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1. Introduction. In this paper, we shall be concerned with bounded, 
holomorphic functions of the form 

oo 

B(z; {an}) = n b(z\an) 
n = l 

(2) 0 < \an\ < 1 (« = 1,2, . . . ), 

and 

(3) Ê a - Kl) < ». 
n=l 

B(z\ {an)) is called a Blaschke product, and any sequence {an} which satisfies 
(2) and (3) is called a Blaschke sequence. For a general discussion of the proper
ties of Blaschke products, see (18, pp. 271-285) or (14, pp. 49-52). 

According to a theorem due to Riesz (15), a Blaschke product has radial 
limits of modulus one almost everywhere on C = {z: \z\ = 1}. Moreover, it 
is common knowledge that, if a Blaschke product has a radial limit at a 
point, then it also has an angular limit at the point (see 14, p. 19 and 6, p. 
457). For this reason, it seems natural to go one step farther and investigate 
the existence of tangential limits. 

First, let us carefully define the notion of a tangential limit. Let 

R(m, 0, y) = {z: 1 - |z| > m |arg z - 0|*; 0 < \z\ < 1} 

where by |arg z — 6\ we mean the length of the shorter one of the two arcs 
on C joining z/\z\ and eie. li f(z) is a function defined on D = {z: \z\ < 1}, we 
say that / (z) has a Ty-limit at eie provided there exists a number L such that, for 
each m(m > 0), f(z) —> L as z —> eie, z being confined to R(m, 6, 7). 

We observe that a TYlimit exists if and only if the classical angular limit 
exists. For this reason, a Blaschke product has a 7Vlimit almost everywhere. 
However, when 7 > 1, a different situation prevails. Indeed, Lohwater and 
Piranian (11) have shown that, corresponding to each 7(7 > 1), there exists 
a Blaschke product which has no J!y-limit whatsoever on C. Also, in this 
connection, see (17) or (18, p. 280). 
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One is thus led to seek sufficient conditions for the existence of TV-limits. 
Frostman (8) has proved a global theorem dealing with radial limits which 
serves as a prototype: If {an} is a Blaschke sequence and 

oo 

(4) E (1 - k l ) " < » (0 < a < 1) 
n=l 

for some fixed a, then there is a set E\ whose capacity of order a is zero such 
that B(z; {an}) and all its subproducts have radial limits of modulus one every
where on C — Ei. The function 

B(z\ {ank}) 

is called a subproduct of B(z\ {an}) if 

is a subsequence of {an}. (The existence of radial limits for all subproducts 
of a Blaschke product at a point on C entails much more than the mere 
existence of a radial limit for the Blaschke product. For example, it implies 
that the radial limits are all of modulus one and that the radius terminating 
at the point is carried onto curves of finite length by the Blaschke product 
and all its subproducts (see 2).) 

Recently Kinney (9) has shown that, if (4) holds, then B(z; {an}) has 
Tylimits (Y > 1) of modulus one everywhere off a set Iy whose capacity of order 
«7/(1 — a) is zero. (Actually, Kinney proved that the Hausdorff-Besicovitch 
dimension of Iy does not exceed ay/(l — a), which is a slightly weaker con
clusion. Also, his definition of tangential limit being somewhat different, he 
only established convergence on R(m, 0, 7) for m = 1.) 

In § 3 of this paper, we sharpen Kinney's theorem in several respects, 
Frostman's theorem appearing as a special case; and then we prove that 
the sharpened result is the best possible. 

Our approach is somewhat different from that of Kinney in that we first 
study tangential limits locally (§ 2) and then use this information to handle 
the global situation. 

Finally, in § 4, we prove a round of analogous theorems for the successive 
derivatives of a Blaschke product. Certain known theorems dealing with the 
Carathéodory angular derivative of a Blaschke product appear as special 
cases. 

2. Local boundary behaviour. A well-known theorem of Frostman (8) 
is a special case (when 7 = 1) of the following theorem: 

THEOREM 1. Let {an} be a Blaschke sequence such that 
00 

(5) E (1 - \an\)/\e
id - an\

y < » 
71=1 

for some fixed number 7(7 > 1). Then B(z; \an}) and all its subproducts have 
Ty-limits of modulus one at eie. 
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Preliminary remarks. The core of the proof consists in proving that 
YLb(z;an) converges uniformly on R{myQ,y) for every positive number m. 
Since 

B(z;{ane-t9}) = B(zeid; {an}) 

and 

(1 - \ane-id\)/\l - ane-i&\y = (1 - \an\)/\e
ie - an\yy 

it will suffice to prove the theorem for the special case 0 = 0. 

Proof. By virtue of (5), it is clear that at most a finite number of the zeros 
an are on the radius terminating at z = 1; hence, one can assume without 
loss of generality that no zeros lie on the radius. 

Then, using standard techniques, one can prove that 
CO 

(6) g ( 1 - k l ) / | a r g o , r < » . 

We shall merely sketch the proof of (6). Suppose that 
oo 

J2 (1 - |a„|)/ |arga„|7 = oo, 

and let us prove that 
CO 

2 : (1 - \an\)/\l-an\y= » . 
72 = 1 

Let K = {z: \z — 1| < 2~1/2}. Then, because of (3), it is clear that 

X) (! ~ K | ) / | a rga„ | T = œ. 
aneK 

Consider the angle of measure w/2 with its vertex at z = 1 which is bisected 
by the radius terminating at z = 1. If infinitely many of the an in K are 
interior to this angle, then a simple calculation shows that, for such an, 
1 — \an\ > |1 — an\

y -2~3/2. If only a finite number of an in K are in the 
angle, consider just those an which are in K and outside the angle; and let 
pn be the perpendicular distance from z = 1 to the radius through an. Clearly, 
pn < |argare| and pn/\l — an\ > COS(TT/4). Therefore, |1 — an\ < pn-2

l/2 < 
|arga„|21/2, and |1 - an[* < |arg an\

y'2v/2. Finally, 

S ( 1 - \an\)/\l-an\
y = œ. 

antK 

Next, using a theorem due to Dini (see 10, p. 293), we select a sequence 
{wn} (0 < wn < 1; wn —> 0) in such a way that 

CO 

(7) Z) (1 - \an\)/wn\argan\
y < oo ; 

w = l 

and we set 

Sn = {z: \z — an\ < w„|arg an\
y} {n = 1, 2, . . .). 
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Let us prove that, if k is any fixed positive integer, then 
oo 

FI b(z',an) 
n=l 

converges uniformly on 

D-\J Sj. 

Let b(z; a) = 1 + c(z; a). Then, by (1), 

r(*.n \ - ( K l - l ) ( g n + K\z) . 

an{\ — anz) 

and, consequently, for z £ D — Sn, we have 

| C ( , ; a . ) | < < 1 +
| ' 1 ' ^ 1 - ' ^ 

| 1 — a„.z\ 

2(1 - \an\ 
l — anz \an ~ z\ 

< 2(i - kl) 
k - Z\ 

<
 2(! - kl) 

"̂  ^w |arga„|7 ' 
This inequality, in conjunction with (7) and the fact that |c(z;aw)| < 2 
(n = 1, 2, . . . , k — 1), implies that 

oo 

n [l + c(*;a»)] 

converges uniformly on 

(see 16, p. 291). 
Next, we want to prove that, for each m(m > 0), R{m, 0, 7) meets at most a 

finite number of the disks Sn. Given any m(m > 0), it will suffice to prove 
that, for j sufficiently large, z0 Ç Sj C\ D entails 1 — \z<\ < m |arg z0|

7. 
Clearly, 

(8) 1 — |z0| < 1 — \dj\ + Wj |arg afr. 

Also, for j sufficiently large, 

|arg30 — arga ; | < arc sin {w;-|arg a ;- |Vk|} < ^^;|arg ap. 

Consequently, for j sufficiently large, 

m\a.rgzo\y > m(|argoy | — |arg z0 — arga ; | )
T > ra(|arga;| — wWj\a,rg aj\y)y. 
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Hence, if wjarg ap{l — ww^rg a ;- |7-1}7 > 1 — |a ; | + Wj\arg ap for j 
sufficiently large, then, by virtue of (8), we shall be finished. We might just 
as well prove that 

m{\ — ww;-|arg a;-|
7-1}7 > (1 — |û^|)/|arg a;-|

7 + Wj 

for j sufficiently large. Condition (6) implies that (1 — |a;-|)/|arg a;-|
7 —> 0 as 

j —> oo. Also 7 — 1 > 0, |arg a,j\ < w, and Wj —> 0 as j —» oo ; the desired con
clusion follows at once. 

Now, we are ready to prove that B(z; {an}) has a Ty-limit of modulus one at 
2 = 1 . Let m(m > 0) be fixed. Since R{m, 0, 7) meets at most a finite number 
of disks Sm 

00 

D- U SnDR(m,0,y) 
n=k 

for some integer k\ and, hence, 
00 

E[ b(z;an) 

converges uniformly on R(m, 0, 7). 
Since 

N 

n *(*;<*») 
7 1 = 1 

(iV any fixed positive integer) is a rational function with only a finite number 
of poles, all of which are outside of D U C, 

N N 

n &(S;ÛO -> n 6(1 ; o 
7 1 = 1 7 i = l 

as 0 —» 1 on R(m, 0, 7). Consequently, by virtue of the uniform convergence 
(see 12, p. 42 or 13, p. 551), 

N N 

B(z;{an}) = lim f j 6 0 ; aj—> lim J } ^(l;aw) = 5 ( 1 ; {a„}) 
iV-no n=l N^oc n=\ 

as s —> 1 on i?(ra, 0, 7). Finally, we observe that the limit is of modulus one 
since |ô(l; an)| = 1 (w = 1, 2, . . .). 

That the same conclusion holds for any subproduct is obvious. 

3. Global boundary behaviour. We next prove that, if a Blaschke 
sequence is sparsely distributed in the sense that (4) holds, then the associ
ated Blaschke product has r7-limits (1 < 7 < 1/a) almost everywhere. 

THEOREM 2. Let {an} be a Blaschke sequence such that 
00 

£ a - kir < -
for some fixed a(0 < a < 1). Then, for each 7(1 < 7 < 1/a), 
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Ey = {ete: D (1 - \an\)/\e
ie 

n=l 

has zero capacity of order ay. 

Preliminary remarks. Before commencing the proof, let us recall the defini
tions of capaci ty and Hausdorff outer measure. 

Let U be a set in the complex plane, and let a be a positive number . Then 
the a-dimensional Hausdorff outer measure of U is defined to be the number 

ha(U) = sup inft Z (d(Ut))
a: U C U U(; d(Ut) < e, i = 1, 2, . . . ) , 

e>0 V i=l i=l J 

where d(Ui) denotes the diameter of V\. 
Let U be a bounded Borel set in the complex plane, and let a be a positive 

number . If there exists a positive mass distribution \x over U of total mass 
one such t h a t 

x \z — ZQ\ adfji(z) 

is bounded away from infinity, the set U is said to be of positive capacity of 
order a] otherwise, it is said to be of capacity zero of order a, and we write 

Ca(U) = 0. 
There is a strong interrelation between these two concepts. For example, 

if U (a Borel set) is bounded and ha(U) = 0, then ca(U) = 0. The converse 
is not t rue ; bu t , if U is compact (or merely bounded) and ha(U) > 0, then 
Cfi(U) > 0 for all 0 < a. 

We shall need one more fact: If {Un} is a countable collection of Borel 
sets for which ca{Un) = 0 (n = 1, 2, . . .) , then 

C*\QUn) = 0. 

For detailed discussions of these concepts, see (8; 12, pp. 133-135; 7; and 

3) . 

Proof. Hold 7 ( 7 > 1) fixed; and, for each positive integer n, let On be an 
open arc on C with centre a t an/\an\ and of length (1 — |aw | )1 / T . Let 

Gn=UOk 

and Fn = C — Gn. Then clearly 

and 

\JFn 

C\Gn 
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are disjoint sets whose union is C. Let Ey C\ Fn = fn and 

Eynyn^nj = G. 

We shall prove that hay (G) = 0 and cay(fn) = 0 (n = 1, 2, . . .). 
First, we observe that 

y( PI Gn ) = 0 

since 

is a cover for 

for each N and 

DGn 
n=l 

iim E { ( i - k-l)1/rn = o. 
iV->oo &=A' 

Hence, hay(G) = 0. 
At this point, the reader should convince himself that Ey is a Borel set. 

Since the argument is straightforward, we omit the details. 
Next, let us examine Fn (n fixed). If eie is an arbitrary point of Fni one 

has, for k > n, \eid - ak\ > (1/TT)(1 - \ak\y'v; or (1 - \ak\)/\e
ie - ak\y < TT\ 

Suppose that cay(Jn) > 0. Then, there exists a positive mass distribution 
n(0) over fn such that 

•> fn 
z\-aydii(6) < M < oo 

for all z in the plane. 
In particular, for k > n> 

dn(0) 
j/n]?• -â^Me) ~ Jfn

(1 " | f lt |) V - f l ; i v i^ -
< f (i_k |r7r^-«) ____̂ W 

J fn 

n l a 7 

| e " - a * | " T 

< ( 1 - \ak\T *y(1-"} • M. 

Therefore, 

f { Ê (l-k*l)/|e"-o*r}d/i(fl) 
** fn \ k=n J 

oo n 

= Z {(l-M)/|e
<'-a»nd/*W 

jc=n */ / n 
oo 

< E a - M)aTr(1"a)• M < co, 
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which contradicts the assumption that 

Ë a - M)/I«" - o*r = » 
A ; = l 

on /„. Hence, cay(Jn) = 0 (n = 1, 2, . . .). 
Finally, hay{G) = 0 implies that cay{G) = 0; moreover, since G and /„ 

(w = 1, 2, . . .) are Borel sets, we conclude that cay(Ey) = 0. 
Combining Theorems 1 and 2, we get the following theorem: 

THEOREM 3. Let {an} be a Blaschke sequence such that 
oo 

E ( i - kl)"< -

/or some fixed a(0 < a < 1). Then, corresponding to each 7(1 < y < I/a), 
/&ere w a se£ E7 whose capacity of order ay is zero such that B(z\ \an)) and all 
its subproducts have Ty-limits of modulus one at each point of G — Ey. 

Next, let us prove that Theorem 3 is the best possible result in the following 
sense : 

THEOREM 4. Let a be a fixed number (0 < a < 1), and let {dn} be a monotone 
sequence such that 0 < dn < 1 (n = 1, 2, . . .), 

oo 

n=l 

and 

YJ d" = oo . 

Then, given 7(1 < 7 < 1/a), one can construct a Blaschke sequence {an} where 
1 — \an\ = dn and a set Ny where cp(Ny) > 0 for all f$ < ay in such a way 
that, at each point of Ny, B(z\ {an}) fails to have a non-zero Ty-limit. Moreover, 
one can construct a subproduct of B(z\ {an}) which, at each point of Ny, fails to 
have a Ty-limit. 

Proof, We shall construct a perfect set Ny and choose the arguments of 
the zeros ak in such a way that each of the sets R(m, 6, 7) (for eie Ç Ny and 
a certain positive number m) contains infinitely many ak. 

Hold 7 fixed, and let tn = 2 " ^ - n ' 2 ^ (n = 1, 2, . . . ). Let Ax be an 
arbitrary closed arc of length t\ on C; and, by removing an open arc from 
its centre, construct two subarcs A 2 and Az, each of length /2. In a similar 
fashion, select from A2 and A3 4 arcs A4, A*>, A^, An, each of length tz, and so 
on. Note that this construction is possible since 2tn+\ < tn {n = 1, 2, . . .). Let 
Ny = AXC\ (A2yj Az) C\ (A4U Ab\J AQU A7) n . . . be the resulting gener
alized Cantor set. 

Next, select arg ak in such a way that ak is on the radius through the centre 
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of Ak. Then, consider any point eie £ At, where 2"_1 < k < 2". We see that 
| e" - ak\ <dk + tn/2. Hence, 

\eie-ak\
y<2y[dl + tl-2-\ 

or 

_ A ^ i  
}ete - aûV 2'ldr1 + Q • 2" 7 • dk

r] 

> rJdrï~T~tT71ry • <të] " 
Next, we notice that 

CO CO 

E <£ < L 2" • <&. 

The first series diverges by hypothesis; consequently, the second must also 
diverge. It follows that 

2n • d%n > n~2 

for an infinite number of indices n, say, {tij}, where n± < n-i < n% < . . . . 
Then, 

(d2nj)
a > 2~nj • nj2 (J = 1 , 2 , . . . ) ; 

and, hence, 

(d*.,.)1* > T*»~> • nf" = *.; U =" 1, 2, . . .)• 

This yields 

tf, • 2"* • </^ < 2"* (J = 1 ,2 , . . . ) . 
Now, suppose that eie £ Ny. Then, for each tij (j = 1 ,2 , . . . ) , eie is in one 

of the arcs 

Ak (2nj~1 < k < 2*0, 

say, 

Consequently, 
dkj . 1 

> OTf 

1 
> V\àï^ + 2"7] 

> 1/(1 + 27) = 6T > 0 

for j = 1,2, 
Such being the case, 

1 - |o*y| > sy\e
le - akJ\y 

> (2/x)^57 |arga, , - 0\r (j = 1 ,2 , . . . ) . 
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Consequently, 

akj e R(m, 0, 7) 

for j = 1, 2, . . . if m = (2 /TT)?-V Set 

zj = <**, (j = 1 , 2 , . . .). 
Then, 

lim B(zj; {an}) = 0, 

and Zj —> eie as j —» 00 ; thus, if 23 (z; {an}) has a TVlimit at ei$, the limit must 
be zero. 

Finally, we observe that 

h(,(Ny) = lim 2n~X = lim 2~
12ni1-0/ay) • n " 2 ^ 7 = « 

W->oo 7i->oo 

if j8 < «7. This, combined with the fact that Ny is closed, implies that 
cp(Ny) > 0 for all 0 < «7. 

This completes the proof of the first part of the theorem. 
Next, we shall construct a subproduct of B(z\ {an}) which does not have 

a TVlimit on Ny. Select a sequence {cn\ in such a way that 0 < cn < 1 
(n = 1, 2, . . .) and 

00 

n c„ > 0. 

We shall define a sequence of real numbers {rk\ (0 < rk < rk+l < 1) and 
an increasing sequence of positive integers {jk}. 

Let 

W(j) = {am:2nj-1<m<2nj} 

where \n\, n^ . . .} is the set of indices defined above. For the sake of sim
plicity, set W(jk) = Wk once jk has been defined for a fixed integer k. 

Let j i = 1. Then 

B(z;W1) = IT Kz\an) 

is a /£?wte Blaschke product; and, hence, we can choose Ï\ (0 < r\ < 1) in 
such a way that 

(9) |B(*;T7i)| > ^ i 

for fi < |z| < 1. 
Next, we want to select j'2 in such a way that \B(z\ W(j2))\ > £2 for \z\ < ri. 

It suffices to take j'2 so large that 

E d - K|) < ^v108!1 + H"! : 

TT(i2) t -T ^1 V * / 

for, if IJSI < rh we have 
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f i b{z;am) - il < IT (1 + |c(*;a»)|) - 1 
Wi 

-n i + ii 1 - l)(gm + \am\z)\ ! 
am(l — âws) I J 

<n Ti + d-KD^l^i 

<exp[ D (i-^idllll-l 

< (1 - c 2 ) / 2 . 

By virtue of (3), such a j 2 exists. 
Next, choose r2 (rx < r2 < 1) in such a way that 

(10) \B(z;W1UW2)\ >c2 

for r2 < |s| < 1. 
Then, take j% to be so large that 

(ID \B(z; W(j»))\ > c, 

for 0 < \z\ < r2. 
By induction, define {rm} and {jm} in such a way that 

(12) \B(z;Wm)\ >cm 

for 0 < \z\ < rm_i (m > 1), and 

(13) |5(*;U w*) l>c 

for rro < \z\ < 1 (w > 1). 
From (9), (11), and (12), we see that \B(z; Wx)\ > cu \B(z; Wt)\ > c, 

\B(z; Wm)\ > cm, . . . for \z\ = r\. Consequently, 
oo oo 

\B(z;U Wm)\ > IT cm 
m=l m=l 

for \z\ = / i . 
Likewise, (10), (11), and (12) yield \B(z; Wx U W2)| > c2t \B{z\ W*)\ > c3, 

. . . for \z\ = r2; and, therefore, 
oo oo 

\B(z;U Wm)\ > I I cm 

for |z| = r2. 
In general, (13) and (12) yield 

\B(z;U Wm)\> U cm 
m=l m—n 

for \z\ = rn; and, therefore, 
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lim sup \B(reie; U Wm)\ = 1 

for all 6 (0 < 0 < 2a-). Let 

w = u wm. 
m=l 

Then, at each point of Nyt the subproduct B(z; W) of 5(2; {an}) fails to 
have a T^-limit. 

4. Boundary behaviour of the successive derivatives. Since the 
techniques used in this section are similar to those used in § 2, we shall merely 
sketch the proof of the following theorem: 

THEOREM 5. Let {an} be a Blaschke sequence such that 

£ (1 - \an\)/\e
te - an\" < co 

for some fixed number 7. Then, if 7 > 2k for some positive integer k, the &th 
derivative of B{z\ {an} ), as well as the &th derivative of any subproduct of B(z;{an}), 
has a Tyi^-limit at eid. 

Proof. For typographical reasons, let B(z\ {an}) = B{z) = B. First, we 
establish the theorem for k = 1. By Theorem 1, B has a TVlimit at eie\ hence, 
a fortiori, B has a 2"7/2-limit at eie. 

A simple calculation yields 

(14) B' = BS 

where 
CO 

S = S(z) = J2 (1 - k» |2) / ( l - ânz)(z - an). 
n=l 

As in § 2, we can assume without loss of generality that no zeros fall on 
the radius terminating at ei0; and, as before, we select {wn} in such a way 
that (7) holds. 

Let 

Qn = {z: \z - an\ < wl,2\axgan - 6\y/2}. 

Then, as in the proof of Theorem 1, one proves that R(m, 6, 7/2) meets only 
a finite number of disks Qn. Since the proof is not essentially different, we 
omit the details. 

Next, let us prove that S(z) approaches a (finite) limit as z approaches 
eie on R(m, 6, 7/2). Select an integer no in such a way that 

00 

R(m, 6, T / 2 ) D U Qn 
n=no 

is empty, and decompose S as follows: S = SF + SR where 
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SR = SR(z) = 2 (1 - \ak\
2)/(l - âkz)(z - ak). 

k=na 

Since SF is a rational function with only a finite number of poles, none of 
which is at eie, SF(z) -» SF(eie) as z -> e** on i?(ra, 0, T / 2 ) . 

Next, consider SR(z). For z £ D — Qky we have 

1 I |2 

1 - |a*l < 
1 1 1 

1* — ak\
2 

2 

^ 2 ( 1 - k*l) 

(1 - 0*20(2 - ak) 

Wtlarga* - 0|7 ' 

Consequently, by (7), SR(z) converges uniformly on 
CO 

D-\J Qt, 
fc=«o 

and, a fortiori, uniformly on R(m,d, y/2)\ and SR(z) —> SR(eid) (finite) as 
z -> eiB on R(m, 0, T / 2 ) . Thus 

oo 

S(z) - S„(e") + S*(e") = <T" E (1 - k l V k " - o*l* 
À - = l 

a s 2 - > e™ on i?(m, 0, T / 2 ) . 
Finally, combining this result with (14), we see that 

oo -i _ I | 2 

B'(z; {an})^B{ete: {a,,})*"" £ h ^ ^ h 
k=i \e — ak| 

as z —» e*0 on i?(ra, 0, T / 2 ) . 
We are now ready to prove the general case. First, we make some pre

liminary observations. 
Appealing to Weierstrass's theorem, one can easily prove that 

sa\z) = Ê ^ { T T ^ ^ — T I <* = 1-2-
£ri dz 1(1 - anz)(z — an)J 

• •) 

provided z 9^ an (n = 1, 2, . . .) and \z\ < 1. 
Leibniz's rule, applied to (14), yields 

(15) 5 ( ! ) = Ç 5w )5 ( ' -*- 1 ) ( ^ X ) (z * a,). 

Our induction hypothesis is that, if (5) holds (7 > 2fe), then 5(fc-1) and 
5<*> have r7/2,-limits (jfe = 1, 2, . . . , * - 1) at e^. 

We now prove this assertion for k = t. Clearly, under this hypothesis, 
#(*> (jfe = 0, 1, . . . , t - 1) and S<*> (ife = 0, 1, . . . , t - 2) have rT / 2 r l imits 
at eie. In view of (15), once we prove that 5 ( f _ 1 ) has a 7 ,

7/2rlimit at eid, it will 
follow that B{t) has a r T / 2 r l imi t at eid; and, accordingly, our induction will 
be completed. 
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Let un = (1 — anz) (z — an). Then one can easily verify (see 4, p. 131) t h a t 

sik) = Ê (i - \aAki z (HIM72) ... (-,) ^ ^ («|!ynM+1 
«=i L ai! a2! . . . ak\ jJi \ j\ / J 

where «i, a2, . . • , ak are non-negative integers, a\ + 2a2 + . . . + kak = &, 
and a = ax + . . . + ak. 

When k = t — I, a simple calculation shows t h a t the nth term in the 
above sum is bounded by a ( l — \an\)\z — an\~

2t where a is a constant which 
is independent of n and z provided \z\ < 1. (Note t ha t 

M ^ ( 2 ) = 0 ( i > 3 ) . ) 

Next , we let 

<?<" = [z:\z-Onl <wl'u\zrgan-d\yiu\ 

where wn is defined as in § 2. Then, as in § 2, we prove t ha t R(m, 6, y/2t) 
meets only a finite number of the disks Qn

(t) (n — 1, 2, . . .) . Since the rest 
of the proof is not essentially different from the case when k = 1, we omit 
the details. 

Combining Theorems 2 and 5, we get the following result : 

T H E O R E M 6. Let {an\ be a Blaschke sequence such that 
oo 

£ (i - kir < -
w = l 

for some fixed a (0 < a < 1). Then, corresponding to each y (2k < y < I/a; 
k some positive integer), there is a set Ey whose capacity of order #7 is zero such 
that the &th derivative of B(z; {an}), as well as the &th derivative of any sub-
product of B(z; {an}), has a T1^k-limit at each point of C — Ey. 

5. C o n c l u s i o n . Several concluding remarks seem to be in order. 
First , it should be pointed out tha t , al though, by Theorem 3, the exceptional 

set Ey is metrically small, it need not be topologically small. (Clearly it may be 
topologically small, as was the exceptional set constructed in Theorem 4.) 
Indeed, one can easily construct a Blaschke sequence in such a way tha t (4) 
holds and the union of its elements has C as its derived set. Then, by known 
results from cluster set theory (see 1 and 5) , one can infer t ha t the radial 
cluster set of the associated Blaschke product is equal to D U C a t each 
point of a residual set in C. 

Second, there are good reasons for believing t ha t the converses of Theorems 
1 and 5 are valid. In fact, Fros tman (8) has proved t h a t converse of Theorem 1 
for the case of radial limits. Since the converses were not essential for the 
purpose of this paper, and since it appeared t ha t proofs would necessarily 
be tedious, we have intentionally relegated the question; we hope to settle 
the mat te r in a future paper. 

Third , Theorem 5 assures us tha t , if (5) holds, then any rectifiable curve 
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in i?(m, 0, Y / 2 ) is mapped onto a rectifiable curve by B(z; {an}) or by any 
subproduct thereof. The present author conjectures that this result can be 
sharpened in the sense that R(my 6, 7/2) can be replaced by the larger set 
R(my 0, 7). The author can prove this when 7 = 1 and the curves are line 
segments in D terminating at eie. 

Fourth, in his thesis (3), Carleson singles out certain subclasses of the 
class of functions of bounded characteristic, among which are all Blaschke 
products satisfying (4), and proves that these functions have radial limits 
off certain sets of capacity zero of order a. In other words, he extends the 
special case of Theorem 3 when 7 = 1 to a much larger class of functions. It 
seems natural to conjecture that Theorem 3 can likewise be extended. 
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