the tontine occurs right at the outset. In Figure 2, we present,
depending on the policyholder’s age, the applied optimal antine payoff, that is,

1{0≤t<σ ∗}c∗
[σ ∗](t)+ 1{σ ∗≤t}

n
Nε(t)

d∗
[σ ∗](t)=

n
Nε(t)

d∗
[σ ∗](t). (3.32)

As Figure 2 displays features of a pure tontine, we can, for a very long period,
detect the same trend behavior as in Figure 1 referring to the tonuity when the
tontine defines the tonuity: the payoff uncertainty increases over time, where
the possible upward movement grows to a much greater extent, so that, at
ages around 105 years, the payoff can potentially even far exceed 100 thou-
sand euros. As a consequence thereof, the average payoff to the policyholder
increases until these high ages. However, we can also observe that this average
payoff declines afterward. This is due to the fact that the chances to receive
lower payments than expected remain, whereas the ones to receive larger pay-
ments than expected rapidly diminish. Eventually, the average payoff flattens
out and any type of uncertainty in the payoff stops as it is extremely likely
that the tontine pool contains only the considered policyholder from the age
of around 114 years on and that all the other participants have passed away
earlier. Note that, in general, dents in the upper and lower quantile curves can
appear at older ages, as is the case with Figure 2, due to the rising effect of a
death of another participant in the tontine pool in this age range on the payoff.

3.3. Portfolio

In contrast to the optimization problems for the tonuity and the antine, the
optimization problem for the case with a portfolio consisting of an annuity
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and a tontine cannot be solved explicitly. It can be written as:

max
(cAT (t), dAT (t))t∈[0,∞)

E

[∫ ∞

0
e−ρt1{Tε>t}u

(
cAT (t)+ n

Nε(t)
dAT (t)

)
dt
]

subject to v= P̃AT
0 = P̃A,AT

0 + P̃OT ,AT
0 .

(3.33)

In this retirement plan, the individual maximizes her utility simultaneously over
the payoff functions cAT (t) and dAT (t). Thus, within the utility maximization
problem, not only the optimal structures of cAT (t) and dAT (t) are determined,
but also implicitly the fractions of initial wealth invested in the annuity and
the tontine.2 The Lagrangian function corresponding to optimization problem
(3.33) can be calculated as

L=
∫ ∞

0
e−ρt

E

[
1{Tε>t}u

(
cAT (t)+ n

Nε(t)
dAT (t)

)]
dt+ λAT

(
v−P̃A,AT

0 −P̃OT ,AT
0

)
=

∫ ∞

0
e−ρt

E

[
tp1−ε
x E

[
u
(
cAT (t)+ n

Nε(t)
dAT (t)

)∣∣∣∣Tε > t, ε
]]

dt

+ λAT

(
v− P̃A,AT

0 − P̃OT ,AT
0

)
=

∫ ∞

0
e−ρt

E

[
tp1−ε
x

n−1∑
k=0

u
(
cAT (t)+ n

k+ 1
dAT (t)

)(
n− 1
k

) (
tp1−ε
x

)k
· (1− tp1−ε

x

)n−1−k
]
dt+ λAT

(
v− P̃A,AT

0 − P̃OT ,AT
0

)

=
∫ ∞

0
e−ρt

n−1∑
k=0

u
(
cAT (t)+ n

k+ 1
dAT (t)

)(
n− 1
k

) ∫ 1

−∞

(
tp1−ϕ
x

)k+1 (
1−tp1−ϕ

x

)n−1−k

· fε(ϕ) dϕ dt+ λAT

(
v− P̃A,AT

0 − P̃OT ,AT
0

)
,

(3.34)

where λAT is the Lagrangian multiplier. The first-order conditions with respect
to cAT (t), dAT (t) and λAT are given as

∂L
∂cAT (t)

= e−ρt
n−1∑
k=0

u′
(
cAT (t)+ n

k+ 1
dAT (t)

)(
n− 1
k

)
·
∫ 1

−∞

(
tp1−ϕ
x

)k+1 (
1− tp1−ϕ

x

)n−1−k
(3.35)

· fε(ϕ) dϕ − λAT (1+CA)e−rt
tpx mε(− ln tpx)

!= 0,

https://doi.org/10.1017/asb.2019.37 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.37


112 A. CHEN, M. RACH AND T. SEHNER

∂L
∂dAT (t)

= e−ρt
n−1∑
k=0

u′
(
cAT (t)+ n

k+ 1
dAT (t)

)
n

k+ 1

(
n− 1
k

) ∫ 1

−∞

(
tp1−ϕ
x

)k+1

· (1− tp1−ϕ
x

)n−1−k
fε(ϕ) dϕ − λAT (1+COT )e−rt

·
∫ 1

−∞

(
1− (

1− tp1−ϕ
x

)n)
fε(ϕ) dϕ

!= 0 (3.36)

and

v= P̃AT
0 . (3.37)

As the first derivative of a CRRA utility function of a sum is generally not
equal to the corresponding sum of the first derivatives of this utility function,
the system of equations given in (3.35)–(3.37) can only be solved numerically
for the optimal payoff functions and the Lagrangian multiplier.

Although the system of equations (3.35)–(3.37) can only be solved numer-
ically, there are quite a few general conclusions that we can draw from this
system of equations. They are summarized in Proposition 3.3.

Proposition 3.3. Consider problem (3.33). Then the following holds true (with the
same notations as in Theorem 3.1):

1. The solution to problem (3.33) is a 100% investment in the annuity, that is, the
solution is dAT (t)= 0, cAT (t)= c∗

[0](t) and λAT = λ[0], if and only if CA ≤COT.
2. If and only if

CA ≥Ccrit
A := (1+COT ) max

t≥0

κn,γ+1,ε(tpx)
∫ 1

−∞
(
1− (

1− tp1−ϕ
x

)n)
fε(ϕ) dϕ

κn,γ ,ε(tpx)tpx mε(− ln tpx)
− 1,

(3.38)

the solution to problem (3.33) is a 100% investment in the tontine, that is, the
solution is dAT (t)= d∗

[∞](t), cAT (t)= 0 and λAT = λ[∞].
3. Consequently, if and only if

COT <CA <Ccrit
A , (3.39)

the optimal solution to problem (3.33) is investing in both annuity and tontine.

Proof. See Appendix A.2. �
In Table 2, we present the critical annuity loading Ccrit

A in dependence of the
risk aversion γ . We observe that the critical loading increases in the risk aver-
sion. For an investor with a CRRA of 0.5, an annuity loading of 21% prevents
her from investing in the annuity at all. The more risk averse the policyholder
is, the more she prefers an annuity over a tontine which is reflected in a higher
loading this policyholder is willing to pay. From γ = 2 on, the loading is unre-
alistically high as it is nearly 100% and even greater for larger values of γ .
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TABLE 2

CRITICAL ANNUITY LOADING Ccrit
A AS DEFINED IN

(3.38) DEPENDING ON THE RISK AVERSION (COT = 0.01%).

γ 0.5 2 4 6 8

Ccrit
A 0.21 0.96 2.12 3.93 6.86

The parameters (except for γ ) are taken from Table 1.

Hence, this critical magnitude needs to be extremely large such that a pure ton-
tine becomes optimal for the policyholder or so that there is no investment in
the annuity at all.

In Appendix B, we provide a pseudocode for the numerical determination
of c∗

AT (t) and d∗
AT (t) under general parameters. Once these two functions are

determined, it is possible to compute their initial market value and, conse-
quently, the fractions of wealth initially invested in the annuity and the tontine.
The optimal fraction of initial wealth invested in the annuity is the gross pre-
mium of the annuity computed from the optimal annuity payoff divided by the
initial wealth. From this quantity, we can determine how the initial wealth of
the policyholder shall be split optimally between the tontine and the annuity in
the beginning. Further details on this are discussed in Section 4.2.

As for the tonuity and the antine, we also show the numerical mean and
0.01-/0.99-quantile range of the (approximately) optimal payoff of the portfo-
lio in Figure 3(a) underlying again the base case parameter setup as given in
Table 1. Given the survival of the policyholder, the applied optimal portfolio
payoff at any time t is here given by

c∗
AT (t)+

n
Nε(t)

d∗
AT (t). (3.40)

For a better understanding of the curve progressions in Figure 3(a), we addi-
tionally depict, in Figure 3(b), the related optimal payoff functions c∗

AT (t) and
d∗
AT (t) of the portfolio. Here, we can see that, particularly in the first half of the
considered age range, the optimal tontine payoff function d∗

AT (t) decreases in
age and hence behaves similarly to what, for example, Milevsky and Salisbury
(2015) find for optimally designed tontines in their framework. In the second
half, the values for d∗

AT (t) are rather close to zero and do not seem to differ
significantly anymore. Note that the payoff of the tontine in Figure 3(b) is not
the payoff to a single individual and has to be multiplied by n

Nε (t)
. Especially at

extremely old ages, d∗
AT (t) is scaled by the factor n which explains why the steep

decline in annuity payments occurs at extremely old ages and why d∗
AT (t) is not

exactly zero at these old ages. Note that this payoff structure can only occur
because the payoff nd∗

AT (t) is guaranteed to the pool of policyholders by the
insurer. Concerning the optimal annuity payoff, we note that, after quite a long
time of playing no role for the optimal portfolio payoff at all, this payoff is first
drastically increasing and then decreasing, opposed to, for instance, a constant
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FIGURE 3: (a) Mean and 0.01-/0.99-quantile range of the optimal payoff of the portfolio consisting of an
annuity and a tontine depending on age. The parameters are chosen as in Table 1 and the constant

discretization step size of the age range as 0.05. The plot is based on the assumption that the considered
policyholder is always alive. (b) Optimal payoff functions of the portfolio consisting of an annuity and a

tontine depending on age. The parameters are chosen as in Table 1 and the constant discretization step size of
the age range as 0.05.

annuity which turns out to be optimal in the tonuity and the antine if ρ = r. We
therefore detect in Figure 3(b) that the policyholder defers the annuitization for
some time before aiming at obtaining annuity payments at an increasing (and
later on decreasing) rate, whereas the tontinization is desired right at the begin-
ning of her retirement with a decreasing (and later on slightly increasing) rate.
The reason for this structure is that the annuity provides secure payments at
times when the tontine provides the most volatile payments (see also Figure 2).
Right after contract initiation, the number of the tontine members is fairly sta-
ble. At extremely advanced retirement ages, the tontine payments are, again,
stable, because there is only a very low probability for any other survivor to be
left. Therefore, at these ages, no stable annuity payments are required. These
are only necessary for ages between (in this example approximately) 89 and 116
years, where most policyholders die and, consequently, the payments of the
tontine are most volatile. It is important to bear in mind that, as we consider
a very general approach for the portfolio optimization problem, the individ-
ual can freely decide on the payoff structures of both the annuity and the
tontine in the portfolio. Hence, at the optimum, it is possible to obtain such
payoff functions as c∗

AT (t) in Figure 3(b). In our result, it seems that c∗
AT (t) and

d∗
AT (t) complement each other. As these payoffs are completely determined by
solely maximizing the benefits of the policyholder, they might not be provided
in practice. However, our analysis might still be interesting for those insurers
who aim to offer products which best suit the needs of the customers to improve
their competitiveness on the market. Concerning Figure 3(a), we overall make
the following further observations: For a long time, there is always a certain
degree of uncertainty in the optimal portfolio payoff. As the tontine, which
involves randomness, prevails at earlier ages, Figure 3(a) actually resembles
Figure 1 in the first several years following the withdrawal from working life.
Afterward, the payoff uncertainty declines over the years as the annuity, which
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stabilizes the payments, becomes more and more significant. From the age of
around 107 years until the age of around 114 years, we see that the chances
to receive quite low payments, compared to the expectation, grow again. The
decrease in c∗

AT (t) and the slight increase in d∗
AT (t) in this age range, together

with the presumption that, in contrast to what is expected, other policyhold-
ers in the tontine pool could nevertheless be alive at such high ages, can give
reasons for this observation. After the age of around 114 years, it is however
highly probable that the event that all the other policyholders are dead occurs,
which leads to a virtually deterministic payoff for the remaining time.

4. COMPARISON OF RETIREMENT PLANS

In this section, we compare the expected lifetime utilities of the policyholder
under the different retirement plans if their payoffs are optimally chosen, as
elaborated in Section 3. We start with a theoretical comparison, where the
main finding of our article is presented. Afterward, a concise numerical section
follows.

4.1. Theoretical findings

Although we cannot determine the optimal payoff functions of the portfolio
consisting of an annuity and a tontine analytically, as discussed in Section 3.3,
we are able to explicitly compare the optimal expected utility of the portfo-
lio with those resulting from the tonuity and the antine. Our appropriate key
result is formulated in Proposition 4.1 which is generally valid and states that
the optimal expected utility of the portfolio is always at least as high as that
of the tonuity and of the antine. It bases on the fact that, for any switching
time, any payoff of a tonuity or an antine can be replicated by a policyholder
holding a portfolio of an annuity and a tontine, given the initial premiums of
the retirement plans are identical. Note that, as we require no restrictions for
the switching times, it is clear that this statement also holds for the optimal
switching times τ ∗ and σ ∗ which we intensively use for our analyses in the next
section.

Proposition 4.1. We denote by U[τ ], U[σ ] and UAT the optimal levels of expected
utility resulting from problems (3.19), (3.27) and (3.33), respectively. In partic-
ular, we assume that the premiums charged for the three retirement plans follow
the expected value principle as introduced before. Then, it holds

UAT ≥U[τ ], UAT ≥U[σ ] (4.41)

for all possible switching times τ and σ , and for all possible risk loadings CA

and COT.
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Proof. We denote by A[τ ], A[σ ] and AAT the sets of admissible solutions
of optimization problems (3.19), (3.27) and (3.33), respectively, that is, the
elements of these sets fulfill the respective budget constraints. Note that the
payoffs of any tonuity and antine can be replicated by a portfolio consisting of
an annuity and a tontine by choosing the payoffs of the annuity and the tontine
appropriately. Let us, as an example, consider a tonuity with a switching time
τ and payoffs d[τ ](t) for 0≤ t< τ and c[τ ](t) for t≥ τ which satisfy the budget
constraint v= (1+COT )P

OT ,τ
0 + (1+CA)P

A,τ
0 for fixed v, COT and CA. We can

define

cAT (t)=
{

0, for 0≤ t< τ ,
c[τ ](t), for t≥ τ , dAT (t)=

{
d[τ ](t), for 0≤ t< τ ,
0, for t≥ τ ,

(4.42)

as the payoffs of the portfolio. Having defined the payoffs of the portfolio, it is
also clear that the budget constraint of the portfolio is satisfied as

v= (1+COT )P
OT ,τ
0 + (1+CA)P

A,τ
0 = P̃OT ,AT

0 + P̃A,AT
0 , (4.43)

with P̃OT ,AT
0 and P̃A,AT

0 being the gross premiums of an annuity and a tontine
with payoffs dAT (t) and cAT (t), respectively. Consequently, the gross premiums
of the portfolio and the tonuity are equal if the portfolio generates exactly the
same payoff as the tonuity under our choice of the premiums. This whole line
of reasoning works similarly for an antine and therefore, we overall obtain

A[τ ] ⊆AAT , A[σ ] ⊆AAT . (4.44)

As a consequence, the optimal level of expected utility of the portfolio is always
at least as high as the optimal level of expected utility resulting from a tonuity
and from an antine with a given switching time. �

Remark 4.2. Throughout this article, we assume that the premiums of the
three retirement plans are determined by the expected value principle. However,
Proposition 4.1 still holds if another premium principle is applied. Important is
that the premium principle still leads to the same premium level for the different
combinations of an annuity and a tontine. Then, any payoff which is an admissible
solution to the tonuity (antine) problem is also admissible to the portfolio prob-
lem. For example, the result of Proposition 4.1 remains valid under the famous
variance and standard deviation principles. For a review of existing premium prin-
ciples, we refer, for example, to Young (2014). For illustrative purposes, let us
consider again the tonuity in comparison with the portfolio and the variance prin-
ciple: if the same method to define the gross premiums of combining products as
before is used, which distinguishes between the annuity and the tontine parts, then,
by means of (2.8), the gross premium of the portfolio is given by
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P̃AT
0 =E

[∫ ∞

0
e−rt1{Tε>t}cAT (t) dt

]
+CAVar

[∫ ∞

0
e−rt1{Tε>t}cAT (t) dt

]
+E

[∫ ∞

0
e−rt1{Tε>t}

n
Nε(t)

dAT (t) dt
]

+COT

·Var
[∫ ∞

0
e−rt1{Tε>t}

n
Nε(t)

dAT (t) dt
]
,

(4.45)

and the one of the tonuity satisfying the budget constraint, that is, v= P̃[τ ]
0 ,

can be derived similarly by means of (2.10). If the portfolio payoff functions
are now chosen as in (4.42), it is clear that the portfolio budget constraint
v= P̃[τ ]

0 = P̃AT
0 is also fulfilled. By this fact and the same arguments as in the proof

of Proposition 4.1, the portfolio still provides the highest (or at least the same)
level of expected utility (as the tonuity) under the variance principle.

4.2. Numerical findings

In the following, we aim at numerically studying the policyholder’s individual
benefits resulting from the purchase of the various retirement plans. Moreover,
our goal is also to learn more about the attractiveness of each retirement plan
when applying different parameter combinations. Specifically, we are able to
confirm the theoretical statement of Proposition 4.1 on the basis of concrete
exemplary numbers.

To make results easier to interpret, we introduce the certainty equivalent
CE as the level of the deterministic retirement payment that yields the same
expected utility as the given retirement plan with payoff {χ(t)}t≥0. That is, CE
is determined by

U
({CE}t≥0

)=U
({χ(t)}t≥0

)
, (4.46)

or equivalently,

CE=
(
(1− γ )U

({χ(t)}t≥0

) (∫ ∞

0
e−ρt

tpx mε(− ln tpx) dt
)−1

) 1
1−γ

, (4.47)

where U
({χ(t)}t≥0

)
is the expected discounted lifetime utility of the individual

as defined in (3.16). Note that the certainty equivalent is an increasing function
in U

({χ(t)}t≥0

)
.

Table 3 provides the optimal switching times and the corresponding result-
ing certainty equivalents for the tonuity and antine for different pool sizes n and
different tontine risk loadingsCOT . As already described before, it is reasonable
to assume that the loading COT decreases in the pool size n. For the depen-
dence of the loading COT on n, we take into account the findings of Chen et al.
(2019) regarding the safety loadings: For n= 100, we use 0.1% (Chen et al.,
2019 obtain 0.1089%), for n= 1000, we use 0.01% (Chen et al., 2019 obtain
0.0133%) and for n= 500, we linearly interpolate between these two values and
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TABLE 3

CERTAINTY EQUIVALENTS (IN THOUSAND EUROS) OF THE TONUITY, THE ANTINE AND THE
PORTFOLIO CONSISTING OF AN ANNUITY AND A TONTINE ALONG WITH THE OPTIMAL SWITCHING
TIMES AND THE FRACTION OF WEALTH INVESTED IN THE ANNUITY EMBEDDED IN THE PORTFOLIO,

RESPECTIVELY, FOR DIFFERENT POOL SIZES n AND DIFFERENT TONTINE LOADINGS COT .

n COT Tonuity Antine Portfolio

100 0.1% 16.13, τ ∗ = 21 15.91, σ ∗ = 0 16.14, P̃A,AT
0 /v= 0.14

500 0.06% 16.23, τ ∗ = 26 16.14, σ ∗ = 0 16.23, P̃A,AT
0 /v= 0.06

1000 0.01% 16.25, τ ∗ = 27 16.18, σ ∗ = 0 16.26, P̃A,AT
0 /v= 0.05

The other parameters are taken from Table 1.

TABLE 4

CERTAINTY EQUIVALENTS (IN THOUSAND EUROS) OF THE TONUITY, THE ANTINE AND THE
PORTFOLIO CONSISTING OF AN ANNUITY AND A TONTINE ALONG WITH THE OPTIMAL SWITCHING
TIMES AND THE FRACTION OF WEALTH INVESTED IN THE ANNUITY EMBEDDED IN THE PORTFOLIO,

RESPECTIVELY, FOR DIFFERENT ANNUITY LOADINGS CA.

CA Tonuity Antine Portfolio

0.02 16.27, τ ∗ = 24 16.18, σ ∗ = 0 16.29, P̃A,AT
0 /v= 0.09

0.03 16.26, τ ∗ = 25 16.18, σ ∗ = 0 16.28, P̃A,AT
0 /v= 0.07

0.04 16.25, τ ∗ = 27 16.18, σ ∗ = 0 16.26, P̃A,AT
0 /v= 0.05

0.05 16.24, τ ∗ = 28 16.18, σ ∗ = 0 16.26, P̃A,AT
0 /v= 0.04

The other parameters are taken from Table 1.

TABLE 5

CERTAINTY EQUIVALENTS (IN THOUSAND EUROS) OF THE TONUITY, THE ANTINE AND THE
PORTFOLIO CONSISTING OF AN ANNUITY AND A TONTINE ALONG WITH THE OPTIMAL SWITCHING
TIMES AND THE FRACTION OF WEALTH INVESTED IN THE ANNUITY EMBEDDED IN THE PORTFOLIO,

RESPECTIVELY, FOR DIFFERENT RISK AVERSIONS γ .

γ Tonuity Antine Portfolio

0.8 16.33, τ ∗ = 36 16.33, σ ∗ = 0 16.33, P̃A,AT
0 /v= 0.004

2 16.30, τ ∗ = 32 16.29, σ ∗ = 0 16.30, P̃A,AT
0 /v= 0.02

4 16.27, τ ∗ = 29 16.24, σ ∗ = 0 16.28, P̃A,AT
0 /v= 0.04

6 16.25, τ ∗ = 27 16.18, σ ∗ = 0 16.26, P̃A,AT
0 /v= 0.05

8 16.23, τ ∗ = 25 16.12, σ ∗ = 0 16.24, P̃A,AT
0 /v= 0.07

10 16.22, τ ∗ = 24 16.07, σ ∗ = 0 16.23, P̃A,AT
0 /v= 0.09

The other parameters are taken from Table 1.

obtain 0.06%. Since we would like to keep our numerical analysis as simple
as possible, we have decided to round the values in Chen et al. (2019) instead
of taking the exact values. Note that the parameters in Chen et al. (2019) also
differ slightly from ours and therefore, we only focus on the rougher magni-
tude when it comes to the risk loadings. Additionally, the certainty equivalents
of the portfolio consisting of an annuity and a tontine along with the optimal
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fraction of initial wealth invested in the annuity are provided for the different
pool sizes n and different tontine risk loadings COT . The optimal fraction of
initial wealth invested in the annuity can be determined as the gross premium
of the annuity (computed from the optimal annuity payoff) divided by the total
initial wealth. For the remaining parameters besides the pool size and the ton-
tine risk loadings, we use the base case parameter setup as given in Table 1.
Table 4 provides similar sensitivity analyses of the certainty equivalents for
the risk loading of the annuity CA. Finally, Table 5 provides similar sensitivity
analyses of the certainty equivalents for the risk aversion parameter γ . Note
that we have not included sensitivity analyses with respect to the subjective dis-
count rate ρ in these numerical studies as the effects of ρ seem negligible for
the given parameters. Overall, we make the following observations which are
all drawn only within our exemplary numbers. To support the readability of our
results, we have highlighted the main observations in italic letters:

• The tonuity and the antine are outperformed by the portfolio consisting of
an annuity and a tontine. As the certainty equivalents of the portfolio are
larger than those of the hybrid products tonuity and antine in all presented
tables, Proposition 4.1 is numerically confirmed here. Recall that the portfo-
lio allows the policyholder to combine the two retirement products annuity
and tontine in a more general way than prescribed by the tonuity and antine.
Strictly speaking, the tonuity and the antine can be seen as special cases of
the portfolio as it is possible to choose the payoffs of the portfolio in such a
way that they equal the payoffs of the tonuity or antine. Note, however, that
the certainty equivalent of the tonuity is only negligibly smaller than that of
the portfolio in all the cases considered, that is, a policyholder might as well
buy a tonuity with a single switch between tontine and annuity instead of
purchasing the rather complicated payoff structure of the annuity and the
tontine in the portfolio shown in Figure 3(b).

• Among the novel retirement plans tonuity and antine, the tonuity is the one
which performs better. In our parameter setup, we see that the tonuity always
yields a certainty equivalent greater than that of the antine and thus, is the
more attractive retirement product to the policyholder. In fact, a nontrivial
antine is, in our parameter setup, always outperformed by a tontine. This is
probably due to the design of the antine: when the switching time is high, the
price of the antine is close to that of the appropriate annuity, but it leaves
the individual holding the antine with a volatile payoff in her more advanced
retirement ages. On the contrary, if the switching time is low, the payoff of
the antine is close to that of the appropriate tontine, but the price of it might
be still noticeably higher than that of the tontine.

• The role of the tontine component becomes more prominent within the retire-
ment plans if the tontine pool size increases. This feature can be observed
in Table 3: If the pool size increases, the optimal switching time of the
tonuity increases as well. Furthermore, concerning the portfolio, individu-
als tend to invest higher fractions of their initial wealth in the annuity if the
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pool size declines. All this is mainly due to the well-known fact that a ton-
tine’s attractiveness increases with the pool size (see, for example, Milevsky
and Salisbury, 2015). Note that further components driving up the attrac-
tiveness of the tontine are decreasing tontine loadings (cf. Table 3) and an
increasing annuity loading (cf. Table 4).

• The role of the annuity component becomes more prominent within the retire-
ment plans if the risk aversion level of the policyholder increases. This feature
can be observed in Table 5: If the risk aversion increases, the optimal switch-
ing time of the tonuity decreases. Furthermore, concerning the portfolio,
individuals with a larger risk aversion tend to invest higher fractions of their
initial wealth in the annuity.

• Referring to the portfolio, the policyholder does not invest all her initial wealth
exclusively in an annuity or a tontine. From the fact that the fractions of
initial wealth invested in the annuity are above 0 and below 1, within our
exemplary numbers, neither a pure annuity nor a pure tontine is an attrac-
tive retirement plan for the majority of the policyholders. Instead, partial
annuitization combined with partial tontinization turns out to deliver the
highest expected lifetime utility for our parameter choices. This can also
be seen from Proposition 3.3 and from Table 2, where the critical annuity
loading Ccrit

A is always larger than the considered values for CA.

5. CONCLUSION

In this article, we consider three possibilities to combine annuities and tontines
and analyze and compare their attractiveness from a policyholder’s perspec-
tive in an expected utility framework. The three retirement plans we consider
are the tonuity previously introduced by Chen et al. (2019), a new product
which we call antine and a portfolio consisting of an annuity and a tontine.
Our theoretical and numerical results show that the portfolio outperforms any
tonuity and antine in the sense that it always delivers a higher expected lifetime
utility than the two novel products. The reason for this is that a policyholder
can choose the payoffs of the annuity and the tontine in the portfolio in such a
way that the payoff of any tonuity and antine is replicated with the same initial
investment. Consequently, the optimal level of expected utility stemming from
the portfolio can never fall below that of any tonuity and antine. Additionally,
we derive conditions regarding the loadings of the annuity and the tontine,
under which a pure investment in the annuity, the tontine and a combination
of both is optimal, respectively. We find that, under reasonable parameters, an
investment in both products delivers a higher expected lifetime utility than the
single products. In our parameter setup, we further find that the tonuity always
delivers a higher expected lifetime utility than the antine.

While in this article we exclusively focus on the policyholder’s perspective,
an interesting topic for future research might be an analysis of the three con-
sidered retirement plans from the insurer’s perspective. As it is less natural to
assume a utility function for the insurance company, we could consider other
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important quantities of interest from the insurer’s perspective, like the (ran-
dom) present value of future losses (cf. Bauer and Weber, 2008; Li and Hardy,
2011; Cairns, 2013; Kling et al., 2014; Olivieri and Pitacco, 2019). In a recent
article, Chen and Rach (2019), the authors analyze the attractiveness of options
on tontines also from the insurer’s point of view. The results obtained there
suggest that insurers can also benefit from selling hybrid products between
conventional annuities and tontines. Compared to annuities, it is likely that
the tonuity, antine and the portfolio of an annuity and a tontine also reduce
potential losses on the insurer’s side, as all these retirement plans carry less
risks for the insurer than a traditional annuity.
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NOTES

1. In addition to the traditional tontine, many innovative, longevity-risk-sharing retirement
products, for instance, pooled annuity funds or group self-annuitization schemes, have been
developed in recent years (see, e.g., Bernhardt and Donnelly, 2019 and the references therein).

2. Note that problem (3.33) is more general than the following optimization problem:

max
α∈[0,1]

E

[∫ ∞

0
e−ρt1{Tε>t}u

(
αc∗

[0](t)+ (1− α)
n

Nε(t)
d∗
[∞](t)

)
dt
]
, (5.48)

where c∗
[0](t) is the optimal annuity payoff and d∗

[∞](t) is the optimal tontine payoff as obtained
from Theorem 3.1 for the boundary cases τ = 0 and τ = ∞, respectively. Note that for the annu-
ity case, that is, τ = 0, the budget constraint is v= P̃A

0 . Similarly, for the tontine case, that is,
τ = ∞, the budget constraint is v= P̃OT

0 . In other words, in problem (5.48), where we max-
imize over a fraction of initial wealth, we do not have to consider a budget constraint, as
αP̃A

0 + (1− α)P̃OT
0 = αv+ (1− α)v= v holds for all α ∈ [0, 1]. Note that this describes already

the first difference between optimization problem (5.48) and the optimization problem (3.33).
Furthermore, as the optimization problem in (5.48) is, by assuming the payoff functions c∗

[0](t) and
d∗
[∞](t) to be given in advance, (a lot) less general than the portfolio problem (3.33), we observe
that under problem (5.48), it is no longer possible to replicate the payoff of any tonuity and antine.
In this problem, the individual can only decide upon the fraction α and not upon the payment
structure of the products in the portfolio. As a consequence, it is possible that the portfolio of an
annuity and a tontine can be outperformed by other combinations, for example, by a tonuity.
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APPENDIX A. PROOFS

A.1. Proof of Theorem 3.1

Note that some of the steps within this proof are similar to the results in Chen et al. (2019).
Thus, a few derivations are shortened here and can be reviewed in the mentioned article.
We first recall that tp1−ε

x =E
[
1{Tε>t}

∣∣ε] and that it further holds (Nε(t)− 1|Tε > t, ε) ∼
Bin

(
n− 1, tp1−ε

x
)
. By means of these observations, we can write the Lagrangian function
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for our optimization problem in the following way:

L=
∫ τ

0
e−ρt

E

[
1{Tε>t}

(
n

Nε(t)

)1−γ
]
u
(
d[τ ](t)

)
dt+

∫ ∞

τ

e−ρt
E
[
1{Tε>t}

]
u
(
c[τ ](t)

)
dt

+ λ[τ ]

(
v− (1+COT )

∫ τ

0
e−rt

∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ d[τ ](t) dt

− (1+CA)

∫ ∞

τ

e−rttpx mε(− ln tpx) c[τ ](t) dt
)

=
∫ τ

0
e−ρtκn,γ ,ε(tpx)u

(
d[τ ](t)

)
dt+

∫ ∞

τ

e−ρt
tpx mε(− ln tpx) u

(
c[τ ](t)

)
dt

+ λ[τ ]

(
v− (1+COT )

∫ τ

0
e−rt

∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ d[τ ](t) dt

− (1+CA)

∫ ∞

τ

e−rttpx mε(− ln tpx) c[τ ](t) dt
)
,

where κn,γ ,ε(tpx) is explicitly calculated in Chen et al. (2019) and given by

κn,γ ,ε(tpx)=E

[
1{Tε>t}

(
n

Nε(t)

)1−γ
]

=
n∑

k=1

(
n
k

)(
k
n

)γ∫ 1

−∞

(
tp

1−ϕ
x

)k (
1−tp

1−ϕ
x

)n−k
fε(ϕ) dϕ.

By taking partial derivatives with respect to d[τ ](t) and c[τ ](t), we obtain the following first-
order conditions:

∂L
∂d[τ ](t)

= e−ρtκn,γ ,ε(tpx)d[τ ](t)
−γ − λ[τ ] (1+COT ) e−rt

∫ 1

−∞

(
1−

(
1−tp

1−ϕ
x

)n)
fε(ϕ) dϕ

!= 0,

(A1)
∂L

∂c[τ ](t)
= e−ρt

tpx mε(− ln tpx) c[τ ](t)
−γ − λ[τ ] (1+CA) e−rttpx mε(− ln tpx)

!= 0. (A2)

Now, by solving (A1) for d[τ ](t), we get the following optimal tontine payoff:

d∗
[τ ](t)=

e
(r−ρ)t

γ
(
κn,γ ,ε(tpx)

)1/γ
λ
1/γ
[τ ] (1+COT )1/γ

(∫ 1
−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ for all t ∈ [0, τ ).

Similarly, by solving (A2) for c[τ ](t), we obtain the following optimal annuity payoff:

c∗[τ ](t)=
e
(r−ρ)t

γ

λ
1/γ
[τ ] (1+CA)1/γ

for all t ∈ [τ ,∞).
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Now, we can use the budget constraint to determine the optimal Lagrangian multiplier λ[τ ].
We have

v= (1+COT )

∫ τ

0
e−rt

∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ d∗

[τ ](t) dt

+ (1+CA)

∫ ∞

τ

e−rttpx mε(− ln tpx) c∗[τ ](t) dt

=
∫ τ

0
e

(
1
γ −1

)
rt− 1

γ ρt
(
κn,γ ,ε(tpx)

)1/γ
λ
1/γ
[τ ] (1+COT )1/γ−1

(∫ 1
−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1
dt

+
∫ ∞

τ

e

(
1
γ −1

)
rt− 1

γ ρt
tpx mε(− ln tpx)

1

λ
1/γ
[τ ] (1+CA)1/γ−1

dt.

As a consequence, we obtain

λ[τ ] =
⎛⎜⎝1
v

⎛⎜⎝∫ τ

0
(1+COT )

1− 1
γ e

(
1
γ −1

)
rt− 1

γ ρt
(
κn,γ ,ε(tpx)

)1/γ(∫ 1
−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1
dt

+
∫ ∞

τ

(1+CA)
1− 1

γ e

(
1
γ −1

)
rt− 1

γ ρt
tpx mε(− ln tpx) dt

))γ

.

The expected discounted lifetime utility is then given by

U[τ ] =
∫ τ

0
e−ρt

E

[
1{Tε>t}

(
n

Nε(t)

)1−γ
]
u
(
d∗
[τ ](t)

)
dt+

∫ ∞

τ

e−ρt
E
[
1{Tε>t}

]
u
(
c∗[τ ](t)

)
dt

=
∫ τ

0
e−ρtκn,γ ,ε(tpx)u

(
d∗
[τ ](t)

)
dt+

∫ ∞

τ

e−ρt
tpx mε(− ln tpx) u

(
c∗[τ ](t)

)
dt

= 1
1− γ

∫ τ

0
e−ρtκn,γ ,ε(tpx)

· e(1/γ−1)(r−ρ)t (κn,γ ,ε(tpx))1/γ−1

λ
1/γ−1
[τ ] (1+COT )1/γ−1

(∫ 1
−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1
dt

+ 1
1− γ

∫ ∞

τ

e−ρt
tpx mε(− ln tpx)

e(1/γ−1)(r−ρ)t

λ
1/γ−1
[τ ] (1+CA)1/γ−1

dt

= λ
1−1/γ
[τ ]

1−γ

⎛⎜⎝∫ τ

0
(1+COT )

1− 1
γ e

(
1
γ −1

)
rt− 1

γ ρt
(
κn,γ ,ε(tpx)

)1/γ(∫ 1
−∞

(
1−

(
1−tp

1−ϕ
x

)n)
fε(ϕ) dϕ

)1/γ−1
dt

+
∫ ∞

τ

(1+CA)
1− 1

γ e

(
1
γ −1

)
rt− 1

γ ρt
tpx mε(− ln tpx) dt

⎞⎟⎠
= λ

1−1/γ
[τ ]

1− γ
λ

1
γ

[τ ]v= λ[τ ]

1− γ
v.

�

https://doi.org/10.1017/asb.2019.37 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.37


126 A. CHEN, M. RACH AND T. SEHNER

A.2. Proof of Proposition 3.3

1. Clearly, the budget constraint (3.37) is fulfilled when choosing dAT (t)= 0 and cAT (t)=
c∗[0](t). Now consider condition (3.35). We plug in dAT (t)= 0, cAT (t)= c∗[0](t) and
λAT = λ[0]:

∂L
∂cAT (t)

= e−ρt
n−1∑
k=0

u′ (c∗[0](t)) (
n− 1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ

− λ[0](1+CA)e−rttpx mε(− ln tpx)

= e−ρtu′ (c∗[0](t))E

[n−1∑
k=0

(
n− 1
k

) (
tp1−ε
x

)k+1 (
1− tp1−ε

x

)n−1−k
]

− λ[0](1+CA)e−rttpx mε(− ln tpx)

= e−ρt
(
c∗[0](t)

)−γ
E

[
tp1−ε
x

n−1∑
k=0

(
n− 1
k

) (
tp1−ε
x

)k (
1− tp1−ε

x

)n−1−k

︸ ︷︷ ︸
=1

]

− λ[0](1+CA)e−rttpx mε(− ln tpx)

= 0.

Regarding condition (3.36), we obtain:

∂L
∂dAT (t)

= e−ρt
n−1∑
k=0

u′ (c∗[0](t)) n
k+ 1

(
n− 1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ

− λ[0](1+COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

= e−ρtu′ (c∗[0](t)) n∑
j=1

(
n
j

) ∫ 1

−∞

(
tp

1−ϕ
x

)j (
1− tp

1−ϕ
x

)n−j
fε(ϕ) dϕ

− λ[0](1+COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

= e−ρtu′ (c∗[0](t)) ∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

− λ[0](1+COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

= λ[0](CA −COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ. (A3)

Clearly, (A3) is equal to zero if CA =COT . That is, the optimum is exactly achieved for
dAT (t)= 0 if CA =COT .
Let us now take a look at the second-order derivative:

∂2L
∂dAT (t)2

= e−ρt
n−1∑
k=0

u′′
(
cAT (t)+ n

k+ 1
dAT (t)

)(
n

k+ 1

)2 (n− 1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1

·
(
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ < 0,
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because u′′
(
cAT (t)+ n

k+1dAT (t)
)

< 0 for all values of cAT (t) and dAT (t). This implies that
∂L

∂dAT (t)
is strictly decreasing in dAT (t). Note that λ[0] is greater than zero for all choices

of CA. Therefore, the term in (A3) is smaller than zero for CA <COT . The expected
lifetime utility could thus be increased at dAT (t)= 0 ifCA <COT by choosing dAT (t) even
smaller than zero. Since we do not allow for negative payments of the tontine, the optimal
portfolio is thus again a 100% investment in the annuity resulting in the payoff c∗[0](t).

2. We now consider the first-order conditions for dAT (t)= d∗
[∞](t), cAT (t)= 0 and λAT =

λ[∞]. It is again clear that the budget constraint (3.37) is fulfilled. Regarding (3.35), we
obtain

∂L
∂cAT (t)

= e−ρt
n−1∑
k=0

u′
(

n
k+ 1

d∗
[∞](t)

)(
n− 1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ

− λ[∞](1+CA)e−rttpx mε(− ln tpx)

= e−ρtu′ (d∗
[∞](t)

) n− 1∑
k=0

(
n

k+1

)1−(γ+1) (n−1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ

− λ[∞](1+CA)e−rttpx mε(− ln tpx)

= e−ρt
(
d∗
[∞](t)

)−γ
n∑
j=1

(
j
n

)γ+1 (n
j

) ∫ 1

−∞

(
tp

1−ϕ
x

)j (
1− tp

1−ϕ
x

)n−j
fε(ϕ) dϕ

− λ[∞](1+CA)e−rttpx mε(− ln tpx)

= e−rt
κn,γ+1,ε(tpx)

κn,γ ,ε(tpx)
λ[∞](1+COT )

∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

− λ[∞](1+CA)e−rttpx mε(− ln tpx)
!≤ 0.

(A4)

Similarly as in the first part of this proof, we want the derivative to be smaller or equal
than zero for all t≥ 0. If it is equal to zero, the optimum is reached, if it is below zero,
the utility can be increased by choosing negative payoffs for the annuity which we do not
allow. Solving inequality (A4) (which has to hold for all t≥ 0) for CA delivers (3.38). We
still need to check whether (3.36) is fulfilled. We proceed as before:

∂L
∂dAT (t)

= e−ρt
n−1∑
k=0

u′
(

n
k+ 1

d∗
[∞](t)

)
n

k+ 1

(
n− 1
k

) ∫ 1

−∞

(
tp

1−ϕ
x

)k+1 (
1− tp

1−ϕ
x

)n−1−k
fε(ϕ) dϕ

− λ[∞](1+COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

= e−ρt
(
d∗
[∞](t)

)−γ
n∑
j=1

(
j
n

)γ (
n
j

) ∫ 1

−∞

(
tp

1−ϕ
x

)j (
1− tp

1−ϕ
x

)n−j
fε(ϕ) dϕ

− λ[∞](1+COT )e−rt
∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ
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= e−ρt
(
d∗
[∞](t)

)−γ
κn,γ ,ε(tpx)− λ[∞](1+COT )e−rt

∫ 1

−∞

(
1−

(
1− tp

1−ϕ
x

)n)
fε(ϕ) dϕ

= 0.

3. Condition (3.39) and the third part of Proposition 3.3 directly follow from the first and
the second part.

�

APPENDIX B. PSEUDOCODE FOR SOLUTION OF
PORTFOLIO PROBLEM (3.33)

The pseudocode given below delivers the optimal payoff functions c∗AT (t), d∗
AT (t) and the

Lagrangianmultiplier λAT . The objective is to simultaneously fulfill Equations (3.35)–(3.37).
Our code relies heavily on the bisection method, which we apply repeatedly in three while
loops until (3.35)–(3.37) are all (approximately) fulfilled.

1. Initialize n, γ , r, ρ, v, x, m, β, tol, CA, COT .
2. Specify a grid of time points t1, . . . , tN , where t1 = 0 and tN lies sufficiently far ahead in

the future.
3. Choose upper and lower bounds λu and λl for λ = λAT and set λ = 1

2 (λu + λl).

4. While
∣∣∣v− P̃A,AT0 − P̃OT ,AT0

∣∣∣> tol

(a) Choose upper and lower bounds du(ti) and dl(ti) for i= 1, . . . ,N. Set dAT (ti)=
1
2 (du(ti)+ dl(ti)).

(b) While maxi
∣∣∣ ∂L
∂dAT (ti)

∣∣∣> tol

i. Choose upper and lower bounds cu(ti) and cl(ti) for i= 1, . . . ,N. Set cAT (ti)=
1
2 (cu(ti)+ cl(ti)).

ii. While maxi
∣∣∣ ∂L
∂cAT (ti)

∣∣∣> tol

A. For all i with ∂L
∂cAT (ti)

> 0, set cl(ti)= cAT (ti).

B. For all i with ∂L
∂cAT (ti)

< 0, set cu(ti)= cAT (ti).

C. Set cAT (ti)= 1
2 (cu(ti)+ cl(ti)).

iii. For all i with ∂L
∂dAT (ti)

> 0, set dl(ti)= dAT (ti).

iv. For all i with ∂L
∂dAT (ti)

< 0, set du(ti)= dAT (ti).

v. Set dAT (ti)= 1
2 (du(ti)+ dl(ti)).

(c) Once cAT (ti) and dAT (ti) are computed for i= 1, . . . ,N, we can linearly interpolate
between these values. This enables us to compute P̃A,AT0 and P̃OT ,AT0 by numerical
integration.

(d) If v− P̃A,AT0 − P̃OT ,AT0 > 0, set λu = λ.
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(e) If v− P̃A,AT0 − P̃OT ,AT0 < 0, set λl = λ.
(f) Set λ = 1

2 (λu + λl).
5. Once the (approximately) “true” λ, c∗AT (ti) and d∗

AT (ti) are computed for i= 1, . . . ,N,
the optimal level of expected utility and the certainty equivalent can be computed by
numerical integration.

Since we know how the first-order conditions behave in c, d and λ, we know how to search
for the solutions using the bisection method and that it will deliver a correct solution and
converge, because it only terminates if the prespecified level of accuracy is reached.

The average computing time mostly depends on the discretization of the time axis and
the pool size n. The smaller the discretized time steps are, and the larger the pool size n is, the
longer it takes for the code to finish. We found that the discretization of the time axis does,
actually, not have a huge impact on the results, and have therefore chosen a discretization of
N = 100 steps from 0 to a maturity of 55. For this discretization and n= 100, the code only
needs about 1 min to determine the optimal payoffs and the resulting certainty equivalent
for one policyholder. For the current base case pool size n= 1000, it takes about 4 min.
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