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1. Introduction. Although the axiom of complete regularity ought to be a 
separation axiom, in none of its usual forms does it look like an intrinsic 
separation axiom. Our aim in this paper is to establish such characterizations 
of complete regularity which naturally fit in between regularity and normality 
and which already have proved to be fundamental and useful. This can simply 
be achieved by replacing the family of all open sets (as used in the formulation 
of the separation axioms) by some suitable (sub)base of open sets. For the 
sake of simplicity, we assume all our spaces to be 7\ and we shall operate with 
(sub)bases of closed sets (instead of open sets). I t is appropriate to define the 
notion of a screening. 

Two subsets A and B of a set X are said to be screened by the pair (C, D) if 
CU D = X,A r\D = 0 and C C\ B = 0. (Consequently, A C C and 
BCD.) 

Then we have the following result. 

THEOREM 1. A space X is completely regular if and only if there is a base S3 for 
the closed subsets of X such that 

1. {Base-regularity) If B Ç S3 and x ÇL B, then {%} and B are screened by a 
pair from S3; 

2. (Base-normality) Every two disjoint elements of S3 are screened by a pair 
from S3. 

Two subsets A and B of a space X are said to be screened by a finite family 
S if 6 covers X and each element of 6 meets1 at most one of A and B. 

THEOREM 2. A space X is completely regular if and only if there is a subbase © 
for the closed subsets of X such that 

(1) (Subbase-regularity) If S G © and x $ S, then {x} and S are screened by a 
finite subcollection of ©; 

(2) (Subbase-normality) Every two disjoint elements of @ are screened by a 
finite sub collection of ©. 

Observe that in this context Hausdorff spaces and regular spaces can be 
defined as follows: 

A space X is Hausdorff if and only if it is (sub)base Hausdorff relative to any 
(sub)base S3 of closed sets; i.e., every two points of X are screened by (a 
finite subcollection of S3), a pair of elements of S3; 
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A space X is regular if and only if it is (sub) base regular to some suitable 
(sub)base 93 of closed sets (as defined in Theorems 1 and 2 above). 

Observe that a discrete space consisting of three points has a base for the 
closed sets (namely, all those which do not contain a singleton) which is not 
base-regular. 

Complete regularity means (sub)base-regularity and (sub)base-normality 
relative to some suitable (sub)base of closed sets (Theorems 1 and 2). Observe 
that a space is normal if and only if it is (sub)base regular and (sub)base 
normal relative to the base of all closed sets. 

As shown in § 3 by Examples 1 and 2, we cannot fall back on Theorem 1 for 
the proof of Theorem 2. The proof presented here depends on the notion of a 
linked system, which is a generalization of the concept of a filter. A linked system 
in a space X is a family % of subsets such that every two members of g have 
non-void intersection. Given a TYspace X and a subbase © for the closed 
subsets of X which satisfies the conditions of subbase-regularity and subbase-
normality, we consider all linked systems of elements of © which are generated 
by maximal centred systems of elements of ©. Those linked systems which have 
empty intersection serve as new points and are added to the space X. By choos
ing a suitable topology for the enlarged space, a Hausdorff compactification 
X* of X is obtained (for a formal description, see § 2, Theorem 3). Observe 
also, that a weight-preserving Hausdorff compactification can be obtained 
(§2, Theorem 4). 

Intrinsic characterizations of complete regularity have been discussed by 
several authors; see, e.g., Smirnov (6) and Frink (3). The characterization of 
Frink is related to our characterization in Theorem 1. Frink proved that a 
TYspace X is completely regular if and only if there is a base 93 for the closed 
subsets of X such that 

(1) all finite unions and intersections of elements of 93 belong to 93; 
(2) 93 satisfies the conditions of base-regularity and base-normality. 
Therefore, Theorem 1 shows that the algebraic, actually semi-ring, condition 

can be dropped. 
Theorems 1 and 2 have been known to us for some time (cf. 1; 2; and 10). 

However, the methods {linked systems) applied here for the proof of Theorem 2 
(and the results of Theorems 3 and 4 below) seem to be fundamental, yield a 
better insight, and give shorter proofs. 

After the completion of this paper, we observed a recent publication by 
Steiner (7). He proved Theorem 1 independently, and the proof is the same as 
that in (10). 

2. Theorems for subbases. A family © of closed subsets of a space X 
is a subbase for the closed subsets if the family of all finite unions of members 
of © is a base for the closed subsets of X. As is easily seen, two subsets A and B 
of a space X are screened by a finite family from a subbase © if A and B are 
screened by a pair from the base which is generated by © by the taking of all 
finite unions. 
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Theorem 2 is proved by obtaining a Hausdorff compactification of the given 
space. 

Suppose that X has a subbase © which satisfies the conditions of subbase-
regularity and subbase-normality. Let £', y\ , . . . denote maximal centred 
systems from @, i.e., £', rjf,... have the finite intersection property and are 
maximal with respect to this property. Let X' be the collection of all maximal 
centred systems from ©. Define Sf = {£'| £' G X', 5 G £'} for every 5 G ©. 
X ' will be endowed with a topology for which ©' = {5'| 5 G ©} serves as a 
subbase. X' is a compact TVspace, which is a compactification of X. The 
embedding i; of X into X ' is defined by the rule 

v{%) = {S|SG ©,x € 5}. 

Observe that this compactification is similar to the Wallman compactification 
(9). In order to obtain a Hausdorff compactification of X, we proceed as 
follows. For each £' G X ' we define £* as follows: 

£* = { r e © | m S 5 * 0 for every 5 G £'}. 

Observe that £' C £* and that different £' might define the same £*. It turns out 
that for each £', the system £* is a linked system, i.e. any two members of J* 
have non-void intersection. Let X* be the collection of all linked systems 
obtained in this way. Define 5* = {£*| £* G X*, 5 G £*} for every 5 G ©. 
X* is endowed with the topology for which {5*| S G ©} is a subbase. Since 
*>(#) = v(x)* for every x G X, there is a natural embedding /x of X into X* 
defined by 

n(x) = v{x) = v(x)*. 

The natural projection 7r of X' onto X* is defined by ir(£') = ^*. We have the 
following commutative triangle 

X' >X* 
7T 

It will be proved that X* is a Hausdorff space and that IT is a continuous map. 
I t follows that X* is a Hausdorff compactification of X (X* is compact, since 
it is the continuous image of a compact space). 

Remark. If © is closed under finite unions and finite intersections, then 
£' = £* for all £'; whence X ' = X*. In this case, the construction resembles the 
construction for the Cech-Stone compactification (as given in 4, p. 86). 

Actually, if © is the family of all zero-sets, then X* is the Cech-Stone 
compactification. I t is an open problem whether each compactification of X 
can be obtained as an X*, starting with a suitably chosen ©. As pointed out 
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by Frink (3), the one-point compactification of a locally compact space X can 
be obtained in this way. Our result can be stated as follows. 

THEOREM 3. Let X be a Ti-space. If X has a subbase © for the closed subsets 
which satisfies the conditions of subbase-regularity and subbase-normality, then 
X has a Hausdorff compactification X* for which the family ©* = {S*J S G ©} 
is a subbase. Moreover, ©* satisfies the conditions of subbase-regularity and 
subbase-normality. 

Closely related to Theorem 3 is the following theorem. 

THEOREM 4. If © is a subbase for the closed subsets of a Ti-space X such that 
© satisfies the conditions of subbase-regularity and subbase-normality, then there 
is a Hausdorff compactification X* of X which has the same weight as X. 

Remark. I t might be conjectured that in Theorem 3 the closed set S* equals 
the closure of S in X* for each S G ©. In § 3, Example 4, it is shown that this 
conjecture is false. 

The proof of Theorem 3 is given in Lemmas 1-10 below. 

LEMMA 1. Let Si G ©, i = 1, . . . , n, and U{S*| i = 1, . . . , n] = X. Then 
U { S / | i = l n ) = r and U{S,*| * = 1, . . . , n\ = X*. 

Proof. If Si G £', then there are Tj G £', j = I, . . . ,m, such that 

SiC\{C\{TJ\f= \,...,m\\ = 0. 

Now, suppose that £' G U { S / | i = 1, . . . , n). Then St G £' for each 
i = 1, . . . , n. I t follows that some finite subfamily of £' has void intersection 
which is a contradiction. If £* G S*, then S G £*, and consequently S G £'. 
From the first part of the proof it now follows that U {S*\ i = 1, . . . , n] = X* 

LEMMA 2. Each £* G X* is a linked system; i.e., if Si, S2 G £*, ^ew 

Si P S2 5* 0. 

Proof. Suppose that Si P S2 = 0, Si, S2 G J*. Due to the subbase-normality 
of ©, there are T;- G ©, i = 1, . . . , m, such that {Tj\ j = 1, . . . , m) covers 
X and each Tj meets at most one of Si and S2. Due to Lemma 1, £' G r / for 
some j . Consequently, Tj G £'. If r , Pi Si = 0, then Si g J*. If r , Pi S2 = 0, 
then S2 G £*. Since 7^ meets at most one of Si and S2, we have a contradiction. 

LEMMA 3. Let St G ©, i = 1, . . . , n. Then 0{S*| i = 1, . . . , n\ = 0 if and 
only if n{S/\i = 1, . . . , n\ = 0. 

The proof of Lemma 3 is obvious. As shown in § 3, Example 2, Lemma 3 
does not hold for linked systems. For linked systems we have the following 
lemma. 

LEMMA 4. Let Si, S2 G ©. Then Si P S2 = 0 if and only if Si* P S2* = 0. 
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The "only if" part of Lemma 4 follows from Lemma 2. Obviously, the "if" 
part also holds for finitely many S. 

LEMMA 5. If £*, 77* G X* and £* 9e ??*, then there are 7\ G £* and T2 G y* 
such that T\ C\ T2 = 0. 

Proof. Suppose that for every 7\ G £* and T2 G 77* we have that 7\ H T2 ^ 0. 
Then, if 2" G £*, 2" meets every element of 77*. In particular, JT meets every 
element of 77'. Consequently, T G 77*. Hence £* C *?*• Since similarly we have 
?7* C £*> we have that £* = 77*, which is a contradiction. 

LEMMA 6. The subbase ©* of X* satisfies the conditions of subbase-regularity 
and subbase-normality. 

Proof. Suppose that f ? 5* 6 ©*. Then, 5 g £* and 5 g £'. Hence, there 
is an element T G £' such that S C\ T = 0. Because of the subbase-normality 
of ©, the sets T and 5 are screened by a cover {Si, . . . , Sn\ C ©. From 
Lemmas 1 and 4, it follows that T* and S* are screened by the cover 
{Si*, . . . , Sn*} C ©*. Since T G £' C £*, £* G T* and £* and S* are screened 
by {Si*, . . . , Sn*}. Subbase-normality of ©* is proved similarly. 

LEMMA 7. v and n are homeomorphisms. 

Proof. First, observe that v and /x are well-defined. The maximality of v{x) 
follows from the subbase-regularity of ©. From the subbase-regularity, it also 
follows that v{%) = v(x)* == /x(x). v is one-to-one, since X is a JYspace. If 
S £ &, then ^ ( S ' ) = {*| „(*) G S'} = {x| x G X, S G v(x)} = S. Hence 
i/(S) = S' r\ v(X). I t follows that ^ is a homeomorphism. Similarly, /x is a 
homeomorphism. 

LEMMA 8. Xr is a compact Ti-space. 

Proof. If £', t)' G X' and £' ^ 77', then by the maximality of £' and 77' there 
are Si G £' and S2 G V such that Si G 77' and S2 G £'. Consequently, 77' G S2', 
i?' € Si', {' G S / , and £' G S2'. 

This proves that X ' is a 7\-space. According to Alexander's lemma, in order 
to prove the compactness of X', it suffices to show that each centred system 
X' from ©' has non-void intersection. Because of Lemma 3, the family 
{T\ T' G %'\ is a centred system. Let £' be a maximal centred system contain
ing this family. Then for each T' G 2/ we have that £' G T7, since J1 G £'. 
Consequently, H {T'I r G £'} 5* 0. 

LEMMA 9. X* is a Hausdorff space. 

Proof. If £* 7̂  77*, then by Lemma 5 there are disjoint 7\ and T2 of £* and 77*, 
respectively. £* G 7\, 77* G T2l and 7\* P\ T2* = 0 by Lemma 4. Because of 
Lemma 6, Ti* and T2* are screened by a cover {Si*, . . . , Sw*} from ©*. 
Consequently, £* and 77* are screened by {Si*, . . . , Sw*}. The lemma follows. 

LEMMA 10. T is continuous. 
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Proof. We show that ir~l{S*) is closed for each S* £ ©*. In general, 
7r-1(5*) 9e Sf; see §3, Example 2. Obviously, 7r(S') C S*. We proceed as 
follows. Suppose that £' £ 7r_1('5,*)-Then7r(^/) = £* (? 5*. Because of Lemma 6, 
£* and 5* are screened by a subfamily {Si*, . . . , Sn*} of ©*. Assume that 
Si*, . . . , 5 / do not meet S* and that S m * , . . . , Sn* meet 5*. By Lemmas 1,3, 
and 4 we have that {Si, . . . , Sn'} covers X', Si, . . . , S/ do not meet S', and 
Sj+i, . . . , Sn meetS' . Furthermore, {Si, . . . , S/} screens £' and S;. I t follows 
that Z7 = U {Sk'\ k = 1, . . . ,j\ is a neighbourhood of £', which, by 7r, is 
mapped into U {Sk*\ k = 1, . . . J}. Hence U C I V _ 1 ( 5 * ) . I t follows that 
X'Vr-^S*) is open and T T - 1 ^ * ) is closed. 

Remark. Since X ' is compact and X* is Hausdorff, w is a closed continuous 
map. Hence, T induces an upper semi-continuous decomposition 3) of J ' ; 
see (5, p. 99) for definition. £' and v\ belong to the same element of the decom
position 2) if and only if for each T Ç £' and S G ?/ we have that r P i 5 ^ 0 . 

If we drop the requirement that ©* satisfies the conditions of subbase-
regularity and subbase-normality, then a weight-preserving compactification 
can be obtained. Recall that the weight of X, w(X), is the minimal cardinal 
number of a subbase for the closed subsets of X. The following potency lemma 
is well known. 

LEMMA 11. Let X be a space of infinite weight w(X). If © is a subbase for the 
closed subsets of X, then there is a subcollection ©o of © such that ©0 is a subbase 
for the closed subsets of X and the power of ©0 is w{X). 

The following lemma asserts that ©o in Lemma 11 can be chosen in such a 
way that if © satisfies the conditions of subbase-regularity and subbase-
normality, then ©o will do the same. 

LEMMA 12. Suppose that w(X) is infinite and © is a subbase for the closed 
subsets of X which satisfies the conditions of subbase-regularity and subbase-
normality. Then there is a subcollection ©0 of © which is a subbase for the closed 
subsets of X satisfying the conditions of subbase-regularity and subbase-normality 
and which has power w(X). 

Proof. Using Lemma 11, first select a subset ©i of © of power w(X), which 
is a subbase for the closed subsets of X: ©i = {S\\ X G A}, | A| = w{X). Then, 
choose an open base £) of power w(X): £) = {0M| ju 6 M}, \M\ = w(X). For 
each two disjoint elements S\x and S\2 of ©i, take a fixed cover ©xlfx2 from © 
such that S\x and S\2 are screened by ©xlfx2. If Sx 6 ©i and 0^ G £) can be 
screened by a finite cover from ©, then let 3)X,M be a fixed cover which screens 
Sx and 0M. Let 

©2 = ©iW[U{©x1,x2|X1,X2 6 A , S X i n S X 2 ^ 0 } ] W 

[U{S)x,M| X G A, fx 6 M, Sx and 0^ can be screened by a 
finite cover from ©}]. 
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An easy computation shows that |©2| = w(X). Proceeding by induction on 
n, we define subsets ©n of © with power w(X). We shall show that 

©0 = U{©n|?* = 1 , 2 , . . . } 

satisfies all properties required. Obviously, ©0 is a subbase of power w(X), 
which satisfies the condition of subbase-normality. Suppose that 5 G ©0 and 
x £ S. Take a cover 3) C ©, which screens x and 5, and let 

u = X\\J{D\ D e®,Dr\s ^0}. 
Choose 0 such that x G 0 G D and 0 d U. Then, clearly 0 and S are screened 
by 3). Since for some n we have that 5 G ©n, 0 and 5 are screened by a finite 
subfamily of ©n+i. Hence, x and 5 are screened by a finite subfamily of ©0. 

Proof of Theorem 4. From Lemma 12 it follows that there is a subfamily ©0 

of © such that |©0| = w(X) and ©0 satisfies the conditions of subbase-
regularity and subbase-normality. Because of Theorem 3, there is a Hausdorff 
compactification X* of X for which the family {S*| S G @0} is a subbase. 
Consequently, w(X*) = w(X). 

3. Examples. 

Example l.2 This is an example of a space X and a subbase © for the closed 
subsets of X such that 

(1) © satisfies the conditions of subbase-regularity and subbase-normality; 
(2) The family ©u of all finite unions of elements of © does not satisfy the 

condition of base-normality. 
X is the unit interval [0, 1] with the usual topology. © is the family of all 

intervals of the form [0, x] and [x, 1] for x G [0,1], and all singletons {x} for 
x G [0, 1]. Now, A = {§} and B = [0, \] \J [f, 1] cannot be screened by a 
pair from ©u. Indeed, suppose that there are C,D G ©u such that C\J D — Xf 

C H B = 0, and A C\ D = 0. I t follows that C is a neighbourhood of A which 
does not meet B. Hence, C contains a subset of the form [x, 1], x < J, or 
[0, x], x > f. In both cases C H J5 ^ 0, which is a contradiction. 

Example 2. In this example we use the notation of § 2. Let X be an infinite 
set which is the disjoint union of five infinite sets A, B, C, D, and E. Consider 
the following base © for the discrete topology on X. © contains all finite sets 
and all cofinite sets (a set is cofinite if its complement is finite). Moreover, it 
contains the following sets: A U B \J C, A VJ D \J E, and B \J D. 

(1) The family ©n of all finite intersections does not satisfy the condition 
of subbase-normality. 

(2) The family ©nu of all finite unions and intersections of elements of © 
does not satisfy the condition of subbase-normality. 

2This example is due to J. van der Slot (oral communication). 
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In order to prove (1) and (2), consider A G ©n and B\J D G @. We show 
that A and BUD cannot be screened by a pair from @nu. Suppose that there 
are F, G 6 ©nu such that F U G = X, A H G - 0, and F H (5 U JD) = 0. 
Since F contains ^4, F is infinite. I t follows that F is cofinite, or the intersection 
of a cofinite set and ( i U 5 U C ) , or the intersection of a cofinite set and 
(A U D U E ) . I n each case, the intersection of F and 5 U D i s infinite, which 
is a contradiction. 

(3) Let E denote the collection of all cofinite sets of X. Then the maximal 
centred systems from © with void intersection are: 

£' = g U { i U 5 U C , i UDU E}, 

y' = S U {il U i U C B U D ) , 

The compactification X' is not Hausdorff. 
Indeed, observe that a space is Hausdorff if and only if every subbase for 

the closed subsets has the property that any two distinct points can be 
screened by a finite subcollection of the subbase. Now, if C is a cofinite set, 
then C contains £', rj', and #'. Therefore, a cover which screens £' and y\ has 
to be a subfamily of j ( i U 5 U C)', ( i U D U £ ) ' , (5 U £>)'}. However, 
no such subfamily screens £' and rjf. 

(4) £', r)', and #' generate the same linked system: £* = if = #*. Observe 
that ( i U 5 W C ) n ( i U D U £ ) n ( 5 U D ) = 0 . It follows that the 
linked system £* does W0£ have the finite intersection property. However, 

( 4 U 5 U C ) * n ( i U D U £ ) * n ( 5 U £>)* = £* (cf. Lemma 4). 

(5) ir"1 ((A U B U O*) = ( i W 5 U C ) ' U {#'} ^ ( 4 U B U C ) ' 
(cf. Lemma 10). 

Example 3. We give an example of a space X with the following properties: 
(1) X is a regular space which is not completely regular; 
(2) X has a base S3i which satisfies the condition of base-regularity; 
(3) X has a base $2 which satisfies the condition of base-normality. 
Such an example shows that the conditions of (sub)base-regularity and 

(sub)base-normality must deal with the same base. In fact, the space X is the 
example of Tychonoff (8) of a space which is regular but not completely 
regular. Let Y denote the Tychonoff plank with a corner point removed: 
Y = 12' X co'\{ (12, co)}, where 12' is the set of ordinal numbers not greater than 
the first uncountable ordinal 12, and co' is the set of ordinal numbers not greater 
than the first infinite ordinal co, each with the order topology. For each natural 
number n, let Yn be a space homeomorphic to F. Points of Yn are denoted by 
(a, ft, n), where a ^ 12, fi g co. We assume that the Yn are pairwise disjoint. 
Xi denotes the union of the sets Yn and a point £ not in the union of the Fn. 

https://doi.org/10.4153/CJM-1969-010-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-010-0


104 J. DE GROOT AND J. M. AARTS 

A topology on X\ is determined by the following rules: Each Yn is an open 
subspace of X\ and 

U 7 J U {i}\m = 1,2, . . . > 
i=m / / 

is a neighbourhood base of £. Then X is obtained from X\ by identifying 
(12, |8, 2w) with (12, 0, 2rc + 1) for each /3 g co and w = 1, 2, . . . , and. 
(a, co, 2^ — 1) with (a, co, 2n) for each a < 12 and w = 1 , 2 , . . . . Let p denote 
the natural projection of Xi onto X. The family of all closed subsets satisfies 
the condition of base-regularity, as is easily seen. 332 is defined as follows., 
Since Y is locally compact, for each point (a, /3, n) we can select an open base 
for the Xi-neighbourhoods whose closures are compact. S32 will consist of the 
images of the following sets under the map p: 

(1) The (compact) closures of the selected neighbourhoods; 
(2) The complements of the selected neighbourhoods; 
(3) U:=iYnjm= 1 , 2 , . . . . 

I t is not hard to show that S32 satisfies the condition of base-normality. By 
Theorem 1, S32 cannot satisfy the condition of base-regularity. Indeed, it is 
easily seen that p(U%=iYn) and p(£) cannot be screened by a pair from 932. 

Example 4. In this example we use the notation of § 2. Let X be a locally 
compact, non-compact Hausdorff space. Let p and q be two distinct points 
of X. We exhibit a base @ of X, which satisfies the conditions of subbase-
regularity and subbase-normality, and a member 5 £ © such that 5* is not 
equal to the closure of 5 in X* (see Theorem 3). © is the family of all finite 
unions of the family consisting of the following sets: 

(1) all compact subsets of X, 
(2) all closed subsets of X which contain at least one of the points p and g 

and the complements of which have a compact closure in X. 
I t turns out that X* is the one-point compactification of X. Put: 

X* = I U { œ j . Now S = {p, q) is a member of © on account of (1) and 
5* = {P, q, °° } • Since 5 is compact, the closure of S in X* equals 5. 
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