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Uniqueness of Shalika Models

Chufeng Nien

Abstract. Let Iy be a finite field of g elements, I a p-adic field, and D a quaternion division algebra
over F. This paper proves uniqueness of Shalika models for GL,,(F;) and GL;,(D), and re-obtains
uniqueness of Shalika models for GL,,(F) for any n € N.

1 Introduction

Let IF, denote a finite field of g elements, and J a p-adic field. Let F be one of the
above fields, and D = Dg a quaternion division algebra over . Denote by Mat,
the space of n-by-n matrices over F. Throughout, 1y denotes a nontrivial, complex,
additive character of F.

Given D, a quaternion division algebra over &, there exists a basis {1, 1, j, k} for D
with multiplication table given by

1 i J k
1]1 i j k
il o | k oj

—k| B | —pi

J
k| —aj| pBi| —ap

.

for suitable o, § € F*.

Forz = a+bi+cj+dk € Dwitha,b,c,d € F, define the conjugation of z by
Z =a—bi —cj— dk Notethatz;-z; = 2, - Zj, i.e, it is an anti-involution on
D. (An anti-involution T of an algebra (or a group) G is an operator on G so that
(gh)” = h"g",g,h € G, and 7 = id) The reduced norm N and reduced trace Tr
on D are defined as usual by Nz = zz and Trz = z + z. There is an embedding
t: D — GL(2,K) defined by

z=a+bi+cj+dk=(a+bi)+(c+di)j=2z+2j— <f1 Z26>7

Z 7z

where K = F(y/a). Then Tr z = tr(1z), z € D, where tr is the trace map on matrices.
Under this embedding, D is a closed subgroup of GL(2, K). This embedding can be
naturally extended to ¢: GL(n, D) — GL(2#n, K).
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Let A be either the field F (one of the F,;, F) or the quaternion division algebra D.
In GL,,,(A), denote

X

_ (8 0 _ (L
d(g)—(o g),gEGLn and u(X)_( I

),XGMatn.

Let M, = {d(g) | g € GL,},U, = {u(X) | X € Mat,}; and S, = M,,U,.. A Shalika
character on S, is given by

B Yo (tr X) fors € S, (F),
Vuld(@uX)) = {z/Jo(tr(LX)) fors € S, (D).

Abusing notation, we abbreviate ¥ (tr(¢X)) by 1o (tr X) for X € Mat,(D), since no
confusion should occur. Moreover, we will always refer to smooth representations
when we talk about representations of groups other than finite groups.

Let p be an irreducible representation of GL,,(A).

Definition 1.1 A linear functional A,: V, — Cis called a Shalika functional of V,
if it satisfies A,(p(s)v) = Yu(s)A,(v) forall s € S, and v € V,. We say that V,, has
a Shalika model if there exists a nontrivial Shalika functional A, satisfying the above
equation. This definition is equivalent to

dim Homgr,, (p, Ind§™" ¢,) > 1,

since Homgr,, (p, IndeLz” 1Y) = Homg, (p

s.» ¥n) by reciprocity.

Definition 1.2 Given a representation 7 of a group G, we say that 7 is multiplicity
free, or possesses the uniqueness property, if dim Homg(p, 7) < 1 for any irreducible
representation p of G.

Definition 1.3 Letm = IndLGan" 1, where

81
L, = , g € GL,
{ < gZ) § }

and 1 denotes the trivial representation of GL, X GL, . We say that V, has a linear
model if there exists a nontrivial intertwining operator from V, to .

For general linear groups over non-archimedean local fields, uniqueness of Shalika
models was proved by H. Jacquet and S. Rallis [JR] via the verification of the multi-
plicity freeness of linear models and the fact that existence of Shalika models of GL,,
implies existence of linear models. Classification of Shalika models is not yet com-
pletely established. Y. Sakellaridis [Sa] showed necessary and sufficient conditions
for an irreducible unramified principal series admitting Shalika models. D. Jiang and
D. Soudry [JiS2] showed a certain group of representations possessing Shalika mod-
els. D. Jiang and Y. J. Qin [JiQ] defined a generalized Shalika model for SO(4n) and
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found the relationship between this model and the Shalika model of GL(2n). The
study of Shalika models interacts intensively with other related subjects. Let 7 be
an irreducible cuspidal automorphic representation of GL,,(A), where A is the adele
ring of a number field F. Then the following statements are equivalent:

(i) mis the image of Langlands’ functorial lifting from SO,41;
(ii) 7 has a nonzero Shalika period;
(iii) the exterior square L-function L(s, w, A?) has a simple pole at s = 1.

The theory has been established over years through the work of many authors [JaS,
CKPS, GRS, Kj, JiS1, Jil].

Generalizations to the case of (quaternion) division algebras have been studied
by various mathematicians. D. Prasad and A. Raghuram [PR] showed the unique-
ness of Shalika models and established the self-duality of irreducible representations
admitting Shalika models on GL,(D). Extensions to the above theory regarding the
poles of the exterior square L-function and non-vanishing of Shalika periods in the
case of GL,(D) were given by H. Jacquet and K. Martin [JM]. Moreover, they stated
a conjecture (the Jacquet—-Martin conjecture) relating the existences of Shalika mod-
els for representations of GL,,(D) and GL4,(F), which is now a theorem by W. T.
Gan and S. Takeda [GT] in the case of GL,(D) and GL4(F). In this paper we will
prove uniqueness of Shalika models for GL,,, n € N in the setting of p-adic fields,
finite fields, and p-adic quaternion division algebras. We expect that the uniqueness
of Shalika models for GL,,(D) (or even GL,,(IF;)) could prove useful in the future.
Here we present the main theorems.

Theorem 4.1 For any n € N, let G = GL,,(IF;), where I, is a finite field. Then

dim Homg(p, IndSG" vy) <1

for any irreducible representation of G.

Theorem 4.3 Let G = GL,, over either a p-adic field F or a quaternion division algebra
D over J. Then

dim Homg(p, Indg, 4, 1) < 1,

for any irreducible representation of G.

2 Common Strategy

Given a finite group G, it is known that a representation V; of G is multiplicity free
if and only if the endomorphism algebra Homg(V, V) is abelian. Moreover, when
Ve= Indg p is an induced representation, Homg(V, V) is explicitly characterized
by Mackey’s Theorem.

Theorem 2.1 (Mackey) Let G be a finite group, H; its subgroups and ; representa-
tions of H;,i = 1, 2. Denote by

S = {A: G~ Homg(m,m) | Alhaght) = m(hy) o A(g) o mi(h), hi € H;}.
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As a vector space, HomG(IndIG,1 T, IndIG,z ) is isomorphic to S. Given any A € S,
the corresponding intertwining operator T € Homg(IndIC_"I1 T, IndIC_",2 ) is given by
Ta(fi) =LA« fifor fi € Indf,1 71, where the convolution is given by

A+ fi(x) = é > Al HA®).

geG

In particular, when Hy = H,,m = 2, the algebra AutG(Indgl my) is isomorphic to
(&, ), where the multiplication - is given by

Ar-Do(g) = Ailgx) o Ma(x), A € €.

x€G

In order to show that the endomorphism algebra is abelian, identifying an anti-
involution to interchange the order of factors is a common strategy. The analogue
of this method in the p-adic case is the Gelfand—Kazhdan criterion, which was first
investigated in [GK] and further developed in [BZ, Gr].

Let C2°(X) denote the space of smooth, compactly supported functions on an
I-adic space X (in the sense of [BZ]). Let D(X) denote the space of linear functionals
on C°(X). Given a p-adic group G, define actions L, and R, on G, C°(G), and
D(G) as the following:

L, - x = gx, Rg-x:ngl;

(Ly- Hx) = flg7'%), (Rg- NHx) = f(xg)s
(Lg - T)(f) = T(Lg-1 - f), (Rg-T)(f) = T(Rg—1 - f),
where g, x € G, f € C>°(G),and T € D(G).

Theorem 2.2 (Gelfand—Kazhdan Criterion[Gal,Ga2]) Let ¢ and 1" be characters
of a closed unimodular subgroup H of G. Suppose that there is an anti-involution T of
G such that T stabilizes H, 1)(h™) = " (h), and T acts trivially on all distributions T,
so that

T(Lyn) = v(h) - T(n), T(Ryn) = 4" (W)~" - T(n) forn € C(G).

Then dim Homg(; Indf, 1) - dim Homy (Res% 73 4™) < 1, where 7 is any irreducible
representation of G and 7 its contragradient.

3 Key Proposition
For k € N, denote by

Wk = . )
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the matrix representative of the longest Weyl elements of GLj, and set wy, = id.
Define anti-involutions on GL,(F) and GL, (D) respectively by

Tut GLou(F) — GLyu(F), g — wang'ws,,
Ty - GLZn(D) — GLZn(D);g — Wan_tW;nl-
When # is understood, we will abbreviate 7, by 7. Note that 7, stabilizes S,, and ¥,,.

Throughout, B, will denote the Borel subgroup of GL,, and W, the Weyl group of GL,,.
Letdi(a) = (*},) and dy(B8) = (" ;) for a, B € GL.

Lemma 3.1 The representatives of S,\ GLy, /S, can be expressed by
Wi

{dl(oa)akdg(ﬁ) | k=0,...,na,p0¢€ GL,,}, where o = Lok
Wi

Proof Let P,,n € N denote the parabolic subgroup of GL;, corresponding to the
partition {n, n}, and Wp, its Weyl group. Then

Pn\ GLZﬂ /Pn = WP,,\WZn/WP,, A Qnu

where

2

2
€ ={(ai)) EMaty(2) [0< a;; <> apj= ay=n1<ij<2}.
k=1 k=1

The last bijection refers to [GaRe]. Notice that the cardinality of £, is n+1. Moreover,
we can choose representatives of Wp, \W,,/Wp, to be 7-invariant, given by oy =
id,or, = (1,2n)(2,2n—1)--- (k,2n+ 1 —k),k=1,...,n. That s,

Wik
o) = Ly )
Wk

where

Wi =
1
is the permutation matrix representative for the longest Weyl element of GLj. ]
Let I denote S,(A). Put 1 = H x H. Let (h,h,) € Mactong € G and
n € C2(G) by
(hi,hp) - g = ghy' and  (hn, ha) - 1(g) = Wu(hy ' ha)n(hy ' ghy).

We also denote M, = M,, x M,, C lland U, = U, x U,, C L.
Define a character 1, of H by 1, (h) = 1/;n(h1h2‘1) for h = (hy, hy) € H. Denote
by I the stabilizer of g in .
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Definition 3.2 Define an equivalence relation ~ on g,¢’ € GLy,, where g ~ ¢’
means that h - g = g’ for some h € H. We also write g ~; ¢’ to indicate the
connecting map h satisfying h- g=g.

Definition 3.3 We call a double coset S,7S,, g € GL,, admissible if 12;,1 is trivial on
IH,. In this case, the element - is also called admissible.

Definition 3.4 We call a double coset S,7S, @-T-invariant if there exist i € Il such
that h-v = ~" and ¥,(h) = 1. In this case, the element + is also called v -7-invariant.

Note that when v ~ £3, 7 is admissible (respectively {)-T-invariant) if and only if
[ is admissible (respectively t)-7-invariant).
The rest of this section is devoted to the proof of the following proposition.

Proposition 3.5 Every admissible double coset S,gS,, is O-T-invariant.
First we need some auxiliary Lemmas.

Lemma 3.6 Fork e {0,...,n}, let

Y = (e, B) = di(a)oxdz(B) € Su\ GLay /S, v, B € GLy,

a= (I ak) , B = (I €k> , and oy, B € Mat,_x .

where

*
If oy # By, then i is non-admissible.

Proof For oy # Gy, let up = u(X) = (1” ﬁ), where X = (; g),X € Mat,_; . Then
oljlukok = uy. Let

m =di(@udi (@) €U, and  ny =y 'my = do(8) ' upda(B) € U,

Note that 1, (n1) = 1o (tr(aX)) and ¢, (n2) = tho(tr(X5)) = hy(tr(6X)). Then

aX — (aiX 8) , and tr(aX) = tr(aX).

Similarly, tr(3X) = tr(5X). If o # Bk, there exists X € Mat,,_j such that

Yo(tr(axX)) # tho(tr(BeX)),

and hence v, = Y («, B) is not admissible. [ |

Lemma 3.7 If oy = [Bx = O,

/Yk(a7 6) =

Wi
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In this case, k > n — k and

0 0
I« 0 0
Vk ILx 0]

Ak

for some A\, i € Maty. Moreover, for i to be admissible, it is necessary that the upper-
right-hand square n — k-blocks of n and \~' are negatives of each other.

Proof Let e = 2k — n. Then for suitable

() R () P

u,u’ € Uy, v, e € Maty, and v,_, 7,_, € Mat,_, we can reduce vy, to

0 * * 0 0
1, —k * * I —k 0 0
Yk ~(s1,52) " Iy O ~(uu’) ! Iy O = '7]27
Ak Ak

for some i, 7y € Maty. Denote by * (respectively D?) the upper-right-hand square
n — k-block of 7y (respectively A~ .

Let
Iﬂ—k
s=d I, €S,,A € Mat,_¢.
A Infk
Then
- 0
L "\ A
-1
%:57/—1 _ ) - - (A|0))\
n—k
I
Infk
For 7 (‘hence ;) to be admissible, it is necessary that
Ya(visv ) = do(tr AG? + DY) = 1
forall A € Mat,,_y, i.e, D> = —n?. ]
Lemma 3.8 Let
0 0
r ) > 0 0
’Yk - In—k 0 )

Ak
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where A\, € Maty and the upper-right-hand square n — k-blocks of 1 and A\~ are
negatives of each other with rank n’. Then

0 0 i
I In—k 0 0
T Iﬂ—k 0 ’
Ak
where
8 10 8 _énl 0 0 I
’FIk = n'’ , ;\;1 — B:I_ka_n 0 0 7
0 0 I, 0 B3 , B 0
IZk—n—n” 0 0 0 2k—n 2k—n,n’’
andn’ =n—k—n'.
Proof Suppose that > = —D?* in 7/ (with notations as in the proof of the previous

lemma) and the rank of 7* equals n’. Choose g,h € Mat,_; such that gn*h~! =

(5 o) andletm = d(g, I, h). Then

x x 0 —I
0 0 * % 0 0 0 0
* % % *
« Ly 0 0
N(m,m) * * * * ~ I O Y
Lix | 0 0 N ”**"
j 0 k
%
where
0 0 0 —I
o 0 L., 0 0
= 0 0 ILon 0 |

Dg—n—nr 0 0 0

and n' = n — k — n’. For suitable 2 € U, further reduction shows that

0 0
/ Infk 0 0 -
e b Lix O — Kk
Ak
Next we consider ~
o 0o X'

S L,k 0 0

Tk L,k 0

!
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By similar reduction and the fact that n* = —D?, we may assume that
0 0 L
N= Bi—k,zk—n 0 0

3 4
BZk—n,Zk—n BZkfn.,n” 0

|
0 0 Ry
L_x 0 .
Lemma 3.9 Lete=2k—n>0,0, = I 0 with
n—k
Qx
0 0 L, ! | n?
Rk _ Bifk,zkfn 0 0 — ( ngke nzk n—k )
ngfn,Zkfn | ng—n,n” 0 e | ne,nfk
and
0 0 0 Iy —
Q= 0 Isw| 0 0 B < Mok | Ao >
= = 3 Z .
0 0 I”” 0 )\nfk,nfk | )\n—k,e
—I, 0 0 0

If Ok is admissible, then

0 0 0 I,

T 0 0 0

E 0 O
O ~ T 0 ,
Lk
Infk
Qx

for some T? € Mat,/, E € GLog_,_orr. In this case, Oy is @—T-invariant.

Proof Let
C! C? D, D;
C = e,n—k e.e _ R—l and D = n—k,e n—k,n—k — 0!
( C3n7k.,n7k C:t—k7g ) k < Dz,e Dg,n—k Qk
Infk
and let s; = ( g v ) € Sy, with g = g L >
g 3
g Iﬂ—k

1 _ 0 Ty't ptt 3 *n”,Zk—n
(3'1) g - < 0 0 ) g - 0 9
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Yl
Y=|[Y2 with N’Y! + \Y? = Y°C! + Y*C? =: p,
y? vt

where the subscripts denote the sizes of matrices. Then s, = 65,0~ =

Ie —1 gl
(g )8 )

(YY" )RY L (0 ¢)Q"

Therefore s, € S, if and only if

1 4,31
o @2) = (” gpc ) c (P YR = (p MNg'DY).

Equivalently,

Yl B 4 3cl
(Y2> = Qk ! (n gp > s (Y37 Y4) = (pu )‘4g1D1) k-

Also,

Unls1) = tho(tr(Y' +Y*)) = ho(tr(D'*g’C' + D’p + p* + X'g' D)),
= o(tr(p(D* + n*) + D'n*g*C! + N¢'D'n*))
= ¢o(tr(D'n*g’C' + X'g'D'n*)),
Pu(s2) = ho(tr(n'g' + DY) = tho(tr(n'g" + ' D) = vo(tr(n'g' +g°DY)).

For 0y to be admissible, it is necessary that D'n*\*g! = n'g! and g*C'D'n* = ¢*D*

for all g, g as in equation (3.1).
Now we assume that 0, satisfies

(3‘2) D1774)\4g1 — 771g1 and g3C1D1U4 — g3D4

for all g!, g as in equation (3.1). Write

" o 0 0 o V!
4 _ 1 _ 1 _
n = <T2 0> y N = <T3 T4> ’ and C = <0 V2,>
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where T2, T?, V! € Mat,,.». Then

1 4y41 (0 0 T' 0\ (Lys O\ (0 14w\ (O 0 _
b _<0 I) (T2 o/\Lo o)lo o J7\o Tru)’
1.1 0 0 0 it \ 0 0 )

g = T3 T4 0 0 o 0 T3Tn”n” i
311,04 _ [ *n’’ 2k—n 0
contt = (5) (g vz)( n) (o)

_ *n”,Zk—n VT2
B 0 V2T1?

344 [ *n' 2k—n In” 0
o0~ (5 ><o o)-

Condition (3.2) implies that 7> = T*> V1T? = I,,,,V? = 0. That is,

0 0 0 0 0 Iy
B Ly 0 0 s | T 0 o0
O = I, 0] with R, = “ « T' 0
Qk x o« T2 0

Note that V! T? = I/, implying det T? # 0, and hence

0 0 0 I
T 0 0 O
E 0 0

O ~ T> 0 ,

Qx

for some E € GLyj_,—2p7.

In the case of fields, there exists some § € GLy;_,_2, such that gEg~! = E,
where E' denotes the transpose of E. In the case of quaternion division algebras,
there exists some g € GLy_,_ 5, such that gEg~! = E' [Ra, Lemma 3.1]. In either
case, there exists g € GLy;_,,_2, such that gEg—! = E". Let

Q = diag(ln’Jrn”agu Ty ksanrrs In’+n”7gu Ly—ksanr)-
Then (6;¢ " = 6] and 6y is ¢)-7-invariant. [
Proposition 3.10 Every admissible double coset S,gS,, is 1)-T-invariant.

Proof The proof is by induction on the index n of GL,,. By Bruhat decomposition,
GL, = B,W,B, = S,DW,DS,, where D = {(*,) | a € A*}. Representatives of
S>\ GL, /S, can be expressed by &;(a) = (%) or &(a) = (%), a € A*. Since
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& (a) (1 ’f) Lla)7t = (1 ”f‘), x € A, and 1) is nontrivial, there exists x € A such
that 1 (ax) # Yo(x) for a # 1. Hence £;(a) is not admissible for a # 1. Fora = 1,
&i(a) = id is {-7-invariant. In the case of A = F, &(a),a € F* is 7-invariant. In
the case of A = D, there exists b € D* such that bab~! = g for a € D*. (Either
refer to [Ra, Lemma 3.1] or check by direct computation.) Therefore, there exists
(*,) € Maty such that (¥, ) &(a) ( 1)_1 = &(a)" and &(a) is ¢)-7-invariant. The
conclusion is then true for n = 1. Now we assume that it is also true for 1,...,n — 1.

Lemma 3.6 deals with the case of a; # [, and others do the same for o = G =
O, therefore it suffices to show that v, = d,(a)od2(3), with ap = Bx # 0y, is either
non-admissible or ¢)-7-invariant.

Since rank(ak) # 0, there exist g, h € GL,_ such that

* Qg I, N *
Y = * * Ok * O =
I, * % o
Wi
0 1 * *
01 0 * % x
N g Lk . * * % * *
(5 ) (" 0)- -
* 5k—1 0
Wi
for some §;_; € Mat,_x_,. With suitable choices of #1 € M,,, it € U,,,
* 0 1 % * * 0 1
6, 0 % x % L, 0 % %
* 0 =* * * * 0 =x* * .
Ve 0o o 1|7 0o o 1|7
* 0, 0 x 0, 0
Wk * Wik
Let

(NN
N = (N3 N4> € GLy,—»

be embedded in GL,,, as

1
N N2 L | Ni € Mat, ;.
N; Ny
By induction assumption, there exist § = (s1, s;) with
1 p V4
s = a 1 and s, = ! » )
q 1
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where p,q € GL,_1,Y,Z € Mat,_; such that either § € Iﬂ[ﬁk and 121(5) # 1or
$ 9 = (%)" and @(SA) = 1. Note that the above embedding is consistent between
(Tu=1,¥n—1) and (7, 1,,). Hence the conclusion holds by induction. [ |

4 Main Theorems
Theorem 4.1 Foranyn € N, let G = GL,,(IF,), where F, is a finite field. Then

dim Homg(p, Indg Py) <1

for any irreducible representation of G.

Proof Letm = Indg’; 1. Proposition 3.5 implies that an element

A G Hom((Indan Uy, Indgn Un)

satisfying A(s'gs) = 7(s") o A(g) o m(s) fors, s’ € S, is T-invariant. By Theorem 2.1
Homg(Indan U, Indan 1), is abelian and the result follows. [ |

Lemma 4.2 Let G denote GL,,(A), where A is a p-adic field JF or a quaternion division
algebra D over F. If T is a distribution on G satisfying

T(Lp, o Ry, () = b (hihy ") T(n)
forhy, hy € Su(A),n € C(G), then T is T-invariant.
Proof We verify the assumptions of [BZ, Theorem 6.10].!

The assumptions of Theorem 6.10 in [BZ] in this case are the following:

(i) The action of Il is constructible (same as constructive in the sense of [BZ]),
which means that the set of {(g, /- ¢) | g € G, € M} is a union of finitely
many locally closed subsets of G x G.

(ii) Foreach i € I, thereis i, € M such that i - g" = (h, - g)" forallg € G.

(iii) 7% =id.
(iv) If T is a nonzero [l-invariant distribution on an -orbit Y, then Y = Y and
T =T.

The conclusion is that any Fl-invariant distribution on G is also 7-invariant.

By [BZ, Theorem A §6.15], the action of Il is constructible on GL,,(F). Also
is constructible on GL4,(K), K = F(y/a), and its closed subgroup GL,,(D), where
¢ is the embedding defined earlier. Condition (i) is then verified. For condition (ii),
take h, = (hy7,hy ") for h = (h1, hy) € M. Since H is T-invariant and (h.); = h,
7 induces an anti-involution on Il (still denoted by 7) 7: A — 1 byfl +— h,. The
action of i € [l satisfies that - g = (sz -g)" forall ¢ € G. Condition (iii) is obvious.
To verify condition (iv), let T be a nonzero [l-invariant distribution on an F-orbit
Y = HgH, ie., T(fl -(n)) = T(n) for allh = (hi,hy) € Handn € C(Y). Then
Y =/ Iﬂ[g. (]Fl[g the stabilizer of g in F.) Define a character 1, of Il by

Du(h) = Pu(hihy ") for b = (hy, hy) € W,

I'This proof mimics [So, Theorem 2.3]. We keep it here for the sake of compleness.
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then ), is 7-invariant and CX(Y) = indigig 1 (un-normalized compact induction).
We have that

Te HomH(ind}S{X 1,1,) = Homﬂg(émlég, Resyy )

by Frobenius reciprocity, where &y, oy are the modular functions of Il and W, re-

spectively. Since |¢,| = 1 and 619[5]; is positive, by Schur’s lemma we have either
8

dim Homzﬂ[g(5]g[5]g_[:, Resy; ) =0 or 5@[51&; = Resy 0, = 1.
—1
1,
g, i.e., there is no nontrivial M-invariant distribution T on such Y.

Now we consider those )-7-invariant g. We may assume that 619[6@1 = 1, since
otherwise fl-invariant distribution on such Y is trivial. Note that k - g = ¢’ for some
k € H implies that the double coset Y = HgH is 7-invariant. It remains to show that
T™ = T. In our case T is proportional (see [BZ, 6.12]) to

Therefore we conclude that Homyy (66, °, Resyy ) = 0 for those non-admissible

i = [l gy
/1
where df is a left -invariant measure on Ifl/ I, We have

T =T = [ g7y ) di

1/ Mg

— [ ey i
/84,

= [ e keg)d ydh = [ i g b di
A/ 11/

The last equality is obtained by the change of variables i’ = h, - k along with our

assumption that 519[5,&1 = 1 and the fact that 1), is 7-invariant. Since ¢,(k) = 1, we
g

have

i) = [l ) di = Ty .
11/l

Theorem 4.3 Let G = GL,,(A), where A is either a p-adic field F or a quaternion
division algebra D over F. Then dim Homg(p, Indan ¥n) < 1 for any irreducible repre-
sentation p of G.

Proof We have obtained dim Homg(; IndSG" 1) - dim Homsn(ReSSGn w31p,) < 1 for
any irreducible representation 7 of G from the previous theorem and the Gelfand—
Kazhdan criterion. It suffices to show that if 7 has a nontrivial Shalika functional,
then 7 will also have one. Assume that A, is a nontrivial Shalika functional for T,
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ie, A (m(h)v) = ¢, (h)A,(v) forall € S, and v € V.. Define a representation 7’ on
the same vector space V. by 7/(g)v = w(£g7 7€ )v, where € = diag(,, —I,,). Then
W(EsTTETY) = 1)(s) for s € S,,, and A is also a Shalika functional for 7',

In the case of F, define another representation 7w’/ on the same vector space V; by
7''(g)v = w(g~")v. Then 7'/ = 7 by [BZ, Theorem 7.3]. Since {g~ "¢~ is conjugate
tog~',wehavern’ 7.

In the case of D, define another representation 7w’/ on the same vector space V.
by 7'/ (g)v = w(ng'n~")v, where n(i, j) = (— 1) '5;. nm ey Then 7'’ ~ 7 by [Ra,
Theorem 3.1]. Since £g ¢! is conjugate to ng ~'n~!, we have 7/ ~ 7"/ ~ 7.

In either case,

dim Homg(7; Indgn 1,) = dim Homg(7’; Indgn Uy)

= dim Homs, (7|3, 5 1)

=1,
which completes the proof. ]
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