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Uniqueness of Shalika Models

Chufeng Nien

Abstract. Let Fq be a finite field of q elements, F a p-adic field, and D a quaternion division algebra

over F. This paper proves uniqueness of Shalika models for GL2n(Fq) and GL2n(D), and re-obtains

uniqueness of Shalika models for GL2n(F) for any n ∈ N.

1 Introduction

Let Fq denote a finite field of q elements, and F a p-adic field. Let F be one of the

above fields, and D = DF a quaternion division algebra over F. Denote by Matn

the space of n-by-n matrices over F. Throughout, ψ0 denotes a nontrivial, complex,

additive character of F.

Given D, a quaternion division algebra over F, there exists a basis {1, i, j, k} for D

with multiplication table given by

1 i j k

1 1 i j k

i i α k α j

j j −k β −βi

k k −α j βi −αβ

for suitable α, β ∈ F
∗.

For z = a + bi + c j + dk ∈ D with a, b, c, d ∈ F, define the conjugation of z by

z̄ = a − bi − c j − dk. Note that z1 · z2 = z̄2 · z̄1, i.e., it is an anti-involution on

D. (An anti-involution τ of an algebra (or a group) G is an operator on G so that

(gh)τ = hτ gτ , g, h ∈ G, and τ 2
= id) The reduced norm N and reduced trace Tr

on D are defined as usual by Nz = zz̄ and Tr z = z + z̄. There is an embedding

ι : D →֒ GL(2,K) defined by

z = a + bi + c j + dk = (a + bi) + (c + di) j = z1 + z2 j 7→
(

z1 z2β
z2 z1

)

,

where K = F(
√
α). Then Tr z = tr(ιz), z ∈ D, where tr is the trace map on matrices.

Under this embedding, D is a closed subgroup of GL(2,K). This embedding can be

naturally extended to ι : GL(n,D) →֒ GL(2n,K).
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1326 C. Nien

Let A be either the field F (one of the Fq, F) or the quaternion division algebra D.

In GL2n(A), denote

d(g) =

(

g 0

0 g

)

, g ∈ GLn and u(X) =

(

In X

In

)

, X ∈ Matn .

Let Mn = {d(g) | g ∈ GLn},Un = {u(X) | X ∈ Matn}; and Sn = MnUn. A Shalika

character on Sn is given by

ψn(d(g)u(X)) =

{

ψ0(tr X) for s ∈ Sn(F),

ψ0(tr(ιX)) for s ∈ Sn(D).

Abusing notation, we abbreviate ψ0(tr(ιX)) by ψ0(tr X) for X ∈ Matn(D), since no

confusion should occur. Moreover, we will always refer to smooth representations

when we talk about representations of groups other than finite groups.

Let ρ be an irreducible representation of GL2n(A).

Definition 1.1 A linear functional Λρ : Vρ 7→ C is called a Shalika functional of Vρ

if it satisfies Λρ(ρ(s)v) = ψn(s)Λρ(v) for all s ∈ Sn and v ∈ Vρ. We say that Vρ has

a Shalika model if there exists a nontrivial Shalika functional Λρ satisfying the above

equation. This definition is equivalent to

dim HomGL2n
(ρ, IndGL2n

Sn
ψn) ≥ 1,

since HomGL2n
(ρ, IndGL2n

Sn
ψn) ∼= HomSn

(ρ|Sn
, ψn) by reciprocity.

Definition 1.2 Given a representation π of a group G, we say that π is multiplicity

free, or possesses the uniqueness property, if dim HomG(ρ, π) ≤ 1 for any irreducible

representation ρ of G.

Definition 1.3 Let π = IndGL2n

Ln
1, where

{

Ln =

(

g1

g2

)

, gi ∈ GLn

}

and 1 denotes the trivial representation of GLn ×GLn . We say that Vρ has a linear

model if there exists a nontrivial intertwining operator from Vρ to π.

For general linear groups over non-archimedean local fields, uniqueness of Shalika

models was proved by H. Jacquet and S. Rallis [JR] via the verification of the multi-

plicity freeness of linear models and the fact that existence of Shalika models of GL2n

implies existence of linear models. Classification of Shalika models is not yet com-

pletely established. Y. Sakellaridis [Sa] showed necessary and sufficient conditions

for an irreducible unramified principal series admitting Shalika models. D. Jiang and

D. Soudry [JiS2] showed a certain group of representations possessing Shalika mod-

els. D. Jiang and Y. J. Qin [JiQ] defined a generalized Shalika model for SO(4n) and

https://doi.org/10.4153/CJM-2009-062-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-062-1


Uniqueness of Shalika Models 1327

found the relationship between this model and the Shalika model of GL(2n). The

study of Shalika models interacts intensively with other related subjects. Let π be

an irreducible cuspidal automorphic representation of GL2n(A), where A is the adele

ring of a number field F. Then the following statements are equivalent:

(i) π is the image of Langlands’ functorial lifting from SO2n+1;

(ii) π has a nonzero Shalika period;

(iii) the exterior square L-function L(s, π,∧2) has a simple pole at s = 1.

The theory has been established over years through the work of many authors [JaS,

CKPS, GRS, Ki, JiS1, Ji1].

Generalizations to the case of (quaternion) division algebras have been studied

by various mathematicians. D. Prasad and A. Raghuram [PR] showed the unique-

ness of Shalika models and established the self-duality of irreducible representations

admitting Shalika models on GL2(D). Extensions to the above theory regarding the

poles of the exterior square L-function and non-vanishing of Shalika periods in the

case of GL2(D) were given by H. Jacquet and K. Martin [JM]. Moreover, they stated

a conjecture (the Jacquet–Martin conjecture) relating the existences of Shalika mod-

els for representations of GL2n(D) and GL4n(F), which is now a theorem by W. T.

Gan and S. Takeda [GT] in the case of GL2(D) and GL4(F). In this paper we will

prove uniqueness of Shalika models for GL2n, n ∈ N in the setting of p-adic fields,

finite fields, and p-adic quaternion division algebras. We expect that the uniqueness

of Shalika models for GL2n(D) (or even GL2n(Fq)) could prove useful in the future.

Here we present the main theorems.

Theorem 4.1 For any n ∈ N, let G = GL2n(Fq), where Fq is a finite field. Then

dim HomG(ρ, IndG
Sn
ψn) ≤ 1

for any irreducible representation of G.

Theorem 4.3 Let G = GL2n over either a p-adic field F or a quaternion division algebra

D over F. Then

dim HomG(ρ, IndG
Sn(A) ψn) ≤ 1,

for any irreducible representation of G.

2 Common Strategy

Given a finite group G, it is known that a representation Vπ of G is multiplicity free

if and only if the endomorphism algebra HomG(Vπ,Vπ) is abelian. Moreover, when

Vπ = IndG
H ρ is an induced representation, HomG(Vπ,Vπ) is explicitly characterized

by Mackey’s Theorem.

Theorem 2.1 (Mackey) Let G be a finite group, Hi its subgroups and πi representa-

tions of Hi , i = 1, 2. Denote by

S = {△ : G 7→ HomC(π1, π2) | △(h2gh1) = π2(h2) ◦ △(g) ◦ π1(h1), hi ∈ Hi}.
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As a vector space, HomG(IndG
H1
π1, IndG

H2
π2) is isomorphic to S. Given any △ ∈ S,

the corresponding intertwining operator T△ ∈ HomG(IndG
H1
π1, IndG

H2
π2) is given by

T△( f1) = △ ∗ f1 for f1 ∈ IndG
H1
π1, where the convolution is given by

△ ∗ f1(x) =
1

|G|
∑

g∈G

△(xg−1) f1(g).

In particular, when H1 = H2, π1 = π2, the algebra AutG(IndG
H1
π1) is isomorphic to

(S, · ), where the multiplication · is given by

△1 · △2(g) =

∑

x∈G

△1(gx−1) ◦ △2(x),△i ∈ S.

In order to show that the endomorphism algebra is abelian, identifying an anti-

involution to interchange the order of factors is a common strategy. The analogue

of this method in the p-adic case is the Gelfand–Kazhdan criterion, which was first

investigated in [GK] and further developed in [BZ, Gr].

Let C∞
c (X) denote the space of smooth, compactly supported functions on an

l-adic space X (in the sense of [BZ]). Let D(X) denote the space of linear functionals

on C∞
c (X). Given a p-adic group G, define actions Lg and Rg on G, C∞

c (G), and

D(G) as the following:

Lg · x = gx, Rg · x = xg−1;

(Lg · f )(x) = f (g−1x), (Rg · f )(x) = f (xg);

(Lg · T)( f ) = T(Lg−1 · f ), (Rg · T)( f ) = T(Rg−1 · f ),

where g, x ∈ G, f ∈ C∞
c (G), and T ∈ D(G).

Theorem 2.2 (Gelfand–Kazhdan Criterion[Ga1, Ga2]) Let ψ and ψτ be characters

of a closed unimodular subgroup H of G. Suppose that there is an anti-involution τ of

G such that τ stabilizes H, ψ(hτ ) = ψτ (h), and τ acts trivially on all distributions T,

so that

T(Lhη) = ψ(h) · T(η), T(Rhη) = ψτ (h)−1 · T(η) for η ∈ C∞
c (G).

Then dim HomG(π; IndG
H ψ) · dim HomH(ResG

H π̃;ψτ ) ≤ 1, where π is any irreducible

representation of G and π̃ its contragradient.

3 Key Proposition

For k ∈ N, denote by

wk =





1
. . .

1



 ,
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the matrix representative of the longest Weyl elements of GLk, and set w0 = id.

Define anti-involutions on GLn(F) and GLn(D) respectively by

τn : GL2n(F) 7→ GL2n(F), g 7→ w2ngtw−1
2n ,

τn : GL2n(D) 7→ GL2n(D), g 7→ w2nḡt w−1
2n .

When n is understood, we will abbreviate τn by τ . Note that τn stabilizes Sn and ψn.

Throughout, Bn will denote the Borel subgroup of GLn and Wn the Weyl group of GLn.

Let d1(α) =
(

α
In

)

and d2(β) =
(

In

β

)

for α, β ∈ GLn.

Lemma 3.1 The representatives of Sn\GL2n /Sn can be expressed by

{

d1(α)σkd2(β)
∣

∣ k = 0, . . . , n, α, β ∈ GLn

}

, where σk =





wk

I2n−2k

wk



 .

Proof Let Pn, n ∈ N denote the parabolic subgroup of GL2n corresponding to the

partition {n, n}, and WPn
its Weyl group. Then

Pn\GL2n /Pn
∼= WPn

\W2n/WPn
↔ Ln,

where

Ln =
{

(ai, j) ∈ Mat2(Z) | 0 ≤ ai, j ≤ n,

2
∑

k=1

ak, j =

2
∑

k=1

ai,k = n, 1 ≤ i, j ≤ 2
}

.

The last bijection refers to [GaRe]. Notice that the cardinality of Ln is n+1.Moreover,

we can choose representatives of WPn
\W2n/WPn

to be τ-invariant, given by σ0 =

id, σk = (1, 2n)(2, 2n − 1) · · · (k, 2n + 1 − k), k = 1, . . . , n. That is,

σk =





wk

I2n−2k

wk



 ,

where

wk =





1
. . .

1





is the permutation matrix representative for the longest Weyl element of GLk.

Let H denote Sn(A). Put Ĥ = H × H. Let (h1, h2) ∈ Ĥ act on g ∈ G and

η ∈ C∞
c (G) by

(h1, h2) · g = h1gh−1
2 and (h1, h2) · η(g) = ψn(h−1

1 h2)η(h−1
1 gh2).

We also denote M̂n = Mn × Mn ⊂ Ĥ and Ûn = Un × Un ⊂ Ĥ.
Define a character ψ̂n of Ĥ by ψ̂n(ĥ) = ψn(h1h−1

2 ) for ĥ = (h1, h2) ∈ Ĥ. Denote

by Ĥg the stabilizer of g in Ĥ.
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Definition 3.2 Define an equivalence relation ∼ on g, g ′ ∈ GL2n, where g ∼ g ′

means that ĥ · g = g ′ for some ĥ ∈ Ĥ. We also write g ∼ĥ g ′ to indicate the

connecting map ĥ satisfying ĥ · g = g ′.

Definition 3.3 We call a double coset SnγSn, g ∈ GL2n admissible if ψ̂n is trivial on

Ĥγ . In this case, the element γ is also called admissible.

Definition 3.4 We call a double coset SnγSn ψ̂-τ-invariant if there exist ĥ ∈ Ĥ such

that ĥ ·γ = γτ and ψ̂n(ĥ) = 1. In this case, the element γ is also called ψ̂-τ-invariant.

Note that when γ ∼ β, γ is admissible (respectively ψ̂-τ-invariant) if and only if

β is admissible (respectively ψ̂-τ-invariant).

The rest of this section is devoted to the proof of the following proposition.

Proposition 3.5 Every admissible double coset SngSn is ψ̂-τ-invariant.

First we need some auxiliary Lemmas.

Lemma 3.6 For k ∈ {0, . . . , n}, let

γk = γk(α, β) = d1(α)σkd2(β) ∈ Sn\GL2n /Sn, α, β ∈ GLn,

where

α =

(

∗ αk

∗ ∗

)

, β =

(

∗ βk

∗ ∗

)

, and αk, βk ∈ Matn−k .

If αk 6= βk, then γk is non-admissible.

Proof For αk 6= βk, let uk = uk(X) =
(

In X
In

)

, where X =
(

0 0
X̃ 0

)

, X̃ ∈ Matn−k . Then

σ−1
k ukσk = uk. Let

n1 = d1(α)ukd1(α)−1 ∈ Un and n2 = γ−1
k n1γk = d2(β)−1ukd2(β) ∈ Un.

Note that ψn(n1) = ψ0(tr(αX)) and ψn(n2) = ψ0(tr(Xβ)) = ψ0(tr(βX)). Then

αX =

(

αkX̃ 0

∗ 0

)

, and tr(αX) = tr(αkX̃).

Similarly, tr(βX) = tr(βkX̃). If αk 6= βk, there exists X̃ ∈ Matn−k such that

ψ0(tr(αkX̃)) 6= ψ0(tr(βkX̃)),

and hence γk = γk(α, β) is not admissible.

Lemma 3.7 If αk = βk = 0k,

γk(α, β) =









0n−k ∗ ∗
∗ ∗ ∗

∗ 0n−k

wk









.
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In this case, k ≥ n − k and

γk ∼









0 0 ηk

In−k 0 0

In−k 0

λk









,

for some λk, ηk ∈ Matk. Moreover, for γk to be admissible, it is necessary that the upper-

right-hand square n − k-blocks of η and λ−1 are negatives of each other.

Proof Let e = 2k − n. Then for suitable

s1 = d

((

vn−k

v ′
k

))

, s2 = d

((

rk

r ′n−k

))

∈ Mn,

u, u ′ ∈ Un, v ′
k, rk ∈ Matk, and vn−k, r

′
n−k ∈ Matn−k, we can reduce γk to

γk ∼(s1,s2)









0 ∗ ∗
In−k ∗ ∗

In−k 0

λk









∼(u,u ′)









0 0 ηk

In−k 0 0

In−k 0

λk









= γ ′
k ,

for some λk, ηk ∈ Matk. Denote by η2 (respectively D2) the upper-right-hand square

n − k-block of ηk (respectively λ−1
k ).

Let

s = d









In−k

Ie

A In−k







 ∈ Sn,A ∈ Matn−k .

Then

γ ′
ksγ ′

k
−1

=

















In−k

Ie
ηk

(

0

A

)

In−k (A|0)λ−1

In−k

Ie

In−k

















.

For γ ′
k( hence γk) to be admissible, it is necessary that

ψn(γ ′
ksγ ′

k
−1

) = ψ0(tr A(η2 + D2)) = 1

for all A ∈ Matn−k, i.e., D2
= −η2.

Lemma 3.8 Let

γ ′
k =









0 0 ηk

In−k 0 0

In−k 0

λk









,
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where λk, ηk ∈ Matk and the upper-right-hand square n − k-blocks of η and λ−1 are

negatives of each other with rank n′. Then

γ ′
k ∼









0 0 η̃k

In−k 0 0

In−k 0

λ̃k









,

where

η̃k =









0 0 0 −In ′

0 In ′ ′ 0 0

0 0 In ′ ′ 0

I2k−n−n ′ ′ 0 0 0









, λ̃−1
k =





0 0 In ′

B1
n−k,2k−n 0 0

B3
2k−n B4

2k−n,n ′ ′ 0



 ,

and n′ ′
= n − k − n′.

Proof Suppose that η2
= −D2 in γ ′

k (with notations as in the proof of the previous

lemma) and the rank of η2 equals n′. Choose g, h ∈ Matn−k such that gη2h−1
=

(

0 −In ′

0 0

)

, and let m = d(g, Ie, h). Then γ ′
k

∼(m,m)





















0 0









∗ ∗ 0 −In ′

∗ ∗ 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗









In−k 0 0

In−k 0

λ′
k





















∼









0 0 η̃k

∗ In−k 0 0

In−k 0

λ′ ′
k ∗









,

where

η̃k =









0 0 0 −In ′

0 In ′ ′ 0 0

0 0 In ′ ′ 0

I2k−n−n ′ ′ 0 0 0









,

and n′ ′
= n − k − n′. For suitable û ∈ Ûn, further reduction shows that

γ ′
k ∼û









0 0 η̃k

In−k 0 0

In−k 0

λ̃k









= γ̃k.

Next we consider

γ̃−1
k =









0 0 λ̃−1
k

In−k 0 0

In−k 0

η̃−1
k









.
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By similar reduction and the fact that η2
= −D2, we may assume that

λ̃−1
k =





0 0 In ′

B1
n−k,2k−n 0 0

B3
2k−n,2k−n B4

2k−n,n ′ ′ 0



 .

Lemma 3.9 Let e = 2k − n ≥ 0, θk =









0 0 Rk

In−k 0 0

In−k 0

Qk









with

Rk =





0 0 In ′

B1
n−k,2k−n 0 0

B3
2k−n,2k−n B4

2k−n,n ′ ′ 0



 =

(

η1
n−k,e η2

n−k,n−k

η3
e,e η4

e,n−k

)

and

Qk =









0 0 0 I2k−n−n ′ ′

0 In ′ ′ 0 0

0 0 In ′ ′ 0

−In ′ 0 0 0









=

(

λ1
e,n−k λ2

e,e

λ3
n−k,n−k λ4

n−k,e

)

.

If θk is admissible, then

θk ∼





























0 0 0 In ′

T2 0 0 0

E 0 0

T2 0









In−k

In−k

Qk





















,

for some T2 ∈ Matn ′ ′ , E ∈ GL2k−n−2n ′ ′ . In this case, θk is ψ̂-τ-invariant.

Proof Let

C =

(

C1
e,n−k C2

e,e

C3
n−k,n−k C4

n−k,e

)

= R−1
k and D =

(

D1
n−k,e D2

n−k,n−k

D3
e,e D4

e,n−k

)

= Q−1
k

and let s1 =

(

g Y

g

)

∈ Sn, with g =





In−k

g1 Ie

g3 In−k



,

(3.1) g1
=

(

0 rn ′ ′,n ′ ′

0 0

)

, g3
=

(

∗n ′ ′,2k−n

0

)

,
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Y =





Y 1

Y 2

Y 3 Y 4



 with λ3Y 1 + λ4Y 2
= Y 3C1 + Y 4C3

=: p,

where the subscripts denote the sizes of matrices. Then s2 = θs1θ
−1

=

















Rk

(

Ie

g3 In−k

)

R−1
k Rk

(

g1

0

)

(

Y 3 Y 4
)

R−1
k In−k

(

0 g3
)

Q−1
k

In−k

Qk

(

Y 1

Y 2

)

Qk

(

In−k

g1 Ie

)

Q−1
k

















.

Therefore s2 ∈ Sn if and only if

Qk

(

Y 1

Y 2

)

=

(

η4g3C1

p

)

,
(

Y 3, Y 4
)

R−1
k =

(

p, λ4g1D1
)

.

Equivalently,

(

Y 1

Y 2

)

= Q−1
k

(

η4g3C1

p

)

,
(

Y 3, Y 4
)

=
(

p, λ4g1D1
)

ηk.

Also,

ψn(s1) = ψ0(tr(Y 1 + Y 4)) = ψ0(tr(D1η4g3C1 + D2 p + pη2 + λ4g1D1η4)),

= ψ0(tr(p(D2 + η2) + D1η4g3C1 + λ4g1D1η4))

= ψ0(tr(D1η4g3C1 + λ4g1D1η4)),

ψn(s2) = ψ0(tr(η1g1 + g3D4)) = ψ0(tr(η1g1 + g3D4)) = ψ0(tr(η1g1 + g3D4)).

For θk to be admissible, it is necessary that D1η4λ4g1
= η1g1 and g3C1D1η4

= g3D4

for all g1, g3 as in equation (3.1).

Now we assume that θk satisfies

(3.2) D1η4λ4g1
= η1g1 and g3C1D1η4

= g3D4

for all g1, g3 as in equation (3.1). Write

η4
=

(

T1 0

T2 0

)

, η1
=

(

0 0

T3 T4

)

, and C1
=

(

0 V 1

0 V 2,

)
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where T2,T3,V 1 ∈ Matn ′ ′ . Then

D1η4λ4g1
=

(

0 0

0 In ′ ′

) (

T1 0

T2 0

) (

In ′ ′ 0

0 0

) (

0 rn ′ ′,n ′ ′

0 0

)

=

(

0 0

0 T2rn ′ ′,n ′ ′

)

;

η1g1
=

(

0 0

T3 T4

) (

0 rn ′ ′,n ′ ′

0 0

)

=

(

0 0

0 T3rn ′ ′,n ′ ′

)

;

g3C1D1η4
=

(

∗n ′ ′,2k−n

0

) (

0 V 1

0 V 2

) (

0 0

0 In ′ ′

) (

T1 0

T2 0

)

=

(

∗n ′ ′,2k−n

0

) (

V 1T2 0

V 2T2 0

)

;

g3D4
=

(

∗n ′ ′,2k−n

0

) (

In ′ ′ 0

0 0

)

.

Condition (3.2) implies that T2
= T3,V 1T2

= In ′ ′ ,V 2
= 0. That is ,

θk =









0 0 η̃k

In−k 0 0

In−k 0

Qk









, with R̃k =









0 0 0 In ′

T2 T4 0 0

∗ ∗ T1 0

∗ ∗ T2 0









.

Note that V 1T2
= In ′ ′ , implying det T2 6= 0, and hence

θk ∼





























0 0 0 In ′

T2 0 0 0

E 0 0

T2 0









In−k

In−k

Qk





















,

for some E ∈ GL2k−n−2n ′ ′ .

In the case of fields, there exists some g ∈ GL2k−n−2n ′ ′ such that gEg−1
= Et ,

where Et denotes the transpose of E. In the case of quaternion division algebras,

there exists some g ∈ GL2k−n−2n ′ ′ such that gEg−1
= Ēt [Ra, Lemma 3.1]. In either

case, there exists g ∈ GL2k−n−2n ′ ′ such that gEg−1
= Eτ . Let

ζ = diag(In ′+n ′ ′ , g, In−k+2n ′ ′ , In ′+n ′ ′ , g, In−k+2n ′ ′).

Then ζθkζ
−1

= θτk and θk is ψ̂-τ-invariant.

Proposition 3.10 Every admissible double coset SngSn is ψ̂-τ-invariant.

Proof The proof is by induction on the index n of GL2n. By Bruhat decomposition,

GL2 = B2W2B2 = S2DW2DS2, where D = {( a
1 ) | a ∈ A∗}. Representatives of

S2\GL2 /S2 can be expressed by ξ1(a) = ( a
1 ) or ξ2(a) = ( a

1 ), a ∈ A∗. Since
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ξ1(a)
(

1 x
1

)

ξ1(a)−1
=

(

1 ax
1

)

, x ∈ A, and ψ0 is nontrivial, there exists x ∈ A such

that ψ0(ax) 6= ψ0(x) for a 6= 1. Hence ξ1(a) is not admissible for a 6= 1. For a = 1,

ξ1(a) = id is ψ̂-τ-invariant. In the case of A = F, ξ2(a), a ∈ F∗ is τ-invariant. In

the case of A = D, there exists b ∈ D∗ such that bab−1
= ā for a ∈ D∗. (Either

refer to [Ra, Lemma 3.1] or check by direct computation.) Therefore, there exists
(

b
1

)

∈ Mat2 such that
(

b
1

)

ξ2(a)
(

b
1

)−1
= ξ2(a)τ and ξ2(a) is ψ̂-τ-invariant. The

conclusion is then true for n = 1. Now we assume that it is also true for 1, . . . , n− 1.

Lemma 3.6 deals with the case of αk 6= βk, and others do the same for αk = βk =

0k, therefore it suffices to show that γk = d1(α)σkd2(β), with αk = βk 6= 0k, is either

non-admissible or ψ̂-τ-invariant.

Since rank(αK) 6= 0, there exist g, h ∈ GLn−k such that

γk =





∗ αk

∗ ∗
In



σk





In

∗ αk

∗ ∗



 =









αk

∗ ∗

wk

∗ αk









∼ d

((

g

In+k

))

γkd

((

In+k

h

))

=

















0 1 ∗ ∗ ∗
δk−1 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ 0 1

∗ δk−1 0

wk

















,

for some δk−1 ∈ Matn−k−1. With suitable choices of m̂ ∈ M̂n, û ∈ Ûn,

γk ∼m̂

















∗ 0 1 ∗ ∗ ∗
δ ′k−1 0 ∗ ∗ ∗
∗ 0 ∗ ∗ ∗

0 0 1

∗ δ ′k−1 0

wk ∗

















∼û

















0 1

δ ′ ′k−1 0 ∗ ∗
∗ 0 ∗ ∗

0 0 1

∗ δ ′′k−1 0

wk

















= γ̃k.

Let

N =

(

N1 N2

N3 N4

)

∈ GL2n−2

be embedded in GL2n as








1

N1 N2

1

N3 N4









,Ni ∈ Matn−1 .

By induction assumption, there exist ŝ = (s1, s2) with

s1 =









1

q Y

1

q









and s2 =









p Z

1

p

1









,
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where p, q ∈ GLn−1,Y,Z ∈ Matn−1 such that either ŝ ∈ Ĥγ̃k
and ψ̂(s) 6= 1 or

ŝ · γ̃k = (γ̃k)τ and ψ̂(ŝ) = 1. Note that the above embedding is consistent between

(τn−1, ψn−1) and (τn, ψn). Hence the conclusion holds by induction.

4 Main Theorems

Theorem 4.1 For any n ∈ N, let G = GL2n(Fq), where Fq is a finite field. Then

dim HomG(ρ, IndG
Sn
ψn) ≤ 1

for any irreducible representation of G.

Proof Let π = IndG
Sn
ψn. Proposition 3.5 implies that an element

△ : G 7→ HomC(IndG
Sn
ψn, IndG

Sn
ψn)

satisfying △(s′gs) = π(s′) ◦△(g) ◦ π(s) for s, s′ ∈ Sn is τ-invariant. By Theorem 2.1

HomG(IndG
Sn
ψn, IndG

Sn
ψn) is abelian and the result follows.

Lemma 4.2 Let G denote GL2n(A), where A is a p-adic field F or a quaternion division

algebra D over F. If T is a distribution on G satisfying

T(Lh1
◦ Rh2

(η)) = ψn(h1h−1
2 )T(η)

for h1, h2 ∈ Sn(A), η ∈ C∞
c (G), then T is τ-invariant.

Proof We verify the assumptions of [BZ, Theorem 6.10].1

The assumptions of Theorem 6.10 in [BZ] in this case are the following:

(i) The action of Ĥ is constructible (same as constructive in the sense of [BZ]),

which means that the set of {(g, ĥ · g) | g ∈ G, ĥ ∈ Ĥ} is a union of finitely

many locally closed subsets of G × G.

(ii) For each ĥ ∈ Ĥ, there is ĥτ ∈ Ĥ such that ĥ · gτ = (ĥτ · g)τ for all g ∈ G.

(iii) τ 2
= id.

(iv) If T is a nonzero Ĥ-invariant distribution on an Ĥ-orbit Y , then Y τ
= Y and

Tτ
= T.

The conclusion is that any Ĥ-invariant distribution on G is also τ-invariant.

By [BZ, Theorem A §6.15], the action of Ĥ is constructible on GL2n(F). Also ιĤ
is constructible on GL4n(K),K = F(

√
α), and its closed subgroup GL2n(D), where

ι is the embedding defined earlier. Condition (i) is then verified. For condition (ii),

take ĥτ = (h−τ
2 , h−τ

1 ) for ĥ = (h1, h2) ∈ Ĥ. Since H is τ-invariant and (ĥτ )τ = ĥ,

τ induces an anti-involution on Ĥ (still denoted by τ) τ : Ĥ 7→ Ĥ by ĥ 7→ ĥτ . The

action of ĥ ∈ Ĥ satisfies that ĥ ·gτ = (ĥτ ·g)τ for all g ∈ G. Condition (iii) is obvious.

To verify condition (iv), let T be a nonzero Ĥ-invariant distribution on an Ĥ-orbit

Y = HgH, i.e., T(ĥ · (η)) = T(η) for all ĥ = (h1, h2) ∈ Ĥ and η ∈ C∞
c (Y ). Then

Y ∼= Ĥ/Ĥg . (Ĥg the stabilizer of g in Ĥ.) Define a character ψ̂n of Ĥ by

ψ̂n(ĥ) = ψn(h1h−1
2 ) for ĥ = (h1, h2) ∈ Ĥ,

1This proof mimics [So, Theorem 2.3]. We keep it here for the sake of compleness.
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then ψ̂n is τ-invariant and C∞
c (Y ) ∼= indĤ

Ĥg
1 (un-normalized compact induction).

We have that

T ∈ Hom
Ĥ

(indĤ

Ĥg
1, ψ̂n) ∼= Hom

Ĥg
(δ

Ĥ
δ−1

Ĥg
,Res

Ĥg
ψ̂n)

by Frobenius reciprocity, where δ
Ĥ
, δ

Ĥg
are the modular functions of Ĥ and Ĥg , re-

spectively. Since |ψ̂n| ≡ 1 and δ
Ĥ
δ−1

Ĥg
is positive, by Schur’s lemma we have either

dim Hom
Ĥg

(δ
Ĥ
δ−1

Ĥg
,Res

Ĥg
ψ̂n) = 0 or δ

Ĥ
δ−1

Ĥg
= Res

Ĥg
ψ̂n ≡ 1.

Therefore we conclude that Hom
Ĥg

(δ
Ĥ
δ−1

Ĥg
,Res

Ĥg
ψ̂n) = 0 for those non-admissible

g, i.e., there is no nontrivial Ĥ-invariant distribution T on such Y .

Now we consider those ψ̂-τ-invariant g. We may assume that δ
Ĥ
δ−1

Ĥg
≡ 1, since

otherwise Ĥ-invariant distribution on such Y is trivial. Note that k̂ · g = gτ for some

k̂ ∈ H implies that the double coset Y = HgH is τ-invariant. It remains to show that

Tτ
= T. In our case T is proportional (see [BZ, 6.12]) to

T1(η) =

∫

Ĥ/Ĥg

η(ĥ · g)ψ̂−1
n (ĥ) dĥ,

where dĥ is a left Ĥ-invariant measure on Ĥ/Ĥg . We have

Tτ
1 (η) = T1(ητ ) =

∫

Ĥ/Ĥg

η((ĥ · g)τ )ψ̂−1
n (ĥ) dĥ

=

∫

Ĥ/Ĥg

η(ĥτ · gτ )ψ̂−1
n (ĥ) dĥ

=

∫

Ĥ/Ĥg

η(ĥτ · k̂ · g)ψ̂−1
n (ĥ) dĥ =

∫

Ĥ/Ĥg

η(ĥ ′ · g)ψ̂−1
n (ĥ ′)ψ̂n(k̂) dĥ ′.

The last equality is obtained by the change of variables ĥ ′
= ĥτ · k̂ along with our

assumption that δ
Ĥ
δ−1

Ĥg
≡ 1 and the fact that ψ̂n is τ-invariant. Since ψ̂n(k̂) = 1, we

have

Tτ
1 (η) =

∫

Ĥ/Ĥg

η(ĥ ′ · g)ψ̂−1
n (ĥ ′) dĥ ′

= T1(η).

Theorem 4.3 Let G = GL2n(A), where A is either a p-adic field F or a quaternion

division algebra D over F. Then dim HomG(ρ, IndG
Sn
ψn) ≤ 1 for any irreducible repre-

sentation ρ of G.

Proof We have obtained dim HomG(π; IndG
Sn
ψn) · dim HomSn

(ResG
Sn
π̃;ψn) ≤ 1 for

any irreducible representation π of G from the previous theorem and the Gelfand–

Kazhdan criterion. It suffices to show that if π has a nontrivial Shalika functional,

then π̃ will also have one. Assume that Λπ is a nontrivial Shalika functional for π,
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i.e., Λπ(π(h)v) = ψn(h)Λπ(v) for all ∈ Sn and v ∈ Vπ . Define a representation π ′ on

the same vector space Vπ by π ′(g)v = π(ξg−τξ−1)v, where ξ = diag(In,−In). Then

ψ(ξs−τξ−1) = ψ(s) for s ∈ Sn, and Λπ is also a Shalika functional for π ′.

In the case of F, define another representation π ′ ′ on the same vector space Vπ by

π ′ ′(g)v = π(g−t )v. Then π ′ ′ ∼= π̃ by [BZ, Theorem 7.3]. Since ξg−τξ−1 is conjugate

to g−t , we have π ′ ∼= π̃.

In the case of D, define another representation π ′ ′ on the same vector space Vπ

by π ′ ′(g)v = π(ηḡ−tη−1)v, where η(i, j) = (−1)iδi,2n− j+1. Then π ′ ′ ∼ π̃ by [Ra,

Theorem 3.1]. Since ξg−τξ−1 is conjugate to ηḡ−tη−1, we have π ′ ∼ π ′ ′ ∼ π̃.

In either case,

dim HomG(π̃; IndG
Sn
ψn) = dim HomG(π ′; IndG

Sn
ψn)

= dim HomSn
(π ′|Sn

;ψn)

≥ 1,

which completes the proof.
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