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Abstract. Let Y be a compact nonsingular real algebraic variety of positive
dimension. Then one can find a compact connected nonsingular real algebraic variety
X , which admits a continuous map into Y that is not homotopic to any regular map.
It is hard to determine the minimum dimension of such a variety X . In this paper, new
upper bounds for dim X are obtained. The main role in the constructions is played by
complex algebraic cycles on Y .

2010 Mathematics Subject Classification. 14P05, 14P25

1. Introduction. In the present paper, we investigate obstructions to representing
homotopy classes of continuous maps, between real algebraic varieties, by regular
maps. The term real algebraic variety designates a locally ringed space isomorphic to
an algebraic subset of �N , for some N, endowed with the Zariski topology and the sheaf
of real-valued regular functions (such an object is called an affine real algebraic variety
in [3]). The class of real algebraic varieties is identical with the class of quasi-projective
real algebraic varieties, cf. [3, Proposition 3.2.10, Theorem 3.4.4]. Morphisms of real
algebraic varieties are called regular maps. Each real algebraic variety carries also
the Euclidean topology, which is induced by the usual metric on �. Unless explicitly
stated otherwise, all topological notions relating to real algebraic varieties refer to the
Euclidean topology.

In [6], a numerical invariant β(Y ) was defined for any real algebraic variety Y .
Recall that β(Y ) is the supremum of all nonnegative integers n with the following
property: For every n-dimensional compact connected nonsingular real algebraic
variety X , every continuous map from X into Y is homotopic to a regular map.
Henceforth Y will be assumed to be compact and nonsingular. For any nonnegative
integer k, let Hk

alg(Y ; �/2) denote the subgroup consisting of all algebraic cohomology
classes in the cohomology group Hk(Y ; �/2), cf. [7] or [1, 3, 5]. According to [6,
Theorem 2.9], β(Y ) ≤ k if Hk

alg(Y ; �/2) �= 0 for some k ≥ 1. As a consequence, one
gets some upper bounds for β(Y ), which are independent of the algebraic-geometric
structure of Y . For example, β(Y ) ≤ dim Y if dim Y ≥ 1. This assertion holds since
Hd

alg(Y ; �/2) = Hd(Y ; �/2) �= 0 for d = dim Y . Furthermore, β(Y ) ≤ k if the kth
Stiefel–Whitney class wk(Y ) of Y is nonzero for some k ≥ 1. Indeed, it suffices
to note that wk(Y ) is in Hk

alg(Y ; �/2), cf. [7] or [1]. In particular, β(Y ) ≤ 1 if Y
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is nonorientable (as a smooth, that is, C∞ manifold), the orientability of Y being
equivalent to w1(Y ) = 0.

The reader may consult [9] for other results related to the problem under
consideration.

In this paper, new upper bounds for β(Y ) are obtained. For Y orientable they
are frequently sharper than those given in [6]. The key role is played by �-algebraic
cohomology classes. Let H2k

�-alg(Y ; �) denote the subgroup consisting of all �-algebraic

cohomology classes in the cohomology group H2k(Y ; �), cf. [2]. For the convenience
of the reader, the definition of H2k

�-alg(Y ; �) is recalled in Section 2.

THEOREM 1.1. Let Y be a compact nonsingular real algebraic variety. If the group
H2k

�−alg(Y ; �) is infinite for some k ≥ 1, then β(Y ) ≤ 2k − 1.

The proof is postponed until Section 2. It is worthwhile to record two consequences
of Theorem 1.1. Let pk(Y ) ∈ H4k(Y ; �) denote the kth Pontryagin class of Y .

COROLLARY 1.2. Let Y be a compact nonsingular real algebraic variety. If for some
integer k ≥ 1, the Pontryagin class pk(Y ) is an element of infinite order in the group
H4k(Y ; �), then β(Y ) ≤ 4k − 1.

Proof. In view of [2, Theorem 5.3], pk(Y ) is in H4k
�-alg(Y ; �), and hence it suffices to

apply Theorem 1.1. �
A compact oriented smooth manifold is said to be an oriented boundary if it is

the boundary, with induced orientation, of a compact oriented smooth manifold with
boundary.

COROLLARY 1.3. Let Y be a compact nonsingular real algebraic variety. If Y is
oriented, and the disjoint union of two copies of Y is not an oriented boundary, then
β(Y ) ≤ dim Y − 1.

Proof. Let M be the disjoint union of two copies of Y . Then M is the unoriented
boundary of Y × [0, 1], and hence its Stiefel - Whitney numbers are all equal to 0.
Since M is not an oriented boundary, it follows that at least one Pontryagin number
of M is different from 0 (cf. Wall’s refinement [14] of earlier results due to Thom [13]
and other authors). Consequently, dim Y = 4d, for some positive integer d, and there
exists an element of infinite order in H4d(Y ; �), which is a polynomial in the Pontryagin
classes pk(Y ) for k ≥ 0. In particular, pk(Y ) is an element of infinite order in the group
H4k(Y ; �) for some k ≥ 1. Now it suffices to apply Corollary 1.2. �

2. Complex algebraic cycles. First some basic definitions will be recalled. Let V
be a nonsingular projective complex algebraic variety. For any nonnegative integer k,
a cohomology class in H2k(V ; �) is said to be algebraic if it corresponds via the cycle
map to an algebraic cycle of codimension k on V , cf. [8, Chapter 19]. The set H2k

alg(V ; �)
of all algebraic cohomology classes in H2k(V ; �) forms a subgroup. This construction
can be transferred in a suitable way to the real algebraic-geometric setting.

Let X be a compact nonsingular real algebraic variety. A nonsingular projective
complexification of X is a pair (W, j), where W is a nonsingular projective complex
algebraic variety defined over � and j : X → W is an injective map, such that W (�)
is Zariski dense in W , j(X) = W (�) and j induces a biregular isomorphism between
X and W (�). Here W (�) denotes the set of real points of W . The existence of (W, j)
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follows from Hironaka’s theorem on resolution of singularities [10, 11]. The subgroup

H2k
�-alg(X ; �) := j∗(H2k

alg(W ; �))

of H2k(X ; �) does not depend on the choice of (W, j). Any cohomology class in
H2k

�-alg(X ; �) is said to be �-algebraic. The groups H2k
�-alg(−; �) have the expected

functorial property: If f : X → Y is a regular map between compact nonsingular
real algebraic varieties, then

f ∗(H2k
�-alg(Y ; �)) ⊆ H2k

�-alg(X ; �).

These properties of H2k
�-alg(−; �) are proved in [2].

In order to interpret �-algebraic cohomology classes as obstructions, one needs a
somewhat refined version of Thom’s representability theorem [13, Théorème III.4].
For any n-dimensional compact oriented smooth manifold N, let [N] denote its
fundamental class in Hn(N; �).

THEOREM 2.1. Let Y be a CW-complex and let α be a homology class in Hn(Y ; �),
with n ≥ 1. Then there exist an n-dimensional compact oriented smooth manifold N,
a continuous map f : N → Y and a positive integer l such that f∗([N]) = lα and N is
an oriented boundary. Furthermore, if α is represented by a singular cycle with support
contained in a connected component of Y, then the manifold N can be chosen connected.

Proof. One can assume without loss of generality that Y is compact and connected.
The argument used in [13, pp. 57, 58] implies the existence of a compact connected
orientable smooth manifold P containing Y as a retract. One can find such a manifold
P with p := dim P ≥ 2n + 1. Let i : Y ↪→ P be the inclusion map and let r : P → Y be
a retraction. According to Thom’s theorem [13, Théorème II.29], there exists a positive
integer l such that the homology class li∗(α) in Hn(P; �) can be represented by an
n-dimensional compact oriented smooth submanifold M of P. Since the manifold P
is connected and 1 ≤ n ≤ p − 2, the connected components of M can be joined with
n-dimensional tubes in P. Hence M can be assumed to be connected. Let U be an open
subset of P \ M that is diffeomorphic to �p. Since p ≥ 2n + 1, there exists a smooth
submanifold M′ of U , diffeomorphic to M. Choosing an orientation of M′ and joining
the submanifolds M and M′ with an n-dimensional tube in P, one obtains a compact
connected oriented smooth submanifold N of P representing the homology class li∗(α).
Furthermore, if the orientation of M′ is suitably chosen, then N is diffeomorphic to
the connected sum M#(−M), where −M stands for M with the opposite orientation.
Since M#(−M) represents the same oriented bordism class as the disjoint union of M
and −M, it follows that N is an oriented boundary. If j : N ↪→ P is the inclusion map
and f := r ◦ j, then j∗([N]) = li∗(α) and

f∗([N]) = r∗(j∗([N])) = lr∗(i∗(α)) = l(r ◦ i)∗(α) = lα.

The proof is complete. �
Proof of Theorem 1.1. Let u be an element of infinite order in the group H2k

�-alg(Y ; �).
Then there exists a homology class α in H2k(Y ; �) such that the Kronecker index 〈u, α〉
is different from 0. One can choose α in such a way that it is represented by a singular
cycle with support contained in a connected component of Y . By Theorem 2.1, one can
find a 2k-dimensional compact connected oriented smooth manifold N, a continuous

https://doi.org/10.1017/S0017089514000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000329


346 WOJCIECH KUCHARZ

map f : N → Y and a positive integer l such that f∗([N]) = lα and N is an oriented
boundary. The last named property of N is crucial. According to [4, Theorem 3.3], it
implies the existence of a nonsingular real algebraic variety X , which is diffeomorphic
to N and satisfies H2k

�-alg(X ; �) = 0. If ϕ : X → N is a smooth diffeomorphism and
g := f ◦ ϕ, then

g∗([X ]) = f∗(ϕ([X ])) = f∗([N]) = lα.

Consequently,

〈g∗(u), [X ]〉 = 〈u, g∗([X ])〉 = 〈u, lα〉 = l〈u, α〉 �= 0,

and hence g∗(u) �= 0 in H2k(X ; �). Since H2k
�-alg(X ; �) = 0, the functoriality of

H2k
�-alg(−; �) implies that the map g is not homotopic to any regular map. Thus,

β(Y ) ≤ 2k − 1, as required. �
Any projective complex algebraic variety V can be regarded as a real

algebraic variety, denoted V� (identify � with �2). Obviously, dim� V� = 2 dim� V .
Furthermore, V and V� coincide as topological spaces endowed with the Euclidean
topology.

EXAMPLE 2.2. If V is a nonsingular projective complex algebraic variety of
positive dimension, then β(V�) ≤ 1. Indeed, there are two subgroups, H2k

alg(V ; �)
and H2k

�-alg(V�; �), of the cohomology group H2k(V�; �). It is well known that

H2k
alg(V ; �) ⊆ H2k

�-alg(V�), cf. [12]. Since the group H2
alg(V ; �) is infinite, the inequality

β(V�) ≤ 1 follows from Theorem 1.1. Consequently, if V is connected and simply
connected, then β(V�) = 1. It does not seem that these facts can be established using
methods developed in [6].
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