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Abstract

We show that a P-object and simple configurations of P-objects have a formal derived
endomorphism algebra. Hence the triangulated category (classically) generated by such
objects is independent of the ambient triangulated category. We also observe that
the category generated by the structure sheaf of a smooth projective variety over the
complex numbers only depends on its graded cohomology algebra.
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Introduction

In recent decades, triangulated categories have become very popular in representation theory and
algebraic geometry. Given an object E in a k-linear triangulated category T, one can consider
the triangulated subcategory generated by E inside T. Its complexity depends strongly on the
graded endomorphism algebra End∗(E) =

⊕
i∈ZHom(E,E[i]).

For example, let E ∈ T be an exceptional object, that is, End∗(E) = k. In this case, E
generates a category equivalent to the derived category of vector spaces, which can be regarded
as the smallest and simplest k-linear triangulated category.

In general, due to a result by Keller [Kel94], the generated category 〈E〉 can always be
identified with the derived category D(B) of some differential graded (dg) algebra B whose
graded cohomology algebra coincides with the graded endomorphism algebra: H∗(B) ∼= End∗(E).
(Depending on the exact definition of the category generated by one object, we may have to
replace the derived category D(B) by its subcategory of compact objects, but we will ignore this
issue in this introduction and return to it in § 1.5.)

Of course, the situation is most pleasant if we already have

〈E〉 = D(End∗(E)), (∗)
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so that the generated category only depends on the graded endomorphism algebra but not on
the ambient category T. In this paper, we provide two situations in which (∗) holds: for E the
direct sum of P-objects that form a tree (in particular, if E is a single P-object) and for E = OX

the structure sheaf of a smooth projective variety.
It follows from Keller’s result that a sufficient condition for (∗) to hold is that the graded

algebra A := End∗(E) is intrinsically formal. This means that every dg-algebra B with H∗(B) = A
is actually quasi-isomorphic to A. A very useful sufficient criterion for intrinsic formality in
terms of vanishing of Hochschild cohomology was given by Kadeishvili [Kad88]. This was used
by Seidel and Thomas [ST01] to prove intrinsic formality of the endomorphism algebra of An-
configurations of spherical objects. The endomorphism algebra of a single spherical object is of the
form End∗(E) = k ⊕ k[−d] for some d ∈ Z. So, spherical objects are arguably the second simplest
type of objects in triangulated categories after exceptional objects. Besides this, the main reason
for interest in spherical objects is the fact that they induce autoequivalences, so-called spherical
twists, of triangulated categories. We also want to mention that Keller, Yang and Zhou studied
the Hall algebra of a triangulated category generated by a single spherical object in [KYZ09].

The notion of spherical objects was generalised by Huybrechts and Thomas [HT06] to that
of P-objects. These objects again induce twist autoequivalences. Furthermore, they play an
important role in the theory of hyperkähler manifolds, but appear also in symplectic geometry;
see, for example, [MW18]. The graded endomorphism algebra of a P-object is still rather simple:
it is generated by one element. More precisely, for n, k positive integers, an object P ∈ T is called
a Pn[k]-like object if

End∗(P ) = k[t]/tn+1 with deg(t) = k.

Such an object is called a Pn[k]-object (or just P-object) if it is additionally a Calabi–Yau object;
see Definition 2.1 for details.

Theorem A. Let P be a Pn[k]-like object with k > 2. Then End∗(P ) is intrinsically formal so
that 〈P 〉 ∼= D(End∗(P )) is independent of the ambient triangulated category.

One application is that the associated P-twist can be written as the twist along a spherical
functor F : D(k[t]) → T; see Corollary 2.9. This is actually a result due to Segal [Seg18,
Proposition 4.2]; we provide that the formality assumption there is always given.

A tree of Pn[k]-objects in a triangulated category T is given by a collection of Pn[k]-objects
Pi ∈ T, one for every vertex of a connected graph without loops, such that dimkHom

∗(Pi, Pj) = 1
if i and j are adjacent in the graph and Hom∗(Pi, Pj) = 0 otherwise.

Theorem B. Let {P1, . . . , Pm} be a tree of Pn[k]-objects with either n even and k > 2 or n = 1
and k > 4 (the spherical case). Then 〈P1, . . . , Pm〉 ∼= D(End∗(

⊕
i Pi)) is independent of the

ambient triangulated category.

Our proof uses Kadeishvili’s criterion for intrinsic formality together with a description of
minimal resolutions of graded algebras due to Butler and King [BK99].

Theorem B might be useful in order to prove a faithfulness result for actions induced by
Am-configurations of P-objects; see § 4.2 for some more explanation on this.

Let X be a smooth projective variety over C. A distinguished object in its bounded derived
category of coherent sheaves Db(Coh(X)) is given by the structure sheaf OX . We use the formality
of the Dolbeault complex to prove the following result.
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Theorem C. The category generated by OX in Db(Coh(X)) only depends on the graded algebra
End∗(OX) ∼= H∗(OX). More precisely,

〈OX〉 ∼= D(H∗(OX)).

This result may be of interest for the conjecture that the graded algebra H∗(OX) is a derived
invariant of smooth projective varieties.

This paper is organised as follows. In § 1 we fix the notation and collect well-known facts
on triangulated categories and dg-algebras. In § 2 we recall the definition of P-objects and their
associated twist. Then, in § 2.3, we prove that 〈P 〉 ∼= D(End∗(P )) for a P-object P . We review the
description of the terms of minimal resolutions of graded algebras due to Butler and King [BK99],
in § 3. We go through the main steps of its proof to make sure that the results hold in our graded
setting. In § 4,we prove Theorem B using the description of the terms of the minimal resolutions
in order to obtain the vanishing of the relevant Hochschild cohomology. Actually our results
on configurations of Pn[k]-like objects are more general than stated above; see Propositions 4.3
and 4.4. We prove Theorem C in § 5, actually for compact complex manifolds satisfying the
∂∂̄-lemma. In the final § 6 we give a general construction which produces trees of P-objects out
of trees of spherical objects. As a geometric application, we explicitly construct trees of P-objects
on Hilbert schemes of points on surfaces; see § 6.2.

1. Triangulated categories, dg-algebras and Hochschild cohomology

1.1 Conventions on algebras
The letter k will denote an algebraically closed field. All our algebras A will be k-algebras, and
whenever we speak of a graded algebra we mean a graded k-algebra A =

⊕
i∈ZA

i.
For a (graded) k-algebra A, we denote by the (graded) tensor product Ae := A ⊗k A

op

its enveloping algebra. Whenever we speak in the following about ideals or modules over some
(not necessarily commutative) algebra, we refer to finitely generated left ideals or modules. The
formalism of enveloping algebras allows us to speak of A -A-bimodules as left Ae-modules.

1.2 Conventions on triangulated categories
All triangulated categories are assumed to be k-linear, and subcategories thereof to be
triangulated and full. The shift functor will be denoted by [1]. All triangles are meant to be
distinguished and denoted by A→B → C, hiding the morphism C →A[1]. We write Hom∗(A,B)
=
⊕

i∈ZHom(A,B[i])[−i] for the derived homomorphisms in a triangulated category; this is a
complex equipped with the zero differential. In contrast, Hom•(A,B) will be the homomorphism
complex if A and B are objects of a dg-category, usually an enhancement of a triangulated
category. In the literature this is sometimes also denoted by RHom(A,B).

All functors between triangulated categories are meant to be exact. In particular, we will
abuse notation and write ⊗ for the derived functor ⊗L, using the same symbol as for the functor
between abelian categories.

1.3 dg-algebras and Hochschild cohomology
Definition 1.1. An dg-algebra A (over k) consists of a graded k-vector space

A =
⊕
i∈Z

Ai

and graded k-linear maps
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– d : A → A of degree 1 and

– m : A⊗A → A of degree 0

satisfying the following compatibilities:

– d2 = 0, so d is a differential ;

– m(m⊗ id) = m(id⊗m), so m is an associative multiplication;

– d(m(a, b)) = m(da, b) + (−1)deg am(a, db) for homogeneous elements (the Leibniz rule).

Example 1.2. A graded algebra is a dg-algebra with d = 0 and m(a, b) = a · b its multiplication.
Let A be a dg-algebra. Then m induces a multiplication on the cohomology H(A) :=

⊕
i∈ZA

i of
A with respect to d. So H(A) is a graded algebra.

A morphism φ : A → B of dg-algebras is a k-linear map compatible with differential and
multiplication, that is, φ(dAa) = dB(φ(a)) and φ(mA(a, b)) =mB(φ(a), φ(b)). Note that φ induces
a map on cohomology H(φ) : H(A) → H(B).

Definition 1.3. Let φ : A → B be a morphism of dg-algebras. Then φ is called a quasi-
isomorphism if H(φ) : H(A) → H(B) is an isomorphism of graded k-algebras.

We say that two dg-algebras are quasi-isomorphic if they can be connected by a finite zigzag
of quasi-isomorphisms.

Definition 1.4. A graded algebra A is called intrinsically formal if any two dg-algebras with
cohomology A are quasi-isomorphic; or equivalently, if any dg-algebra B with H(B) = A is
already quasi-isomorphic to A.

Recall that we denote by Ae = A ⊗k A
op the enveloping algebra of A. Note that A has a

natural Ae-module structure by multiplication from left and right. Given q ∈ Z and two graded
Ae-modules N and M , we write Homq

Ae(N,M) for the Ae-module homomorphisms which are
homogeneous of degree q.

Definition 1.5. The complex

B• : · · ·→ A⊗(q+2) d−q

−−→ A⊗(q+1)
→ · · ·→ A⊗2

→ 0,

with A⊗(q+2) in degree q, is called the Bar resolution of A as an Ae-module, where d = d−q is
given by

d(a1 ⊗ · · · ⊗ aq+2) =
∑
i

±a1 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ aq+2.

Note that the differentials are of degree zero.

Definition 1.6. Let A be a graded algebra and M a graded Ae-module. The Hochschild
cohomology of A with values in M is given by

HHp,q(A,M) := Hp(Homq
Ae(B

•,M)) for p, q ∈ Z.

Our main tool for proving intrinsic formality of certain graded algebras will be the following
result due to Kadeishvili.
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Proposition 1.7 [Kad88, Corollary 4], cf. [ST01, Theorem 4.7], [RW11, Corollary 1.9]. Let A
be a graded algebra. If HHq,2−q(A,A) vanishes for q > 2, then A is intrinsically formal.

Definition 1.8. For an Ae-module M =
⊕
M q, its shift in degree by i is the Ae-module M(i)

with M(i)q = M q+i.

Remark 1.9. Note that Homq
Ae(A,A) = Hom0

Ae(A,A(q)). Moreover, graded Ae-modules, with
Hom0

Ae as morphisms, form an abelian category grAe. There, the Bar resolution is a projective
resolution of the Ae-module A. It follows that HHp,q(A,M) = ExtpgrAe(A,M(q)). Hence, for any
other projective resolution P • of A as a graded Ae-module, we also have

HHp,q(A,M) = Hp(Homq
Ae(P

•,M)) = Hp(Hom0
Ae(P •,M(q))).

1.4 Derived categories and dg-categories
In this paper we will encounter two types of derived categories. First, for an abelian category
A there is the category D(A) which is the localisation of the homotopy category of complexes
with values in A at the class of quasi-isomorphisms. In our examples, the abelian category A

will be a category of (coherent or quasi-coherent) OX -modules over a variety or manifold X. For
details on D(A) see, for example, [Huy06, ch. 2].

Let us very quickly recall some facts and fix notation concerning dg-categories and
enhancements; see, for example, [KL15, § 3] for details. A dg-category is a k-linear category
E whose Hom-spaces are dg-k-modules and the compositions are compatible with the dg-
structure. The homotopy category H0(E) is defined to have the same objects as E and morphisms
HomH0(E)(E,F ) := H0(HomE(E,F )). The category dg-Mod(E) of (right) dg-modules over E

is defined as the category of dg-functors from Eop to the category of dg-modules over k.
Its homotopy category H0(dg-Mod(E)) carries the structure of a triangulated category. The
dg-category E is called pretriangulated if the image of the Yoneda embedding H0(E) ↪→
H0(dg-Mod(E)) is a triangulated subcategory.

Given a triangulated category T, a dg-enhancement of T is a pretriangulated dg-category E

together with an exact equivalence Φ: H0(E)
∼
→ T.

We can consider every dg-algebra A as a dg-category with one object. Then the homotopy
category H0(dg-Mod(E)) of dg-modules over that category agrees with the usual notion of the
category of dg-modules over the algebra A. The derived category of the a dg-algebra A is defined
as D(A) := H0(dg-Mod(A))[qis−1], the category dg-Mod(A) of right dg-modules over A localised
at the class of quasi-isomorphisms; for details see, for example, [Kel07, § 8]. If the dg-algebra A
is concentrated in degree 0 (i.e. it is an ordinary algebra), then D(A) = D(Mod(A)) where the
latter is the derived category of the abelian category Mod(A) in the sense explained above.

1.5 Formality and triangulated categories
The following results are well known to experts and can be found in essence or in part in, for
example, the survey [Kel06a] by Keller, the lecture notes [Toë11] by Toën or the book [BL94,
§ 10] by Bernstein and Lunts.

We recall terminology. Let T be a triangulated category. The category T is called cocomplete
if arbitrary direct summands exist. It is called idempotent complete if every idempotent
endomorphism splits. An object T ∈ T is called compact if for every set {Yi} of objects in
T the natural morphism ⊕

i

Hom(T, Yi) → Hom

(
T,
⊕
i

Yi

)
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is an isomorphism. We write Tc ⊂ T for the full subcategory of compact objects. It is a thick
(i.e. closed under direct summands) triangulated subcategory of T.

For an object T ∈ T, we write 〈〈T 〉〉 for the smallest cocomplete triangulated subcategory of
T containing T . We write 〈T 〉 for the smallest thick triangulated subcategory of T containing
T . If T is compact, then 〈T 〉 ⊂ Tc. There is an inclusion 〈T 〉 ⊂ 〈〈T 〉〉, since every cocomplete
triangulated category is thick; see [Nee01, Proposition 1.6.8].

The compact objects in the derived category D(QCoh(X)) of coherent sheaves on a separated
scheme of finite type over k coincide with the perfect objects, that is, objects locally quasi-
isomorphic to bounded complexes of locally free sheaves of finite rank.

The following statement can be found in a similar form in [Kel94, § 4.2] or [LO10, Propositions
1.16 and 1.17].

Theorem 1.10. Let T be a triangulated category with a dg-enhancement given by a dg-category
E and an equivalence Φ: H0(E)

∼
→ T. Let T ∈ T be a compact object, E ∈ E some object with

Φ(E) ∼= T , and consider the dg-algebra B = Hom•(E,E).

(i) Let T be idempotent complete. Then there is an exact equivalence 〈T 〉 ∼= D(B)c.

(ii) Let T be cocomplete. Then there are exact equivalences

〈〈T 〉〉 ∼= D(B) and 〈T 〉 ∼= D(B)c.

Proof. This follows from [LS16, Proposition B.1] by plugging in P = I = E and z = idE . �

Remark 1.11. The first part of the theorem applies to any bounded derived category Db(A) of an
abelian category A. On the one hand, Db(A) admits a (not necessarily unique) dg-enhancement.
On the other hand, Db(A) is automatically idempotent complete, which holds even if A is just
an idempotent complete exact category by [BS01, Theorem 2.8].

Corollary 1.12. Let T be a cocomplete dg-enhanced triangulated category and T ∈ Tc a
compact object. If the graded algebra A = End∗(T ) is intrinsically formal, then

〈〈T 〉〉 ∼= D(A) and 〈T 〉 ∼= D(A)c.

Proof. Let E ∈ E be some object with Φ(E) = T and B = Hom•(E,E). Then 〈〈T 〉〉 ∼= D(B)
by Theorem 1.10. As by assumption A is intrinsically formal, D(B) ∼= D(A) = D(Mod(A)) by
[BL94, Theorem 10.12.5.1]. Restricting to compact objects, this yields that 〈T 〉 = D(B)c =
D(Mod(A))c. �

Remark 1.13. Let A be an intrinsically formal graded algebra. By the corollary above, the
categories generated by objects T ∈ T with End∗(D) = A are all equivalent. In particular,
the category generated by such an object is independent of the ambient cocomplete dg-enhanced
triangulated category T.

2. P-objects

2.1 Definition and basic examples
Definition 2.1. Let P be an object in a k-linear triangulated category T.

– If End∗(P ) ∼= k[t]/tn+1 as graded k-algebras with deg(t) = k, then we call P a Pn[k]-like
object.
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– If a Pn[k]-like object P is also nk-Calabi–Yau object, i.e. Hom∗(P, · ) = Hom∗( · , P [nk])∨

functorially, then P is called a Pn[k]-object.

In some cases we will omit the integers n, k and just speak of P-like objects or P-objects.

P1[k]-objects are well-known as spherical objects; see [ST01]. Without the Calabi–Yau
property they are called spherelike objects and studied in [HKP16, HKP19] by Kalck, Ploog
and the first author.

Pn[2]-objects are known as Pn-objects and studied in [HT06] by Huybrechts and Thomas.
The focus there is on hyperkähler manifolds, whose structure sheaves are Pn-objects. Another
standard example of a Pn-object is the structure sheaf OZ ∈ D(X) of the centre OPn ∼= Z ⊂ X
of a Mukai flop of a variety of dimension dimX = 2n.

The terminology Pn[k] was introduced by the second author in [Kru18], where examples of
varieties are also given, whose structure sheaves are Pn[k]-objects.

Remark 2.2. A P-like object P is already a P-object in 〈P 〉. Therefore our main question about
the independence of 〈P 〉 of the ambient category does not rely on the Calabi–Yau property. As
a (possibly misleading) consequence, in [KYZ09] the Calabi–Yau property of spherical objects is
never mentioned.

Remark 2.3. Let X be a variety of dimension nk such that OX is a Pn[k]-like object in Db(X),
that is, End∗(OX) = k[t]/tn+1 and deg(t) = k. Note that End∗(OX) = H∗(OX) as graded k-
algebras, where the Yoneda product on the left becomes the cup product on the right. As the
cup product is graded commutative, k odd implies immediately t2 = 0, so n = 1 and OX is
spherelike. Consequently, n > 1 is only possible for even k.

However, the graded endomorphism algebra End∗(E) of an arbitrary object E ∈ T does not
need to be graded commutative. In fact, there are examples of Pn[k]-like objects with n > 2 and
k odd. For a trivial example, consider the dg-algebra A = k[t]/tn+1 with trivial differential and
deg(t) = k, where n > 0 and k are integers. Then A is a Pn[k]-object inside D(A). For examples
of Pn[1]-objects of geometric origin, see [Add16, Example 4.2(5) and (6)].

2.2 Associated P-twists
In this subsection we assume that T is a k-linear triangulated category that admits a
dg-enhancement and that the Pn[k]-object P ∈ T is proper, that is, Hom∗(P, F ) is a
finite-dimensional graded vector space for all F ∈ T. Under these assumptions there is an
autoequivalence PP : T

∼
→ T, the P-twist along P , whose construction, due to [HT06], we sketch

in the following. Whenever we speak about the P-twist associated to a P-like object in later
sections, we will tacitly assume that these assumptions are met.

So, let P be a Pn[k]-object and t be a non-zero element of Extk(P, P ). Using this generator,
one can define the upper triangle for any F ∈ T:

As the composition ev ◦ H = 0, the arrow Cone(H) 99K F exists. Completing this arrow to a
triangle gives the double cone which we denote by PP (F ).
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Remark 2.4. The dg-enhancement of T is necessary to actually define the P-twist PP as a functor.
In the case of spherical twists, see [AL17a] for a proper treatment and [HKP16, § 3.1] for a
rough idea. In the geometric setting, Fourier–Mukai kernels allow us to circumvent dg-categories;
see [HT06, § 2], where it is also shown that, in the geometric set-up, the above double cone
construction leads to a unique autoequivalence PP . The uniqueness of PP in the general case is
proved in [AL17b].

Proposition 2.5 (Cf. [HT06, Proposition 2.6]). Let P be a P-object. Then the associated P-
twist PP is an autoequivalence.

Remark 2.6. In the case of a spherical object, the P1-twist associated to it is the square of the
spherical twist; see [HT06, Proposition 2.9].

2.3 Formality of single P-objects
The following proposition is Theorem A in the introduction.

Proposition 2.7. Let P be a Pn[k]-like object in a cocomplete k-linear dg-enhanced
triangulated category with n, k positive integers. Then there are equivalences

〈〈P 〉〉 ∼= D(End∗(P )) and 〈P 〉 ∼= D(End∗(P ))c.

Proof. By the definition of a P-like object, End∗(P ) = k[t]/tn+1 with deg t = k. Hence, the result
follows by Theorem 1.10 together with the following lemma. �

Lemma 2.8. For n, k positive integers, the graded algebra k[t]/tn+1 with deg t = k is intrinsically
formal.

Proof. In order to apply the criterion of Proposition 1.7 for intrinsic formality, we have to show
the vanishing of the Hochschild cohomology groups HHq,2−q(A,A) for q > 2.

There is the well-known 2-periodic free resolution

· · ·→ Ae
v−→ Ae

u−→ Ae
v−→ Ae

u−→ Ae
m−→ A → 0

of the underlying non-graded algebra A = k[t]/tn+1 considered as the diagonal bimodule over
itself. Here, m is multiplication in A, u is multiplication by t⊗ 1− 1⊗ t, and v is multiplication
by tn ⊗ 1 + tn−1 ⊗ t + · · · + 1 ⊗ tn; see [Wei94, Example 9.1.4]. Now one can check easily that
this becomes a graded free resolution

· · · v−→ Ae(−(n+ 2)k)
u−→ Ae(−(n+ 1)k)

v−→ Ae(−k)
u−→ Ae

m−→ A → 0.

So we obtain a graded free resolution F • of the Ae-module A where

F q =

{
Ae(−i(n+ 1)k) for q = 2i even,

Ae(−(i(n+ 1) + 1)k) for q = 2i+ 1 odd.

By Remark 1.9, HHq,2−q(A,A) is a subquotient of Hom0
Ae(F q, A(2− q)) so it is sufficient to show

that the latter vanishes for q > 2. For q = 2i even,

Hom0
Ae(F q, A(2− q)) = Hom0

Ae(Ae, A(2− 2i+ i(n+ 1)k)) = A2−2i+i(n+1)k.

We have 2− 2i+ i(n+ 1)k = 2 + i(nk + k− 2) > nk for i > 2. But A is concentrated in degrees
between 0 and nk, so we get

Hom0
Ae(F 2i, A(2− 2i)) = A2−2i+i(n+1)k = 0.

The verification that Hom0
Ae(F q, A(2− q)) = 0 for q > 2 odd is similar. �
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Corollary 2.9 (Cf. [Seg18, Proposition 4.2]). Let P be a Pn-object in Db(X) and B = k[t]
where t has degree 2. Then the functor F : Db(B) → Db(X), B 7→ P is spherical and the spherical
twist along F is the P-twist along P .

Proof. This is proved in [Seg18, Proposition 4.2] under the assumption that End•(P ) is formal.
By Lemma 2.8, this assumption is always satisfied.

To be precise, Segal’s assumption is that the dg-algebra End•(P ) is formal as a dg-module
over B, so we have to show that this is implied by its formality as a dg-algebra. The B-module
structure is given by choosing an isomorphism End∗(P ) ∼= k[s]/sn+1 and an element u ∈ End•(P )
whose cohomology class is mapped to s under this isomorphism. Then tl acts on End•(P ) by
multiplication by ul. Now, we know that End•(P ) is formal as a dg-algebra. Hence there is a roof

where f and g are quasi-isomorphisms of dg-algebras and f is surjective. Indeed one can take
f : W •→ End•(P ) to be a cofibrant replacement with respect to the structure of a model category
on the category of augmented dg-algebras as described in [Kel06b, § 4.2].

Let v ∈ W • be a preimage of u under f . Then we can equip W • with the structure of a B-
algebra by letting t act by v so that f becomes an quasi-isomorphism of B-modules. Furthermore,
the cohomology class of v is non-zero, hence g(v) is a non-zero multiple of s. Therefore, g is a
quasi-isomorphism of B-modules, too. �

3. Minimal resolutions of graded algebras

In this section we describe a minimal resolution for certain graded algebras in terms of a
tensor presentation, following Eilenberg [Eil56] and Butler and King [BK99]. We use this for
the computation of the Hochschild cohomology which leads to a sufficient condition for these
algebras to be intrinsically formal.

3.1 Separably augmented algebras and resolutions of diagonal bimodules
We recall that a k-algebra R is separable if and only if there is an element p =

∑
xi ⊗ yi ∈ Re

(called separability idempotent), such that ap = pa for all a ∈ R and
∑
xiyi = 1 in R. For general

facts on separable algebras see the textbook by Weibel [Wei94, § 9.2].
We denote by N the semigroup of non-negative integers. A separably augmented k-algebra is

an N-graded k-algebra such that R = A0 is a separable k-algebra.

Remark 3.1. Note that A+ =
⊕

i>0A
i is the homogeneous radical of A, that is, the intersection

of all homogeneous maximal ideals of A. Indeed, every homogeneous maximal ideal of A is of
the form m = m0 ⊕ A+. Hence, every separably augmented algebra satisfies the assumptions of
[Eil56, § 2].

For a separable k-algebra R and an R -R-bimodule V , we denote by T (V ) =R⊕ V ⊕ (V ⊗RV )
⊕ · · · its (free) tensor algebra over R. Moreover, let J ⊂ T (V ) be the two-sided ideal generated
by V . If V carries an N+-grading, where N+ denotes the positive integers, the tensor algebra
inherits a canonical N-grading given by

deg(v1 ⊗ v2 ⊗ · · · ⊗ vn) = deg(v1) + deg(v2) + · · ·+ deg(vn).
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Then T (V )0 = R, so that T (V ) is a separably augmented algebra with T (V )+ = J . Conversely,
every separably augmented algebra with A0 = R has a graded surjection T (V ) � A for some
R -R-bimodule V , for example V = A+. Given a separably augmented algebra A and a graded
surjection T (V ) � A with kernel I, we call the induced isomorphism A ∼= T (V )/I a tensor
presentation of A.

Replacing V by V/(V ∩I) if necessary, we may always choose a presentation such that I ⊂ J2.
In the following, we will also assume that the inclusion Jn ⊂ I holds for some n > 2. This is
automatic if A is of finite dimension over k, as it will be in the applications.

Proposition 3.2 (Cf. [BK99, Proposition 2.4]). Let A be a separably augmented algebra with
A0 = R. A minimal resolution P • of A as a graded Ae-module has terms Pm = A⊗RTorAm(R,R)
⊗R A.

Moreover, suppose that A ∼= T (V )/I is a tensor presentation with Jn ⊂ I ⊂ J2 for some
n > 2. Then there are isomorphisms of graded R-algebras

TorA2p(R,R) =
Ip ∩ JIp−1J

JIp + IpJ
and TorA2p+1(R,R) =

JIp ∩ IpJ
Ip+1 + JIpJ

,

where the grading on the left-hand side is induced by the grading on A and the one on the
right-hand side is induced by the grading on T (V ).

Proof. This follows by setting L = T (V )e in [BK99, Proposition 2.4]. Unfortunately, Butler and
King assume that the grading of A is induced by the natural grading of T (V ) (i.e. the elements
of V have degree 1), which will never be the case in our applications.

However, one can check that every step of the proof of [BK99, Proposition 2.4] works in our
general graded set-up. Indeed, the proof of the equality Pm =A⊗RTorAm(R,R)⊗RAmainly refers
to Eilenberg [Eil56], who works in the general graded setting of separably augmented algebras
throughout; compare Remark 3.1. The arguments in [BK99] needed for this equality can all be
turned into arguments that also work in our graded set-up using the fact that an object in the
category of graded A-modules is projective if and only if the underlying non-graded A-module
is projective; see, for example, [Eil56, § 1].

The computation of TorAm(R,R) in terms of the ideals I and J is done using the projective
resolution

· · ·→ JIn

JIn+1
→

In

In+1
→

JIn−1

JIn
→ · · ·→ JI

I
→ A → R → 0;

see also [Bon83] for details. Its differentials are induced by the inclusions of the homogeneous
ideals I and J , hence are graded homomorphisms. �

Remark 3.3. Let P • → A be the minimal resolution of A as in Proposition 3.2. Note that there
is a natural isomorphism

HomAe(P q, · ) = HomRe(TorAq (R,R), · ).

3.2 Degree criterion for intrinsic formality
Definition 3.4. For a graded module M we define the maximal degree of M as

maxdeg(M) := max{deg(m) | non-zero homogeneous m ∈M}

and analogously the minimal degree mindeg(M).
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Proposition 3.5. Let A be a separably augmented algebra and let q ∈ N. If

maxdeg(A) + q − 2 < mindeg(TorAq (R,R))

then the Hochschild cohomology HHq,2−q(A,A) vanishes. In particular, if this inequality holds
for all q > 2, then A is intrinsically formal.

Proof. By Remarks 1.9 and 3.3, the Hochschild cohomology HHq,2−q(A,A) is a subquotient of

HomRe(TorAq (R,R), A(2− q)).

Hence, it is sufficient to show the vanishing of this Hom-space. But there cannot be any non-zero
homomorphism of degree zero, since the minimal degree of the source is smaller than the maximal
degree of the target.

Recall that HHq,2−q(A,A) = 0 for q > 2 implies intrinsic formality of A by Proposition 1.7. �

We will use Proposition 3.5 to prove intrinsic formality of a given separably augmented
algebra using a suitable tensor representation, namely in the case of endomorphism algebras of
configurations of P-objects.

Remark 3.6. Let A be an N-graded k-algebra, P a graded A-module, and M,N ⊂ P graded
submodules. Then the following rules hold:

– mindeg(M+N) = min{mindeg(M),mindeg(N)}; hence mindeg(M) = min{deg(mi)} for M =

A〈m1, . . . ,ml〉 with mi homogeneous;

– mindeg(M ∩N) > max{mindeg(M),mindeg(N)};
– mindeg(P/M) > mindeg(P ), with equality if mindeg(M) > mindeg(P ).

If I, J ⊂ A are ideals then we have additionally:

– mindeg(I · J) > mindeg(I) + mindeg(J).

Let A be a separably augmented algebra with tensor representation A ∼= T (V )/I and let J = A+

so that mindeg(J) = mindeg(V ). By Proposition 3.2 and the above rules, we get

mindeg TorA2p(R,R) > mindeg(Ip ∩ JIp−1J)

> max{pmindeg(I), 2mindeg(J) + (p− 1)mindeg(I)},
mindeg TorA2p+1(R,R) > mindeg(JIp ∩ IpJ) > pmindeg(I) + mindeg(J).

4. Configurations of P-objects

Definition 4.1. Let T a triangulated category and let Q be a graph. Our convention for a graph
is that we allow at most one edge joining two given vertices i 6= j and no edge from a vertex
to itself. A Q-configuration of objects in T is a collection of indecomposable objects Pi, one for
every vertex i of Q, such that, for all i 6= j, we have Hom∗(Pi, Pj) = Hom∗(Pj , Pi) = 0 if i and j
are not adjacent and

dimkHom
∗(Pi, Pj) = dimkHom

∗(Pj , Pi) = 1

if i and j are connected by an edge. A tree is a graph in the sense above without loops. Given a
Q-configuration {Pi} for a tree Q, we also say that the objects Pi form the tree Q.
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Remark 4.2. Let n, k be positive integers and let P1, . . . , Pm be a Q-configuration of Pn[k]-like
objects such that Hom60(Pi, Pj) is zero for i 6= j. Then A =

⊕
j End

j(
⊕

i Pi) is a separably

augmented algebra, since R = A0 = k〈e1, . . . , em〉 is spanned by the mutually orthogonal
idempotents ei := idPi .

For each i, denote by ti a non-zero map in Extk(Pi, Pi), which is unique up to multiplication
with a unit. By assumption, for any two Pi and Pj adjacent in Q, there is a unique positive degree
hij such that Exthij (Pi, Pj) = k · aij . Let V ⊂ End∗(

⊕m
i=1 Pi) be the graded k-subvector space

spanned by all ti and aij . This gives a graded surjection T (V )� A, hence a tensor presentation
A = T (V )/I by some homogeneous ideal I.

4.1 Formality of configurations of P-objects
Proposition 4.3. Let Q be a graph and let P1, . . . , Pm be a Q-configuration consisting of Pn[k]-
like objects in a k-linear triangulated category with n, k integers with n, k > 2. Assume that there
exists an integer h with nk/2 6 h 6 nk and gcd(k, h) > 1 such that

Hom∗(Pi, Pj) = k[−h] for all adjacent Pi and Pj .

Then A = End∗(
⊕m

i=1 Pi) is intrinsically formal.

Proof. We will use the tensor presentation of A = T (V )/I as in Remark 4.2 together with the
notation ei = idPi , End

k(Pi) = k · ti and Exth(Pi, Pj) = k · aij for adjacent Pi and Pj . Here V is
the graded vector space spanned by all ti and aij . Recall that J = T (V )+.

Note that the homogeneous elements 1, ti, . . . , t
n
i , aij constitute a basis of A as a k-vector

space. Hence,
maxdeg(A) = nk 6 2h. (A)

The only elements of I not involving an aij lie in the ideal generated by the elements tn+1
i .

Indeed, tli 6= 0 for l < n+ 1 by the definition of a Pn[k]-object. Furthermore, for i 6= j, the tensor
product ti⊗ tj already vanishes as an element of V ⊗R V ⊂ T (V ) as titj = ti⊗ tj = (tiei)⊗ tj =
ti ⊗ (eitj) = 0. Hence, the minimal degrees of I and J are

mindeg(I) > min{deg(tn+1
i ), deg(aijajl), deg(aijtj)} = h+ k,

mindeg(J) = min{deg(ti), deg(aij)} = k,

where the assumption that n > 2, hence h > k, is used. Hence, by Remark 3.6, we get

mindeg TorA2p(R,R) > max{p(h+ k), 2k + (p− 1)(h+ k)} = p(h+ k), (e)

mindeg TorA2p+1(R,R) > p(h+ k) + k. (o)

We can now confirm that the assumptions of Proposition 3.5 are satisfied for q > 4. For
q = 2p with p > 2, we have

maxdeg(A) + q − 2
(A)

6 2h+ 2p− 2
(26p)
< ph+ 2p

(26k)

6 ph+ pk
(e)

6 mindeg TorA2p(R,R).

Similarly, for q = 2p+ 1 with p > 2,

maxdeg(A) + q − 2
(A)
= 2h+ 2p− 1

(26p)
< ph+ 2p <

(26k)
ph+ pk + k 6

(o)
mindeg TorA2p+1(R,R).
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Hence, HHq,2−q(A,A) vanishes for q > 4. In order to apply Kadeishvili’s criterion for intrinsic
formality (see Proposition 1.7) all that is left is to show that HH3,−1(A,A) = 0. This can be
done using the Bar resolution B•; see § 1.3. Indeed, A is concentrated in degrees divisible by
gcd(k, nk/2) > 1. Hence, the same holds for B3 = A⊗5. Thus, there is no non-trivial degree-zero
homomorphism A⊗5

→ A(−1). �

The previous proposition does not cover the interesting case of configurations of spherical
objects, which we treat in the following proposition.

Proposition 4.4. Let Q be a graph and let P1, . . . , Pm be a Q-configuration consisting of k-
spherelike objects in a k-linear triangulated category with k > 4. Moreover, assume that, for
adjacent Pi and Pj ,

Hom∗(Pi, Pj) = k[−hij ] with

⌊
k

2

⌋
6 hij 6 k.

Then A = End∗(
⊕m

i=1 Pi) is intrinsically formal.

Proof. This can be shown along the same lines as the proof of Proposition 4.3, but some of the
estimates change. The minimal degrees of the ideals I and J become

mindeg(I) > min{deg(t2i ), deg(aijajl), deg(aijtl)} > 2h,

mindeg(J) = min{deg(ti), deg(aij)} > h,

where we abbreviate h := bk/2c. Note that h > 2 by the assumption on k. Hence, the minimal
degrees in the minimal projective resolution are now

mindeg TorA2p(R,R) > max{2ph, 2h+ 2(p− 1)h} = 2ph, (e)

mindeg TorA2p+1(R,R) > 2ph+ h. (o)

Furthermore, note that
maxdeg(A) = k 6 2h+ 1. (A)

We will check that the assumptions of Proposition 3.5 are satisfied for q > 2, which concludes
the proof. Indeed, for q = 2p with p > 2,

maxdeg(A) + q − 2
(A)

6 2h+ 2p− 1 < 2h+ 2p 6 2ph
(e)

6 mindeg TorA2p(R,R).

To see this, we still need h + p 6 ph. This inequality is equivalent to h/(h− 1) 6 p, as h > 2,
and holds as p > 2. Similarly, for q = 2p+ 1 with p > 1, we have

maxdeg(A) + q − 2
(A)

6 2h+ 2p < 2ph+ h
(e)

6 mindeg TorA2p+1(R,R).

Here, the middle 2h+2p < 2ph+h is equivalent to h/(h− 1) < 2p, as h > 2, hence the inequality
holds due to p > 1. �

Remark 4.5. If we assume in Proposition 4.3 that the Pi are Pn[k]-objects (not just P-like), the
assumption nk/2 6 h 6 nk already implies h = nk/2; compare the proof of Corollary 4.7 below.
In this case, the assumption gcd(k, h) > 1 is automatically fulfilled if n is even or k is a multiple
of 4.

Similarly, if we assume the objects in Proposition 4.4 to be spherical, the assumption bk/2c 6
hij 6 k already implies h ∈ {bk/2c, dk/2e}.
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Remark 4.6. For k = 1, the assertion of Proposition 4.4 has to be false. To see a counterexample,
consider an elliptic curve E. Then Db(Coh(E)) is generated by the A2-sequence of 1-spherical
sheaves OE and Op for any p ∈ E. Indeed, out of these two sheaves one can construct all
the line bundles O(n · p) by successive cones, and the line bundles O(n · p) contain an ample
sequence. Now, one can check that the graded endomorphism algebra End∗(OE ⊕ Op) is the
same, regardless of the chosen elliptic curve E and point p ∈ E. However, two non-isomorphic
elliptic curves E 6∼= E′ always have non-equivalent bounded derived categories; see, for example,
[Huy06, Corollary 5.46].

For k = 2 and 3, we still expect intrinsic formality, as in the case of algebras coming from
Am-configurations of such objects; see [ST01].

The following corollary, in combination with Theorem 1.10, gives Theorem B in the
introduction.

Corollary 4.7. Let {Pi} be a tree of Pn[k]-objects in a cocomplete dg-enhanced triangulated
category T with

– either n, k > 2, nk even, and gcd(k, nk/2) > 1;

– or n = 1 and k > 4.

Then the thick subcategory 〈{Pi}〉 is independent of the ambient category T.

Proof. Replacing the objects Pi by appropriate shifts Pi[ni], we may assume that they satisfy
the assumptions on Hom∗(Pi, Pj) of Propositions 4.3 and 4.4, respectively. For the restrictions
on n and k see Remark 4.5. Denote by Q the underlying tree. We may start with some edge
i ∈ Q and set ni = 0. By definition of a Q-configuration of objects, for adjacent i and j, we have

Hom∗(Pi, Pj) = k[−a], Hom∗(Pj , Pi) = k[−b]

for some a, b ∈ Z. Note that we assume the objects to be P-objects (not just P-like). Hence, Serre
duality gives a + b = nk. Hence, in the case where nk is even, we may set nj = a − h, so after
replacing Pj by Pj [a− h] we get

Hom∗(Pi, Pj) = k[−h] = Hom∗(Pj , Pi).

Since, by assumption, Q has no loops, there is no obstruction to extending this procedure to the
whole of Q. The case where n = 1 and k > 5 is odd works similarly; compare [ST01, § 4c].

Now we can use Propositions 4.3 and 4.4 together with Corollary 1.12 to conclude that
〈{Pi}〉 ∼= D(A)c where A = End(

⊕
i Pi). �

Remark 4.8. There are results, analogous to those of this subsection, on the formality of the
endomorphism algebras of configurations of Pn[k]-objects for k negative. To see this, one can use
that a non-positively graded algebra is intrinsically formal as soon as

mindeg(A) + q − 2 > maxdeg(TorAq (R,R)) for q > 3,

which is analogous to Proposition 3.5.
We chose to concentrate on Pn[k]-objects with k positive, since those with negative k are

rare in practice, for example, negative Calabi–Yau objects cannot appear in derived categories
of smooth varieties; compare [HKP19, Lemma 1.7].
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4.2 Actions induced by Am-configurations of P-objects
Seidel and Thomas [ST01] used the formality of End(

⊕
i Pi), where P1, . . . , Pm is an Am-

configuration of k-spherical objects in a cocomplete dg-enhanced triangulated category T, in
order to prove that the induced action of the braid group Bm+1 on T is faithful. This means
that the subgroup 〈TP1 , . . . ,TPm〉 ⊂ Aut(T) generated by the spherical twists is isomorphic to
Bm+1. Consider the Pi as P1[k]-objects and the associated P-twists are then the square of the
spherical twists: PPi

∼= T2
Pi

; compare Remark 2.6. It follows from the description of the group
spanned by the squares of the standard generators of the braid group [Col94] that the only
relations between the P-twists are the commutativity relations

PiPj = PjPi for |i− j| > 1.

Hence, it makes sense to conjecture the following more general faithfulness result.

Conjecture. Let P1, . . . , Pm be an Am-configuration of Pn[k]-objects with k > 2. Then the only
relations between the associated P-twists Pi := PEi ∈ Aut(T) are the commutativity relations

PiPj = PjPi for |i− j| > 1.

It is easy to see that, for two Pn[k]-objects with vanishing graded Hom-space between them,
the associated P-twists commute; see [Kru15, Corollary 2.5]. Hence, the unknown and probably
difficult part of the conjecture is that there are no further relations between the twists associated
to an Am-configuration of P-objects.

By Corollary 4.7, it would be sufficient to consider one particular example of an Am-
configuration of Pn[k]-objects in order to prove (or disprove) the conjecture for a fixed value
of m, n and k with nk even and gcd(k, nk/2) > 1.

5. The triangulated category generated by the structure sheaf

Let X be a smooth projective variety over C. Note that the graded endomorphism algebra
End∗(OX) coincides with the cohomology algebra H∗(OX) where the multiplication is given by
the cup product. This algebra, sometimes called the homological unit of X, is conjectured to be
a derived invariant of the variety X; see [Abu17]. In this section we will show that the generated
thick triangulated category 〈OX〉 ⊂ Db(Coh(X)) only depends on this graded algebra.

Actually, we show this statement for any compact complex manifold X which satisfies the
∂∂̄-lemma, that is, X has the following property.

Let ω be a complex-valued differential form on X which is ∂-closed and ∂̄-closed.
If ω is ∂-exact or ∂̄-exact, then it is already ∂∂̄-exact, which means that there is a
differential form χ with ∂∂̄χ = ω.

Every compact Kähler manifold satisfies the ∂∂̄-lemma; see, for example, [Voi02, § 6.1].
However, there are compact complex manifolds satisfying the ∂∂̄-lemma which are not Kähler.
Still they share many properties of compact Kähler manifolds; to get an impression see [DGMS75,
Ang14, ACRT18].

Theorem 5.1. Let Y be a compact complex manifold satisfying the ∂∂̄-lemma. Let Dbcoh(Y )
be the subcategory of complexes with bounded and coherent cohomology in D(Mod(Y ))
and 〈OY 〉 ⊂ Dbcoh(Y ) the thick subcategory generated by OY . Then there is an equivalence
〈OY 〉 ∼= D(H∗(OY ))c.
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In this case, by the GAGA principle, we get an equivalence Db(Coh(X)) ∼= Dbcoh(Xan); see
[Căl00, Theorem 2.2.10]. Consequently, we also obtain 〈OX〉 ∼= D(H∗(OX))c.

We denote by A0,• the Dolbeault complex on the compact complex manifold Y . Its terms
A0,p are the anti-holomorphic p-forms on Y and its differential is given by ∂̄.

Proposition 5.2 [NT78, Theorem 8]. Let Y be a connected complex manifold satisfying the
∂∂̄-lemma. Then the Dolbeault complex A0,• on Y is formal.

Proof of Theorem 5.1. Note that OY is a compact object in Dbcoh(Y ). Thus, in view of
Proposition 5.2 and Theorem 1.10(i), it is enough to find a pretriangulated dg-category E together
with an exact equivalence α : H0(E) → Dbcoh(Y ) and an object E ∈ E with α(E) ∼= OY and
Hom•E(E,E) ∼= A0,•.

A dg-enhancement of Dbcoh(Y ) is given by the category E = PA of [Blo10]; see, in particular,
[Blo10, Theorem 4.3]. The objects of PA are given by pairs (M,∇) consisting of a graded module
M over A = A0,0 and a connection ∇ : M ⊗A A0,• satisfying some additional conditions; see
[Blo10, Definition 2.4] for details. We consider the object E = (A, ∂̄) ∈ PA. Indeed, α(E) = A

0,•
Y

where α : H0(PA)
∼
→ Dbcoh(Y ) is the equivalence constructed in [Blo10, Lemma 4.5] and A

0,•
Y

denotes the Dolbeault complex of sheaves (not their global sections as in A0,•). The complex
A

0,•
Y is a resolution of OY ; see, for example, [Voi02, Proposition 4.19]. Hence, α(E) ∼= OY . The

fact that Hom•E(E,E) ∼= A0,• follows directly from the definition of the Hom-complexes in the
category PA; see [Blo10, Definition 2.4]. �

6. Examples of configurations of P-objects

In the following examples, we assume that the characteristic of the field k does not divide the
order n! of the group Sn.

6.1 Trees of P-like objects on symmetric quotient stacks
We recall a construction of Pn[k]-like objects from k-spherelike objects, which is essentially due
to Ploog and Sosna in [PS14]. Let X be a smooth projective variety and E be a k-spherelike
object in Db(X). Consider the n-fold cartesian product Xn with its projections πi : X

n
→ X.

Then we define
E�n = π∗1E ⊗ · · · ⊗ π∗nE ∈ Db(Xn).

There is a natural action on Xn by the permutation group Sn. Actually, we can turn E�n

into an object E{n} in the equivariant derived category DbSn
(Xn) by equipping E�n with the

canonical linearisation given by permutation of the tensor factors. By E−{n} ∈ DbSn
(Xn), we

denote the object E�n equipped with the linearisation which differs from the canonical one by
the non-trivial character (also known as sign or alternating representation) a of Sn. Let [Xn/Sn]
be the quotient stack of Xn by the permutation action of Sn. By the definition of sheaves on a
quotient stack, there is an equivalence DbSn

(Xn) ∼= Db([Xn/Sn]).

Remark 6.1. The above construction also works for E inside Db(A) = Db(mod(A)) where A is a
k-algebra. Instead of the cartesian product Xn we consider A⊗n and instead of the equivariant
derived category we consider the derived category Db(Sn#A⊗n) of the algebra Sn#A⊗n which
is known as the skew group algebra in the literature.

More generally, there is the concept of the symmetric power SnT of a (dg-enhanced)
triangulated category T due to Ganter and Kapranov [GK14]. This covers both of the
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constructions above, since SnDb(X) ∼= DbSn
(Xn) and SnDb(A) ∼= Db(Sn#A) for a variety X

and an algebra A, respectively.

Remark 6.2. If X is a surface, then DbSn
(Xn) has a very geometric interpretation. Namely, the

derived McKay correspondence of Bridgeland, King and Reid [BKR01] and Haiman [Hai01] gives
an equivalence DbSn

(Xn) ∼= Db(X [n]) where X [n] denotes the Hilbert scheme of n points on X;

see also [Sca09, § 1.3]. In § 6.2 we will describe the corresponding P-objects in Db(X [n]).

Proposition 6.3 (Cf. [PS14, Lemma 4.2]). Let n, k ∈ N with n > 2 and k even. Let X be a
smooth projective variety and let E be a k-spherelike object in Db(X). Then E{n}, E−{n} ∈
DbSn

(Xn) are Pn[k]-like objects.
Moreover, if E is a k-spherical object (e.g. if E is spherelike and X is a Calabi–Yau variety

of dimension k), then E{n} and E−{n} are Pn[k]-objects.
Finally, let E,F ∈ Db(X) be objects with Hom∗(E,F ) = k[−m] for some m ∈ N. Then

Hom∗(E{n}, F {n}) = Hom∗(E−{n}, F−{n}) =

{
k[−nm] if m is even,

0 if m is odd,

Hom∗(E−{n}, F {n}) = Hom∗(E{n}, F−{n}) =

{
0 if m is even,

k[−mn] if m is odd.

Proof. All of this follows from the equivariant Künneth formula which says that

Hom∗(E{n}, F {n}) = Hom∗(E−{n}, F−{n}) = SnHom∗(E,F ),

Hom∗(E−{n}, F {n}) = Hom∗(E{n}, F−{n}) =
n∧
Hom∗(E,F ).

Note that both the symmetric and the exterior product are formed in the graded sense. For
example, if m ∈ N is odd, then

Sn(k[−m]) ∼=
( n∧

k
)

[−mn] = 0. �

Corollary 6.4. Let {Ei} be k-spherelike objects in Db(X) which form a tree Q. Then there

is a choice of signs εi = ±1 such that the Pn[k]-like objects E
ε1{n}
1 , . . . , E

εm{n}
m form the same

tree Q. Additionally, if the Ei are k-spherical, then this is a configuration of Pn[k]-objects.

Proof. We start with some vertex i0 of Q and set Fi0 := E
{n}
i0

. Then, given an adjacent j of
i0, the graded Hom-space Hom∗(Ei0 , Ej) is one-dimensional, hence concentrated in one degree,

say d. We set εj := (−1)d and Fj := E
εj{n}
j . By Proposition 6.3, Fi0 and Fj are Pn[k]-like objects

and Hom∗(Fi0 , Fj) = k[dn] is one-dimensional. In other words, Fi0 and Fj form an A1-tree of
Pn[k]-like objects. Since Q is a tree, we can continue inductively and end up with a Q-tree

{Fj = E
εj{n}
j } of Pn[k]-like objects. �

Remark 6.5. The corollary yields also more general configurations of P-like objects, provided
that for each cycle the signs can be attributed consistently. We do not spell out the details, but
provide an example.

By a result of Kodaira, cycles of (−2)-curves Ci appear as singular fibres in elliptic fibrations
of surfaces; see the book [BHPV04, §V.7] by Barth, Hulek, Peters and van den Ven. Hence, such
a cycle forms a cycle of spherical objects OCi , as Hom∗(OCi ,OCj ) is non-zero if and only if the
curves Ci and Cj intersect. Consequently, these objects induce a cycle of Pn-objects, provided
the cycle is of even length.
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6.2 A geometric example of a tree of P-objects
Let Q be a tree and X be a smooth quasi-projective surface together with a Q-configuration of
(−2)-curves. This means that, for every vertex i of the tree Q, there is a (−2)-curve P1 ∼= Ci ⊂X,
Ci and Cj intersect in one point if there is an edge joining i and j and they do not intersect
otherwise. Note that such a configuration might not exist for any given tree Q; see [HP19, § 6]
for sufficient criteria.

The objects OCi ∈ Db(X) form a Q-tree of 2-spherical objects with Hom∗(OCi ,OCj ) = k[−1]
for adjacent i and j; see [ST01, Example 3.5]. By Corollary 6.4, there is an induced Q-tree of

Pn-objects of the form O
εi{n}
Ci

in DbSn
(Xn). Here we have to choose opposite signs εi = −εj for

adjacent i and j, as the graded Hom-space is concentrated in the odd degree 1.
We use the derived McKay correspondence as mentioned in Remark 6.2 (recall that we omit

R and L in front of derived functors),

Φ := p∗ ◦ q∗ : Db(X [n])
∼
→ DbSn

(Xn),

to interpret this as a tree of Pn-objects on the Hilbert scheme X [n]. Here we denote by q : Z →

X [n] and p : Z → Xn the projections from the universal family of Sn-clusters Z ⊂ X [n] ×Xn.
Hence there is a commutative diagram

where X(n) := Xn/Sn is the symmetric product, π is the Sn-quotient morphism, and µ is the
Hilbert–Chow morphism. Furthermore, Z ∼= (X [n] ×X(n) Xn)red is the reduced fibre product of
this diagram. Note that every closed subscheme C of X induces a canonical closed embedding
C [n] ↪→ X [n].

Proposition 6.6. For C ⊂ X a smooth curve, we have Φ(OC[n]) ∼= O
{n}
C .

Proof. For a smooth curve C, the Hilbert–Chow morphism C [n]
→ C(n) is an isomorphism. So,

C [n] ∼
→ C(n) ↪→ X(n) is a closed embedding with image C(n). Consequently, using the diagram

above, p : Z → Xn maps q−1C [n] isomorphically to Cn. Hence, Φ(OC[n]) ∼= OCn ∼= O
{n}
C . �

Let i and j be two adjacent vertices of Q. Then Ci ∩ Cj is a reduced point, hence cannot

contain a subscheme of length n > 2. Thus, C
[n]
i and C

[n]
j do not intersect inside X [n]. So we see

geometrically that Hom∗(O
{n}
Ci
,O
{n}
Cj

) = 0 for support reasons.

For n = 2, we give a concrete description of the image of O
−{n}
C under the McKay

correspondence, where C = Ci is one of the rational curves. Denote by δ : X → X(2) the
diagonal embedding into the symmetric product. Then E := µ−1δ(X) is the exceptional divisor of
X [2]

→X(2). There is a line bundle L ∈ Pic(X [2]) such that L2 ∼= O(E); see [Leh99, Lemma 3.7].
We summarise this situation in the following diagram, consisting of a blow-up square on the

right and its restriction to C, so both are cartesian:

(�)
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Note that the restrictions ρ : E →X and ΣC → C of µ are P1-bundles (actually, ΣC is isomorphic
to the Hirzebruch surface Σ4).

Proposition 6.7. Denote by YC the closed subscheme ΣC ∪ C [2] in X [2]. Then Φ(OYC ⊗L) ∼=
O
−{2}
C .

Before we prove the proposition, we need to recall another feature of the Hilbert scheme of
two points, namely that the functor

Θ := ι∗ρ
∗ : Db(X) → Db(X [2])

is spherical; see [Kru15, Remark 4.3] or [KPS18, Theorem 4.26(ii)]. This means, in particular,
that the associated twist functor TΘ, defined by the triangle of functors

ΘΘR ε−→ id → TΘ,

where ε is the counit of adjunction, is an autoequivalence of Db(X [n]). The right adjoint ΘR of
Θ is given by

ΘR ∼= ρ∗ι
! ∼= ρ∗(ι

∗( · )⊗OE(E))[−1]. (∗)

Lemma 6.8. The subvarieties C [2] and E of X [2] intersect transversally and ρ maps the scheme-
theoretic intersection E ∩ C [2] isomorphically to δ(C) ⊂ X(2).

Proof. The second assertion implies the first one since transversality means that the scheme-
theoretic intersection E ∩ C [2] is reduced and of the expected dimension 1.

The composition C [2] ↪→ X [2] ρ−→ X(2) is a closed embedding with image C(2) ⊂ X(2). Using
the right cartesian diagram in (�), it follows that ρ maps E ∩C [2] isomorphically to the scheme-
theoretic intersection δ(X) ∩ C(2).

Hence, we only have to prove that δ(X)∩C(2) = δ(C). This question is local in the analytic
topology so that we may assume that X = SpecC[x1, x2] and C = SpecC[x1]. We set si = xi+yi
and ti = xi − yi so that X2 = SpecC[s1, s2, t1, t2] with the natural action of S2 = 〈τ〉 given by
τ · si = si and τ · ti = −ti. Therefore,

O(X(2)) = C[s1, s2, t1, t2]S2 = C[s1, s2, t
2
1, t1t2, t

2
2].

The ideal of δ(X) ⊂ X(2) is given by I = (t1, t2)S2 = (t21, t1t2, t
2
2) and the ideal of C(2) ⊂ X(2) is

given by J = (s2, t2)S2 = (s2, t
2
2). Hence,

δ(X) ∩ C(2) = Spec(C[s1, s2, t
2
1, t1t2, t

2
2]/(I + J)) = SpecC[s1] = δ(C). �

Lemma 6.9. For the spherical twist TΘ, we have TΘ(OC[2](−E)) ∼= OYC .

Proof. By OC[2](−E) we mean OX[2](−E)|C[2] . Using (∗) and the previous lemma, we compute

ΘR(OC[2](−E)) ∼= OC [−1].

Note that Θ(OC) ∼= OΣC
, so the twist triangle applied to OC[2](−E) becomes, after shift,

OC[2](−E) → TΘ(OC[2](−E)) → OΣC
.
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The long exact cohomology sequence shows that Hi(TΘ(OC[2](−E))) = 0 for i 6= 0. Hence, the
triangle reduces to the short exact sequence

0 → OC[2](−E ∩ C [2]) → H0(TΘ(OC[2](−E))) → OΣC
→ 0. (1)

As ΣC ∩ C [2] = E ∩ C [2], there is the canonical short exact sequence

0 → OC[2](−E ∩ C [2]) → OYC → OΣC
→ 0. (2)

One can compute that Ext1(OΣC
,OC[2](−ΣC ∩ C [2])) = C, using for example [CKS03, Theorem

A.1]. It follows that (1) and (2) coincide, so

TΘ(OC[2](−E)) ∼= H0(TΘ(OC[2](−E))) ∼= OYC . �

Proof of Proposition 6.7. Combining the formulae of [KPS18, Theorem 4.26], we get an
isomorphism of functors

Φ−1(Φ( · )⊗ a) ∼= L ⊗ TΘ( · ⊗L−2),

where L2 = O(E). Combining this with Proposition 6.6 gives

Φ−1(O
−{2}
C ) ∼= L ⊗ TΘ(OC[2] ⊗L−2).

Now the assertion follows by Lemma 6.9. �

For Ci, Cj ∈ X two (−2)-curves which intersect in one point, YCi and C
[2]
j intersect

transversally in one point of X [2]. This confirms geometrically that

Hom∗
Db

S2
(X2)

(O
−{2}
Ci

,O
{2}
Cj

) ∼= Hom∗
Db(X[2])

(OYCi
⊗L,O

C
[2]
j

) = C[−2];

compare Proposition 6.3.
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