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Abstract
Direct numerical simulation of intense laser–solid interactions is still of great challenges, because of the many
coupled atomic and plasma processes, such as ionization dynamics, collision among charged particles and collective
electromagnetic fields, to name just a few. Here, we develop a new particle-in-cell (PIC) simulation code, which enables
us to calculate laser–solid interactions in a more realistic way. This code is able to cover almost ‘all’ the coupled
physical processes. As an application of the new code, the generation and transport of energetic electrons in front of
and within the solid target when irradiated by intense laser beams are studied. For the considered case, in which laser
intensity is 1020 W ·cm−2 and pre-plasma scale length in front of the solid is 10 µm, several quantitative conclusions are
drawn: (i) the collisional damping (although it is very weak) can significantly affect the energetic electrons generation
in front of the target, (ii) the Bremsstrahlung radiation will be enhanced by 2–3 times when the solid is dramatically
heated and ionized, (iii) the ‘cut-off’ electron energy is lowered by an amount of 25% when both collision damping
and Bremsstrahlung radiations are included, and (iv) the resistive electromagnetic fields due to Ohmic heating play
nonignorable roles and must be taken into account in such interactions.
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1. Introduction

The development of short pulse lasers at relativistic inten-
sities has aroused exciting progress in high energy den-
sity physics. Especially, relativistically intense laser–solid
interactions are of crucial importance to many great appli-
cations, such as fast ignition of fusion energy[1–8], hadron
therapy[9–12], proton radiography[13–15] and high quality ion
beam source[16–19]. When an intense laser beam irradiates
a solid target, relativistic electrons can be produced in
front of the target. These energetic electrons can propagate
through the bulk solid and trigger abundant plasma–atomic
processes, which typically include return current, resistive
electric and magnetic fields[20], bulk heating, ionization
dynamics[21] and Bremsstrahlung X-ray generation[22–24].

In the past decades, there are increasing number of re-
searches focusing on laser–solid interactions. These studies
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can be roughly categorized into two subjects, determined
by whether it is the intense laser fields or the solid-density
effects that play the dominant roles. When an intense laser
beam irradiates a solid, it will be reflected back by the
encountered high-density plasmas. Within the low-density
region in front of the target, the two conflicting laser pulses
(incident and reflected) can efficiently accelerate electrons
therein[25–32]. This acceleration mechanism is usually re-
ferred to as direct laser acceleration (DLA), which is a pure
plasma physics process and can be well modelled by the
widely used particle-in-cell (PIC) codes. Typically, tempera-
ture of these energetic electrons can be well formulated by
Beg’s scaling law[25] or Wilks’ scaling law[26]. However,
when there exists large-scale preformed plasma in front of
the solid, the electron heating is beyond predictions of Beg’s
and Wilks’ scaling laws. In such cases, one has to take into
account the synergetic effects of both charge separation elec-
tric fields and the two conflicting laser fields[29–32]. Recently,
a two-stage electron acceleration model was proposed[33–35]
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in order to describe the electron dynamics influenced by both
charge separation electric fields and the two conflicting laser
fields. The dependence of the energetic electrons generation
on both the pre-plasma scale length and the laser intensity
was figured out. An energy scaling law of the energetic
electrons with δε ∼ (I L p)

1/2 was obtained, where I is the
laser intensity and L p is the pre-plasma scale length.

In front of the target, it is the intense laser fields that
dominate the interactions. However except the electro-
magnetic dynamics, some atomic processes might also
play important roles, like field ionization (multi-photon
ionization, tunnelling ionization and barrier-suppression
ionization)[36] and quantum electrodynamics (QED)[37].
In our recent works[36, 37], both field ionization and QED
models had been established and implemented into the PIC
code. However the greatest challenge of PIC simulations
is the fact that one has to include the regions where solid-
density effects also dominate. The transport of energetic
electrons within the solid triggers a lot of coupled atomic
and plasma processes. To trace these processes, several
hybrid simulation codes were established[38–43]. In hybrid
simulations, the energetic electrons are treated kinetically
using the Vlasov Fokker–Planck approach and the bulk solid
is regarded as a resistive fluid. The most recent work[42, 43]

also invoked the Saha–Boltzmann model[44] (or Thomas–
Fermi model[45]) to synchronously update the ionization of
the bulk solid. Note for the existing hybrid simulations,
the laser–plasma interactions have not been considered
directly. Instead, the energetic electrons are injected with
a temperature obeying certain scaling laws. Most of all,
the correctness of the hydrodynamic and hybrid methods is
based on the local thermal equilibrium assumption. The time
scale of laser–solid interactions at relativistic intensities is
much shorter than those processes in inertial confinement
fusion (ICF) studies, such as ablation, shock wave tuning,
and hydrodynamic instabilities. The typical time scale of ICF
is on the order of nanosecond, while the time scale of laser–
solid interactions at relativistic intensities is on the order of
picosecond or even femtosecond. Therefore the local thermal
equilibrium assumption needs to be seriously retreated.

In order to figure out the above dynamics with significant
nonequilibrium features, a first principle approach should
be constructed from the very beginning. Here, in this pa-
per, we have developed a PIC code. The PIC code takes
advantage of the newly developed ionization and collision
dynamics models, which enables us to calculate intense
laser–solid interactions in a more realistic way. Furthermore,
the numerical self-heating of PIC simulations, which usually
appears in solid-density plasmas, is well controlled by the
proposed ‘layered density’ method. As an application of the
new code, the generation and transport of energetic electrons
in front of and within the solid target when irradiated
by intense laser beams are studied. For the considered
case, in which laser intensity is 1020 W · cm−2 and pre-
plasma scale length in front of the solid target is 10 µm,

several quantitative conclusions are drawn: (i) the collisional
damping (although it is very weak) can significantly affect
the energetic electrons generation in front of the target,
(ii) the Bremsstrahlung radiation will be enhanced by 2–3
times when the solid is dramatically heated and ionized,
(iii) the ‘cut-off’ electron energy is lowered by an amount
of 25% when both collision damping and Bremsstrahlung
radiations are included and finally, (iv) the resistive elec-
tromagnetic fields due to Ohmic heating play nonignorable
roles and must be taken into account in such interactions.

2. Atomic models and numerical scheme of the PIC code

Although the PIC method is a first principle scheme derived
from the Vlasov and the coupled Maxwell’s equations, it
is a tool originally designed to describe plasmas at high
temperature and low densities. Typical plasmas of high
temperature and low density are fully dominated by the
electromagnetic effects. For solid-density plasmas (matter),
advanced atomic models need to be taken into account.
These models should allow one to calculate ionization dy-
namics. Such models should also allow one to directly depict
the close interactions in the plasmas and thus, accounts for
the multi-particle nature of real plasmas. In addition, PIC
method is a kind of numerical schemes, which usually suffer
significant self-heating. In general, it is challenging for a
PIC code to simulate extremely dense and low-temperature
(less than 1 keV) plasmas. This is because the grid size
of PIC is restricted by the plasma Debye length, λd ∼
√

Te/ne, in order to avoid the numerical self-heating[46].
Due to the great demand of huge number of grids and/or
particles in the PIC simulations of solid-density plasmas, it
is not realistic to perform even with the current fastest super-
computers. Therefore, in order to investigate intense laser–
solid interactions by using a PIC approach, one has to solve
challenges, both physically and numerically.

2.1. Ionization dynamics

The main challenge to the ionization dynamics of solid-
density plasmas is to incorporate both the matter’s response
to the surrounding plasmas and plasmas’ response to the
matter. In a recent work[3], we have proposed and analysed a
Monte Carlo approach that can be configured and embedded
into the PIC code. In this approach, we use a collection
of macro-particles to describe a plasma or matter of finite
ion density. Here, a macro-particle can be regarded as the
ensemble of real particles, i.e., a group of particles with
‘same’ mass, charge state, position and momentum. The
electrons are classified moreover into bound and free ones,
where the former are regarded as part of ions or atoms,
and the latter are isolated as the surrounding plasmas. Here,
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both impact (collision) ionization (CI)[47] and electron–
ion recombination (RE)[48] are taken into account. Further-
more, the ionization potential depression (IPD)[49, 50] by
the surrounding ions and free electrons is also taken into
consideration.

When compared with Saha–Boltzmann or Thomas–Fermi
models, which are applied in the literature for plasmas near
thermal equilibrium, the temporal relaxation of ionization
dynamics can also be simulated by the recently proposed
model. Here as a benchmark, the ionization dynamics of
an Al bulk (with density 2.7 g · cm−3) is calculated with
our PIC code. We consider only a few computational cells,
connected by periodic boundary conditions, with each cell
containing 200 ion macro-particles and 200 electron macro-
particles initially (nonuniform weight). In these calculations,
electromagnetic effects are turned off. Figure 1(a) shows the
total plasma energy within a computational cell as a function
of time, where the initial Al charge state is assumed to be
4+, and the initial free electron temperature is set to 150 eV.
Following the energy history, at initial time, the CI rate of
Al is larger than RE. The former one would reduce the
plasma energy and increase the averaged ionization degree
as a function of time. After 6 ps relaxation, the normalized
charge state distribution is presented in blue bars, and the
averaged ionization degree is Z̄ = 5.82 with Te = 74 eV.
In Figure 1(a), the ionization distributions calculated by
the Saha–Boltzmann equation are also presented in the red
curves covered on the inlets, showing good consistence with
the PIC calculations. Following the same routine, by varying
the reasonable guesses of initial temperature and charge state
configuration, the dependence of averaged ionization degree
on final thermal equilibrium temperatures covering a large
variation is obtained by the PIC code, as shown in black
square lines in Figure 2(b), also showing good consistence
with results from the Saha–Boltzmann equation.

2.2. Collision with Bremsstrahlung corrections

It is well known in plasma physics that electron–electron,
electron–ion and ion–ion scatterings can be described by
means of the Monte Carlo binary collision model, thanks
to the pioneering works of Takizuka and Abe[51], Nanbu
and Yonemura[52], and Sentoku and Kemp[53]. Within these
PIC calculations, three steps are made iteratively: (i) pair
of particles are selected randomly in the cell, i.e., either
electron–electron, electron–ion or ion–ion pairs; (ii) for these
pair of particles, the binary collisions are associated with
changes in the velocity of the particles within the time
interval δt and are calculated; (iii) and then the veloc-
ity of each particle is replaced by the newly calculated
one. The collision frequency of fully ionized plasmas be-
tween charged particles, used in these PIC calculations, is
ν = 2πe4 Z2

a Z2
bnmin ln (Λf)/(3m2

eβ
3), where Za and Zb

are charge state of colliding particles, nmin is the minimal

Figure 1. (a) The total plasma energy within a computational cell as a
function of time, with initial plasma temperature 150 eV and pre-defined
charge state 4+. The red line covered on the inlets is the ionization
distributions of Al calculated by the Saha–Boltzmann equation with defined
temperature, Te = 74 eV. (b) The averaged ionization degree as a function
of temperature, where red and green lines are the results calculated by the
Saha–Boltzmann equation, including IPD and excluding IPD, with fixed Al

density 2.7 g · cm−3. The solid red line is with the SP[49] model of IPD,

while the dashed red line is with EK[50] model of IPD. The black square
line is picked up from the equilibrium states calculated by our PIC code.

density of the two species a and b, and β is the relative
velocity between the two colliding particles. The Coulomb
logarithm, ln (Λf), is usually defined as L ≡ ln(λD/b), where
the Debye length, λD, is a dynamic value changing as λD =√
(Te/4πne)(1+ β2/v2

th), where Te and vth are the tempera-
ture and thermal velocity of background electrons. Parameter
b is the distance of the closest approach between the two
charges. In classical scattering, we have b = Za Zbe2/meβ

2.
This condition is not satisfied in the relativistic case, so that
the scattering must be treated quantum mechanically using
the Born approximation. In this case, i.e., e2/h̄β � 1, the
Coulomb logarithm is then expressed as L = ln (λDγβ/h̄),
which is the ratio of the Debye length and the de Broglie
wavelength. This definition of Coulomb logarithm works
well for low-density and high-temperature plasmas. How-
ever, for plasmas of solid density and at low temperatures,
as b is larger than λD, the Coulomb logarithm expression
will become negative. Existing works[51–53] do not address
this issue of negative Coulomb logarithm, as the collision
models are initially proposed for high-temperature plasmas.

We here obtain a general Coulomb logarithm by con-
sidering the scattering of charged particles by sheathed
Coulomb force, exp (−r/λD)/r . Rigorous calculation results
in the expression of Coulomb logarithm as L = ln[(1 +
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Figure 2. Schematic of charged particle collision. For neutral atoms, when
all electrons are bounded at the nuclei with the radius on the order of Bohr
unit a0, only projectile that could penetrate through the electron can be
deflected by the Coulomb force of the nuclei. When temperature is high,
some of the bound electrons are ionized and form plasmas around the nuclei,
projectile with a collision distance b smaller than λD (usually λD is much
larger than a0) can also be deflected by the Coulomb force.

η)/η] (appendix A), where η = b/λD. This expression of
Coulomb logarithm will converge to L = ln (λD/b) when
b � λD for high-temperature plasmas. In addition, when
plasma temperature is smaller than the so-called Fermi
energy εF, collision in the degenerate regime is also taken
into account. In the degenerate regime, the dynamics of
electrons are mainly determined by Pauli–Dirac statistics,
which tends to lower the classical collision frequency by a
factor of (Te/εF)

2[54]. The degenerate collision frequency
is ν = (4mee4/3π h̄3)L . When β is smaller than the value
n1/3

maxh̄/mec, where nmax is the maximal density between
species a and b, ν = (4mee4/3π h̄3)L is used instead. For
the given Al solid of density 2.7 g · cm−3, Figure 3(a)
shows the collision frequencies as functions of temperatures,
given by our PIC code. The electron–electron collision
frequency is displayed by black square line and the electron–
ion collision frequency is displayed in black diamond line.
In these calculations, the changing of averaged ionization
degree with temperature is also taken into account. The
collision frequency is calculated by averaging over 1000
pairs of colliding particles. For moderate temperatures, for
example with Te greater than 10 eV, the collision frequency
nicely converges to the Spitzer model[51–53], i.e., ν ∼ T−1.5

e ,
which decreases rapidly with the raising of temperatures.
However, at low-temperature limit, when λD is extremely
small, the Fermi–Dirac statistics tends to suppress the col-
lision frequency, by a factor of (Te/εF)

2. In Figure 3(b), we
have compared the resistivity given by our PIC code with
that of experimental measurements[55]. These measurements
were obtained by rapid heating of the Al solid using a short
pulse laser (this is considered to be a disadvantage of these
measurements, as they do not give time for equilibrium to be
established). The basic behaviour of resistivity as a function
of temperature is well depicted by our PIC code, i.e., the
resistivity is first increasing with the raising of temperature
and then converges to the predictions of the Spitzer model.

The above collision model works well for fully ionized
plasmas. However in laser–solid interactions, the inner part

Figure 3. For given Al solid of density 2.7 g · cm−3, (a) the electron–
electron (black square line) and electron–ion (black diamond line) collision
frequency given by our PIC code as functions of temperatures; (b) the

resistivity given by our PIC code versus experimental values[55]. In these
calculations, the variation of averaged ionization degree with temperature is
also taken into account. The values given by the PIC code are averaged over
1000 particle pairs.

of the bulk target is usually partially ionized. Therefore,
the contribution of bound electrons must also be taken into
consideration. In a recent work[4], we have studied the ion
stopping in warm dense matter (or/and partially ionized
plasma), where contribution of both the bound and free
electrons is included by modifying the ion–electron collision
frequency as

νi-e =
8
√

2πe4 Z2
b Zni

3m2
eβ

3

[
ln (Λf)+

A − Z
Z

ln (Λb)

]
, (1)

where ln (Λb) ≡ ln |2γ 2meβ
2/ ĪA(Z)| − β2

− CK/A −
δ/2, IA(z) is the effective ionization potential, δ/2 is the
density effect contribution and (A − Z)/Z (A is the atomic
number, A = 13 for Al and Z is the ionization state)
defines the ratio of bound electrons contributions. For a
fully ionized plasma, Z → A, the collision frequency
between ions and electrons in Equation (1) converges to
νi-e ∼ (8

√
2π Z2

be4 Zni/3m2
eβ

3) ln (Λf). For neutral atoms,
Z → 0, in contrast, the frequency in Equation (1) is
νi-e ∼ (8

√
2π Z2

be4 Ani/3m2
eβ

3) ln (Λb). If the projectile
is electron, the value of ln(Λb) must be estimated in the
centre-of-mass frame, and the expression becomes ln (Λb) ≡

ln |(γ − 1)
√
(γ + 1)/2mec2/ ĪA(Z)| − β2/2− δ/2.

As a benchmark of our collision model, Figure 4 shows
the variation of stopping power as functions of energy.
Solid black line represents the collisional stopping power
(Sc) obtained from the National Institute of Standard and
Technology (NIST)[56] database. Results given by our PIC
code (black square lines) are also displayed to compare with
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Figure 4. Stopping power of different materials, (a) for Al and (b) for Cu,
as a function of projected electron kinetic energy. Results from our PIC
simulations, at low-temperature limit, are compared with that from the NIST
database. The solid black line is the collisional stopping power (Sc), the
solid blue line is the radiation stopping power (Sr) and the solid red line is
the total stopping power, with St = Sc + Sr from the NIST database. The
black square line is the collisional stopping power calculated by PIC code,
and the red square line is the total stopping power calculated by PIC code,
where dashed lines represent the one excluding density effect δ/2. (c) The
stopping power of Al as a function of projected electron kinetic energy at
different temperatures.

that from the NIST database. Results given by our PIC code
nicely reproduce the collisional stopping powers as obtained
from the NIST database, for both Al as shown in Figure 4(a)
and copper (Cu) as shown in Figure 4(b). For the stopping
power calculation of energetic electrons, the density effect,
i.e., δ/2 term, plays an important role. When excluding
this effect, as dashed black square lines show, the stopping
power is significantly larger than the values from the NIST
database. While this is not the simple relationship available
for the corrections δ/2 between the magnitude and atomic
number of the stopping medium, fortunately, it has already
been tabulated for all elemental targets[56, 57]. In Table 1,
we have organized ln(Λb) and δ/2 as functions of electron
kinetic energies, where ln(Λb) is calculated with the PIC

Table 1. Coulomb logarithm and δ/2 as a function of energy of
projected electrons for solid Al and Cu at low-temperature limit,
where ln(Λb) is calculated with the PIC code by averaging over
1000 projected electrons and values of δ/2 are obtained from the
NIST database.
Energy/MeV 1.0 5.0 10.0 50.0 100.0 500.0 1000
ln(Λb)Al 8.59 10.70 11.68 14.06 15.09 17.50 18.55
ln(Λb)Cu 7.76 9.86 10.86 13.23 14.26 16.67 17.72
(δ/2)Al 0.33 1.43 2.38 5.07 6.36 9.53 10.92
(δ/2)Cu 0.58 1.85 2.66 5.05 6.29 9.37 10.74

code by averaging over 1000 projected electrons and values
of density effects are obtained from the NIST database. It is
shown that the value of density effect is increasing with the
raising of projected electron energy. This is comparable to
that of ln(Λb) when the projected electron energy is high,
especially when the kinetic energy is greater than 10 MeV.

When the kinetic energy of projected electrons is, for
example, higher than 10 MeV, the radiation stopping also
becomes nonignorable. This is because, when charged parti-
cles collide, they will accelerate in each other’s electric field
and as a result, radiating electromagnetic waves. Generally,
the total energy radiated in this collision is given for the
instantaneous radiated power by an accelerated charge, P ∼
β̇2 Z2, integrated over the duration time of collision, τ . For
an energetic electron propagating through a target, following
the classical text by Jackson[58], we can obtain the energy
radiated per unit length per unit frequency as

d2 E
dl d(h̄ω)

=
16
3
αr2

e n A2 ln

∣∣∣∣∣2γ γ ′mec2

h̄ω

∣∣∣∣∣ , (2)

where n is the ion density of the target, A is the atomic
number of the target material (A = 13 for Al), α = e2/h̄c
is the fine structure constant, re = e2/mec2 is the classical
electron radius and γ ′ = γ − h̄ω is the relativistic factor
of the electron after the photon has been emitted. For
energetic electrons, the radiation of energetic electrons is
emitted mainly in the forward direction. The average angle
between the directions of the electron and the emitted light is
∼1/γ . Within the PIC simulations, the angular distribution
of emitted photons can therefore be approximated as

dE
dΩd(h̄ω)

=
4

3π
δ

(
1−

p
|p|

)
αcr2

e n A2 ln

∣∣∣∣∣2γ γ ′mec2

h̄ω

∣∣∣∣∣ dt,

(3)
where a delta-function approximation is used to describe the
direction of photon emissions.

Following the definition of collision stopping power, the
radiation stopping power has the following form by integrat-
ing Equation (2) with h̄ω from 0 to γmec2,

Sr ≡
dE
dl
=

16
3
γmec2αr2

e n A2 ln(Λ). (4)
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In Equation (4), we need to account for the screening of
nuclear potential by surrounding electrons at the nuclei when
the collisions are distant. Similar to the approach applied for
the Coulomb logarithm calculation (appendix A), when im-
pact parameter is larger than a particular value, the potential
is artificially set to be zero. At low-temperature limit, when
all electrons are bound at the nuclei, the ‘Thomas–Fermi’ po-
tential is an approximation to the screened nuclear potential.
It can be approximated as φ = (Ze/r) exp(−r/a), with the
characteristic length a = 1.4a0 A−1/3, where a0 is the Bohr
unit. This kind of screening will reduce the power radiated,
because it essentially lowers the maximal effective impact
parameter to ∼a. Under relativistic collisions, the screening
is so important that ln(Λ) in Equation (4) can be written
as constant ln(Λ) = ln |amec/h̄|. Under such conditions,
radiation stopping power, as represented by Equation (4), is
a linear function of energy. This kind of behaviour is also
well confirmed by the solid blue line, picked from the NIST
database, as shown in Figure 4. When temperature is high,
some of the bound electrons are ionized and form plasmas
surrounding the nuclei. As schematically shown in Figure 2,
this will increase the maximal effective impact parameter
from ∼a to λD; here λD =

√
Te/4πne is the Debye length

of plasmas. When including ionization effect, the radiation
stopping power, which is originally shown in Equation (4),
can be rewritten as

Sr ≡
16
3
γmec2αr2

e nZ2

(
A2

Z2 La + LD

)
, (5)

where La = ln |amec/h̄| and LD = ln |λD/a|. This updated
radiation stopping power can converge to neutral atom limit
when Z → 0 and also to purely plasma cases when Z → A,
noting that La + LD = ln |λDmec/h̄|.

In PIC simulations, as the average angle between photon
and electron can be handled by a delta-function approxima-
tion, the Bremsstrahlung radiation does not further change
the deflection of the electron. This approximation will signif-
icantly simplify the implementation of Bremsstrahlung cor-
rection into the binary collision models. In such models, after
the second step of calculation cycles, the electron energy
is updated by including the Bremsstrahlung correction, i.e.,
γBr = γ−δγ with δγmec2

= cδt Sr. The electron momentum
is also updated with pBr =

√
(γBr − 1)/(γ − 1)p, where δt

is the time step of PIC simulations.
When the Bremsstrahlung radiation correction is included,

red square lines in Figures 4(a) and 4(b) show the total
stopping power (including both radiation and collision) as
functions of projected electron energy, where Figure 4(a)
is for Al and Figure 4(b) is for Cu. Our stopping power
values given by the PIC code nicely reproduce that from
the NIST database. Note that data from the NIST databases
are obtained at the neutral atom limit. When temperature
is high, some of the bound electrons are ionized and form

Figure 5. Comparison of PIC simulations when including and excluding
Bremsstrahlung radiation correction. Initially, a mono-energetic electron
beam of E = 50 MeV is launched into a bulk Al. The final energy spectrum
after 150 ps is shown in (a), where the red line is the case including
Bremsstrahlung and the black line is the one excluding Bremsstrahlung.
(b) is the angular distribution of emitted photons due to Bremsstrahlung
radiation. See text for the explanation of coordinate setup. (c) is the
frequency spectra of emitted photons due to Bremsstrahlung radiation,
where we have plotted

∫
∞

h̄ωk
[dE/d(h̄ω)]d(h̄ω) as a function of cut-off

frequency ωk. Note h̄ω0 = 1.24 eV, corresponding to the energy of a photon
with wavelength 1 µm.

surrounding plasmas, the corresponding radiation stopping
power should also be increased accordingly. As shown in
Figure 4(c), the total stopping powers calculated by the
PIC code at different temperatures, Te = 100 eV with
Z = 8.0 (red diamond line) and Te = 1000 eV with
Z = 13 (red triangle line), are presented. As expected, the
radiation stopping power is increased by 2–3 times when
the temperature (and ionization) of the target is increased to
hundreds of eV.

In order to give details of the comparison between
collision model with and without the Bremsstrahlung
radiation correction, the ‘EM-field mode’ in PIC simulations
is turned off. Initially, a mono-energetic electron beam
of Ek = 50 MeV is launched along x direction into a
bulk Al. After 150 ps, the final energy spectra with and
without Bremsstrahlung radiation correction are shown in
Figure 5(a). The red line is the case including Bremsstrahlung
and black line is the one excluding Bremsstrahlung. We can
see, as expected, the peak energy of electron beam is 8 MeV
(with Bremsstrahlung radiation correction) versus 28 MeV
(without Bremsstrahlung radiation correction). The energy
spread is also significantly contracted by the Bremsstrahlung
radiation.

The angular distribution of emitted photons due to
Bremsstrahlung radiation is presented in Figure 5(b). Here
the definition of the angle is similar to the longitude and
latitude system on a map of the Earth. Here the longitude
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Figure 6. The value of self-heating as a function of simulation time.
Plasma is of density 100nc (nc is the corresponding critical density
for electromagnetic wave of wavelength 1 µm), plasma temperature is
Te = 10 eV, the simulation grid size is 0.02 µm and 100 electrons are
filled into a computational cell. Different coloured lines represent different
combinations of numerical schemes, fourth/second order and with/without
current smoothing.

angle θ spans from −180◦ to 180◦, which is defined as the
azimuthal angle of transverse momentum of the photon. The
latitude angle φ spans from −90◦ to 90◦, which is defined
as the angle between the x-axis and the photon propagation
direction. We can see that the radiation of photons is almost
of forward direction, although a slight deflection from
the x-axis of 3◦–5◦ is observed. In Figure 5(c), we also
present the frequency spectrum of emitted photons, where
we have plotted

∫
∞

h̄ωk
[dE/d(h̄ω)]d(h̄ω) as a function of

cut-off frequency ωk. Note that the cut-off energy of the
radiated photons is exactly equal to the maximum electron
energy, i.e., 50 MeV. The cut-off frequency is as high as
∼0.4 × 108h̄ω0, where h̄ω0 = 1.24 eV is the energy of a
photon with wavelength 1 µm.

2.3. ‘Layered density’ method

It is well known that PIC codes are prone to a phenomenon
known as self-heating. In general, the grid size of PIC is
restricted by the plasma Debye length λD ∼

√
Te/ne, to

avoid the numerical self-heating[46]. However the analysis
presented there concentrates primarily on the case in which
particle forces are assigned to the nearest-neighbour grid
points. Here we refer this method as the first-order scheme.
Recently, high-order explicit electromagnetic fields solver
and smoother particle shape functions have been imple-
mented into PIC codes. Significant advantages over first-
order scheme have been reported[59], and the restriction of
grid size in PIC simulations is also increased from plasma
Debye length λD to skin depth l ∼

√
mec2/ne.

In Figure 6, we have presented the value of self-heating
as a function of the simulation time. In these simulations, the
plasma density is 100nc. Here nc is the corresponding critical
density for electromagnetic wave of wavelength 1 µm. The
plasma temperature is of Te = 10 eV. The plasma Debye
length is λD = 4×10−6 µm and skin depth is l = 0.024 µm.

Figure 7. The schematic of ‘layered density’ method. Here ‘layered density’
means electrons are divided into two groups, i.e., electron-0 and electron-
1. During the PIC simulation, electron-0 updates following the ionization
dynamics. For the calculation of electromagnetic fields, only electron-1 is
involved. For collisions, both electron-0 and electron-1 are involved.

The simulation grid size is 0.02 µm, which is smaller than
skin depth. We fill 100 electrons into each computational
cell. Different coloured lines represent the combinations
of different numerical schemes. In Figure 6, larger and
smoother particle shape functions coupled with multi-points
electromagnetic field solvers are regarded as high-order
schemes. It is clearly demonstrated that fourth-order nu-
merical scheme coupled with current smoothing technique
shows significant advantage over others. Therefore, in our
following simulations, this combination is regarded as the
default setup.

The combination of fourth-order numerical scheme cou-
pled with current smoothing technique is a useful approach
to avoid significant numerical self-heating. However if
plasma density is further increased, it is still a great challenge
for the present PIC codes. For example the electron density
can be as high as 1024 cm−3 in solid metals, or even as
high as 1025 cm−3 in the compressed D-T core which exists
in fast-ignition inertial confinement fusion research. It is
nowadays a well accepted fact that the numerical self-
heating arises from the high-density background plasmas.
For extremely high-density plasmas, it is the collision effects
that dominate, while the electromagnetic effects tend to be
significantly suppressed. If one turns off the electromagnetic
field solver for the high-density background electrons, the
self-heating can be definitely avoided. However, by doing
so, one also lost some important physics, like the generation
of return current and resistive electric and magnetic fields.

Here we suggest a ‘layered density’ method, which can
well deal with plasmas with extremely high densities. This
method is not a rigorous numerical scheme, but an empir-
ical method. A schematic structure is shown in Figure 7.
In this method, we divide the high-density background
electrons into two groups, regarded as ele-0 and ele-1.
In PIC simulations, although both ele-0 and ele-1 have
the same mass and charge, they are treated as different
particle species. Usually density ne0 of ele-0 is close to the
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Figure 8. Thermal equilibrium benchmark of the ‘layered density’ (LD)
method. Electron and ion kinetic energy as a function of time. Initial plasma
density is set to be 100nc , initial electron temperature is 50 eV and initial
proton temperature is 100 eV. For the LD method, electrons are divided into
two groups, and the density of each group is 50nc . In PIC simulations, these
two groups of electrons are treated as different species.

original background density ne, while density of ele-1 is
ne1 = ne−ne0. In PIC simulations, the movement of charged
particles generates a distribution of current density, and this
current density will in turn update the electromagnetic fields.
In the ‘layered density’ method, the contribution to the
current density from ele-0 is turned off, while only ele-1’s
contribution is reserved. The variation of ne0 is restricted
to ionization dynamics, while the variation of ne1 is due
to the actions of electromagnetic fields. However, both ele-
0 and ele-1 involve in the collision effects. Although, this
‘layered density’ method can avoid numerical self-heating,
whether this kind of setup is applicable or not still demands
rigorous benchmarks: (i) thermal equilibrium benchmark;
(ii) return current and resistive electric field or magnetic field
benchmark.

In Figure 8, thermal equilibrium benchmark of the ‘lay-
ered density’ method is demonstrated. In this benchmark,
initial plasma density is set to be 100nc, initial electron tem-
perature is 50 eV and initial proton temperature is 100 eV.
The black triangle and red triangle lines represent the re-
laxation processes of electrons and protons with initially
different temperatures. For the ‘layered density’ method,
electrons are divided into two groups, and the density of
each group is 50nc. In PIC simulations, these two groups
of electrons are treated as different species. The black
square and red square lines represent the one calculated by
‘layered density’ method PIC. When comparing with results
obtained by the full PIC, we do not find any significant
differences. This is because, the collision frequency between
charged particles is a linear function of density, i.e., ν ∼ ne.
Therefore, a linear decomposition of electrons into different
sub-groups does not affect the whole collision dynamics.

For extremely high-density plasmas, the electromagnetic
effects are significantly suppressed. However, if one turns off
the electromagnetic field solver for the high-density back-
ground electrons, some important physics, like the genera-
tion of return current and resistive electric or/and magnetic

Figure 9. (a) and (c) The current density distribution, J, of forward-
propagating fast electrons (red line) and returning background electrons
(black line), when a fast electron beam of 1 MeV with density 0.1nc is
launched into uniform plasmas. (b) and (d) The resistive electric fields,
normalized by eE/meω0c, generated by the launched electron beam.
Here background plasma density in (a) and (b) is of 180nc (nc is the
corresponding critical density for electromagnetic wave of wavelength λ0 =
1 µm and ω0 = 2πc/λ0) and temperature is of Te = 10 eV. In (c) and (d),
plasma density of 600nc is used. Thick lines are the results calculated by
‘layered density’ methods, and thin lines are the ones obtained from full-
PIC method.

field, is lost. In the ‘layered density’ method, the high-
density background electrons are divided into two groups,
ele-0 and ele-1, and only the latter one is set up to update
the electromagnetic fields. As a benchmark of return cur-
rent and resistive electromagnetic fields, we consider a fast
electron beam of 1 MeV with density 0.1nc launching into
uniform plasmas. In Figures 9(a) and 9(b), the density and
temperature of the uniform plasmas are set to 180nc (nc is
the corresponding critical density for electromagnetic wave
of wavelength λ0 = 1 µm and ω0 = 2πc/λ0) and 10 eV. The
corresponding skin depth is 0.021 µm, and grid size in PIC
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simulation is set to 0.02 µm. As shown in Figure 9(a), thin
red line is the current density Jfw of launched fast electrons
calculated by full PIC, and black line is the return current Jrt.
We can see that the total current is almost zero, because the
Jfw is almost compensated by Jrt. The thick red and black
lines are the one calculated by ‘layered density’ method
PIC, where density of ele-0 is 130nc and density of ele-1 is
50nc. When comparing the results obtained by two different
methods, we do not find any significant differences, except
that the numerical noises calculated by ‘layered density’
method PIC are significantly depressed. The corresponding
resistive electric field is shown in Figure 9(b), where thin
blue line represents the one calculated by full PIC and thick
blue line is the one by ‘layered density’ method PIC. As for
the resistive electric fields, except that the numerical noises
calculated by ‘layered density’ method PIC appear relatively
small, we also do not find any significant differences between
them. When increasing the uniform background plasma
density from 180nc to 600nc and keeping other parameters
the same, as shown in Figures 9(c) and 9(d), the results
obtained from full PIC are fully ‘swallowed’ by numerical
noises. In contrast, the results calculated by the ‘layered
density’ method PIC are proved to be stable.

It seems that the decomposition of high-density back-
ground plasmas is an arbitrary approach; however one still
needs to obey some restricted rules. When a fast electron
beam launches into high-density plasmas, the induced return
current will increase with time, asymptotically approaching
steady state given by Ohm’s law J = σE[60]. The variation
of return current density with time can be obtained by
seeking a time-dependent solution to the Drude model[60] for
electron transport, J(t) = σE[1 − exp (−t/τ)], where σ =
e2neτ/me is conductivity and τ is the typical collision time
of background electrons, which is usually much smaller than
2π/ωpe. In the ‘layered density’ method, we have Je1(t) ∼
ene1v̄e1 ∼ e2ne1Eδt/me ∼ σE[1−exp (−δt/τ)]. Within one
time step, if the product of ne1δt is much larger than neτ ,
then one cannot distinguish the differences whether all the
background electrons ne or just ne1 involve in return current
or/and resistive electromagnetic fields calculations. After the
abrupt building of return current, whose following evolution
is much slow, any small variation of return current δJ(δt)
can be compensated by the redistribution of ne1 and v̄e1
within δt . Here we present an empirical formula, where for
the given PIC simulation time step δt and initial background
plasma temperatures Te, the threshold density of ele-1 is

nth
e1 ∼ 1019

× T 3/2
e [eV]/δt [fs] cm−3. (6)

In the simulation setup, we have ne1 � nth
e1. Note that

the ‘layered density’ method is still an empirical method
instead of a rigorous numerical scheme. To ensure that the
simulation results are physically correct, we would suggest
to re-run the simulation by increasing the ele-1 density twice
to confirm the convergence of final results.

Figure 10. (a) The initial parameter setup, with pre-plasma scale length
10 µm, initial density 180nc (Z = 3) and temperature 10 eV. In the
‘layered density’ method, density of ele-0 is ne0 = 160nc and ele-1 is
ne1 = 20nc . Here nc = 1.1 × 1021 cm−3 is the corresponding critical
density of electromagnetic wave with wavelength 1 µm. (b) Electron density
and temperature at the end of simulations.

3. Applications

In this part, as an application of the new code, the generation
and transport of energetic electrons in front of and within
the solid target when irradiated by intense laser beams are
studied by using the LAPINE (appendix B) code. Thanks
to the ‘layered density’ method and the coupled high-order
numerical scheme and current smoothing technique, the sim-
ulation grid size can be significantly larger than the plasma
Debye length. Larger simulation grid would dramatically
reduce the simulation burden, which makes it possible for a
small cluster with only 10 nodes (with each node containing
12 cores) to simulate realistic laser–solid interactions in large
scales, both spatially and temporally.

3.1. 1D simulations

The simulation setup of 1D PIC is shown in Figure 10(a).
The simulation box is 400 µm, an Al target with maximal
density of 2.7 g · cm−3 (or ion density of 60nc for laser
of wavelength 1 µm) and temperature of 10 eV is applied.
The simulation grid size is δz = 0.02 µm, which is smaller
than the skin depth l ∼ 0.021 µm. In the ‘layered density’
method, density of ele-1 is ne1(z) = ne1/{1 + exp[−2(z −
180)/L p]}, where ne1 = 20nc is the solid plasma density
and L p = 10 is the pre-plasma scale length. The density
of ele-0 is ne0(z) = 160nc when z > 250 and otherwise
ne0(z) = 0. The simulation time step is δt = 3.9× 10−2 fs.
Therefore, according to Equation (6), the corresponding
density threshold is nth

e1 = 7nc, which is much smaller

https://doi.org/10.1017/hpl.2018.41 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2018.41


10 D. Wu et al.

Figure 11. (a) The final energy spectra of electrons, with the black line
representing the reference case without considering atomic processes, and
the red line representing the one including both ionization and collision
with Bremsstrahlung radiation corrections. (b) The angular distribution
of emitted photons. (c) The frequency spectra of emitted photons, where
we have plotted

∫
∞

h̄ωk
[dE/d(h̄ω)]d(h̄ω) as a function of cut-off frequency

ωk. Note h̄ω0 = 1.24 eV, corresponding to the energy of a photon with
wavelength 1 µm.

than ne1 = 20nc. The laser intensity is 1020 W · cm−2

or normalized amplitude a = 8.54 (with laser wavelength
1 µm). It enters the simulation box from the left boundary,
where the laser amplitude rises over 33 fs and then remains
constant.

The final electron density and temperature (at t = 1.3 ps)
are presented in Figure 10(b). We can see that along the laser
propagation direction, both electron density and temperature
decrease rapidly. As the thermal equilibrium is not yet estab-
lished within such a short time, here we use ‘temperature’
to represent the average kinetic energy of electrons. In
Figure 10(b), at z = 380, temperature is Te = 1000 eV, while
the corresponding electron density is 660nc (or Z = 11).
This is already much smaller than the thermal equilibrium
ionization degree, Z = 12.9 with Te = 1000 eV as shown in
Figure 1(b). At earlier times, as expected, the deviation from
the thermal equilibrium values could be more significant
than at final times. The detailed comparison is not shown
in this paper, but one can refer to Figure 1(a) to find the
evolution of ionization dynamics with time.

In Figure 11(a), we have presented the electron energy
spectra, comparing different cases without/with ionization,
collision and Bremsstrahlung radiation interactions. The
black line represents the reference case without considering
these atomic processes, and red line represents the one in-
cluding these atomic processes. We can see that the electron
‘cut-off’ energy is significantly lowered by 25%. In addition,
as the blue circle shows, the number of electrons with low
energies, i.e., less than 3 MeV, is also significantly reduced.

The latter one can be interpreted by collisional damping.
While for the former one, it might be due to the Bremss-
trahlung radiation, as this radiation is very efficient for those
energetic electrons, with energy larger than 10 MeV. The
angular distribution of emitted photons is shown in Fig-
ure 11(b). We can see that the direction of emitted photons is
along the laser propagation direction, with a small diffraction
angle of δφ ∼ 10◦. The frequency spectrum of emitted
photons, where we have plotted

∫
∞

h̄ωk
[dE/d(h̄ω)] d(h̄ω) as

a function of cut-off frequency ωk, is shown in Figure 11(c).
The cut-off frequency is of ωk ∼ 108ω0 ∼ 100 MeV, which
is equal to the ‘cut-off’ energy of electrons.

However the Bremsstrahlung radiation alone cannot fully
explain the 25% reduction of ‘cut-off’ energy. This is beca-
use, as shown in Figure 4(c), for Al, the stopping power of
electrons with energy 100 MeV is only 5×10−3 MeV·µm−1.
For a propagation distance of 200 µm, the energy reduction
is only 1 MeV. Bremsstrahlung radiation only contributes
∼1 MeV energy reduction, and therefore, there must exist
other mechanisms that significantly reduce the generation of
energetic electrons. (Note by the authors: As the values of
stopping power heavily depend on target materials, S ∼ A2

(A = 29 for Cu and A = 79 for gold), if the target material
is of Cu and/or gold, the energy reduction can be as high as
5 MeV and/or 37 MeV. Note that the material dependence
of electron heating/acceleration is not the purpose of this
paper, which shall be detailed in the following works. The
present paper is focused on presenting a global simulation
code and addressing the influences of the coupled atomic
processes on laser–solid interactions.)

In order to figure out the other mechanisms that signifi-
cantly play roles, we now refer to the phase-space plots of
electrons, as shown in Figure 12. The phase-space density
dN/dz dp gives a value proportional to the number of
electrons found between z and z + dz having longitudinal
momentum ranged between pz and pz + dpz . Energetic
electrons are generated in front of the target. Figures 12(a)
and 12(b) show the generation of energetic electrons at
t = 0.67 ps and t = 1.0 ps, respectively. Figure 12(c)
shows the global pictures containing both the generation
and transport of energetic electrons at t = 1.3 ps. We can
see that generation of energetic electrons is dramatically
depressed when collision is included in front of the target.
As we know, in front of the target, plasma density therein is
low, and collision effect is relatively small when compared
to electromagnetic effects. However, we found that this
weak collision effect can still have significant effects on the
generation of energetic electrons.

When a laser propagates in underdense preformed plas-
mas, part of electrons are swept away in the forward di-
rection by the laser ponderomotive force, leaving behind
immobile ions. The electric field Ez due to charge sep-
aration within the underdense plasma region tries to pull
the electrons in the backward direction. When the laser
arrives at the critical density surface and is reflected back,
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Figure 12. The z–pz phase-space plot of electrons, with the same simulation parameters as shown in Figure 10. (a) The one without considering ionization,
collision and Bremsstrahlung radiation correction. (b) The one turning on both ionization and collision with Bremsstrahlung radiation corrections. Different
columns represent values at different times, here t = 0.67 ps for (1), t = 1.0 ps for (2) and t = 1.3 ps for (3). The red curves covered on the phase-space plots
are the electrostatic potential curves (

∫ z Ez dz), normalized by−eφ/mec2. The blue lines are the Ex (×0.25), normalized by eE/meω0c, components of the
superposition of incoming and reflected laser pulses.

the ponderomotive force of the reflected laser pulse can
further accelerate the electrons in the backward direction.
The synergetic effects by this longitudinal charge separation
field Ez and the ponderomotive force of the reflected laser
pulse can efficiently accelerate electrons in the backward
direction. Here we briefly explain this mechanism. We know
that a single electron in vacuum, oscillating coherently with a
propagating plane laser pulse would gain zero cycle averaged
energy since the electron energy gain in one half cycle is
exactly equal to the energy loss in the next half cycle. In
Figure 13, we have presented single particle simulations.
This shows the dynamics of an electron of initial momentum
pz = 0.1 under a laser pulse of amplitude a = 1.5. The
maximal energy gain from the laser field is mec2a2/2 =
1.125, and this value is the same as that obtained by single
particle simulations, Figure 13(a). However, when there
exists an external electric field, even though this field is very
weak, the Woodward–Lawson theorem can be broken and
the electron can obtain nonzero energy from the synergetic
effects by the external electric field and the laser pulse. If the
extension of external electric field is of infinity, the electron
will always stay in phase with the laser and be accelerated
to energy of infinity. In Figure 13(b), when we add a small
external electric field, Ez = −0.1, the electron dynamics
is dramatically changed. The energy gain is significantly
higher than mec2a2/2 = 1.125. In a recent work[33], we have
proved that the maximal energy gain is scaled as ∼aL1/2,
where L is the propagation length.

In front of the target, although the charge separation is very
small, it has significant influences on electron dynamics.

Similarly, the weak collisional damping might also play
important roles in these interactions. Let us first estimate
the collision frequency. The considered plasma is of 1.0nc,
temperature is of γmec2 and the collision frequency is
νc = 10−5γ−3/2. In the single particle simulation, we have
added the weak collisional damping term −νcpe into the
electrons equation of motion. As shown in Figure 13(c),
when the collision frequency is 10−5γ−3/2, the maximal
energy gain within 100T0 is 2.0. In Figure 13(d), when the
collision frequency is 10−4γ−3/2, the maximal energy gain
within 100T0 is 4.0. Although the energy gains of electrons
are significantly depressed when compared to collision-less
cases, they are still much larger than that value 1.125.

3.2. 2D simulations

In this section, we shall present how the ‘layered density’
method PIC works in 2D simulations. Here to avoid the
extensive calculation burden, we use a smaller simulation
box and shorter laser pulse duration. The simulation box is
40 µm × 40 µm (L z × L y), with grid size δz = 0.02 µm
and δy = 0.1 µm. The pre-plasma scale length used in 2D
simulation is 5 µm. Other parameters, like plasma density
division, temperatures and laser intensity, are the same as in
the 1D simulation.

The plasma distortion in front of the target is shown in
Figure 14. In this region, energetic electrons are generated
directly by laser fields. When these electrons propagate into
the bulk solid, abundant plasma and atomic interactions
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Figure 13. Dynamics of an electron calculated with single particle simulations. The gained energy from laser beam as a function of propagation length. The
total simulation time is 100T0. (a) An electron with initial momentum pz = 0.1, a single laser pulse of amplitude ax = 1.5. (b) An electron with initial
momentum pz = 0.1, a single laser pulse of amplitude ax = 1.5, and a constant external electric field of Ez = −0.1. (c) An electron with initial momentum
pz = 0.1, a single laser pulse of amplitude ax = 1.5, a constant external electric field of Ez = −0.1 and initial collision frequency of 10−5. (d) An electron
with initial momentum pz = 0.1, a single laser pulse of amplitude ax = 1.5, a constant external electric field of Ez = −0.1 and initial collision frequency
of 10−4.

Figure 14. Results of 2D PIC simulations. The plasma density perturbations
in front of the target at the end of simulation.

take place therein. As shown in Figures 15(a) and 15(b),
collision ionization would dramatically increase the electron
density. Typically, the ionization and plasma temperature
decrease rapidly along the electron propagation direction.
When comparing with 1D simulations, we find some fila-
mentation structures in the electron density and temperature
distributions. This kind of filamentation is due to two-stream
or/and Weibel instabilities.

The propagation of electrons could generate magnetic
fields. Except electromagnetic instabilities, like Weibel in-
stability, there are two sources that can generate strong
magnetic fields: (i) ∇ × B = 4πJ/c; (ii) −∂B/∂t = ∇ ×
E. As shown in Figure 15(c1), in front of the target, this
magnetic field is fully due to the forward Je, i.e., the first-
generation mechanism, which could cause the divergence
of electron beams. When these electrons propagate into the

solid, the forward Je is quickly neutralized by return current.
The total current density is close to zero, and therefore
the first mechanism is not effective any more. However,
because of the strong collision effect, a resistive electric field
Ez = Je/σ can be generated, which in turn could induce
the resistive magnetic field, through the second-generation
mechanism. This magnetic field, as shown in Figure 15(c2),
could collimate electron beams.

In Figure 16, we also present the angular distribution and
energy spectra of emitted photons. The diffraction angle
obtained in the 2D simulation is significantly higher than
1D, which can be as large as 30◦. The ‘cut-off’ frequency of
emitted photons is significantly smaller than in 1D simula-
tions. This is because, short laser pulse and pre-plasma scale
length are used in 2D simulations. The maximal electron
energy in 2D simulations is much smaller than that in 1D
simulations.

4. Discussions and conclusions

In summary, we have presented a full-PIC code, which
enables us to calculate intense laser–solid interactions in
a ‘first principle’ way, covering almost ‘all’ the coupled
physical mechanisms. For ionizations, we have taken into
account CI, RE and IPD. For collisions, we have taken
into account both bound and free electrons contributions. A
modified Coulomb logarithm is used in the binary collision
model, which has the ability to deal with collisions at low
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Figure 15. Results of 2D PIC simulations. (a) The plasma density in the
inner part of the target at the end of simulation time. (b) The plasma
temperature in the inner part of the target at the end of simulation time. (c1)
The magnetic fields, normalized by eB/meω0, generated by the forward-
propagating fast electrons. (c2) The resistive magnetic fields, normalized by
eB/meω0, generated by the Ohmic return current.

temperatures, when the closest approach distance is larger
than Debye length. For collisions with energetic electrons,
Bremsstrahlung radiation correction is also included in our
model. The ‘layered density’ method PIC is proposed to
simulate plasma dynamics at extremely high densities. The
numerical self-heating of PIC simulations with solid-density
plasmas can be well controlled by this method.

Especially, as an application of the new code, the gen-
eration and transport of energetic electrons in front of and
within the solid target when irradiated by intense laser beams
are studied. For the considered case, where laser intensity
is 1020 W · cm−2 and pre-plasma scale length in front of
the solid is 10 µm, several quantitative conclusions are
drawn: (i) the collisional damping (although it is very weak)
can significantly affect the energetic electrons generation in
front of the target, (ii) the Bremsstrahlung radiation will
be enhanced by 2–3 times when the solid is dramatically
heated and ionized, (iii) the ‘cut-off’ electron energy is
lowered by an amount of 25% when both collision damp-
ing and Bremsstrahlung radiations are included and finally,
(iv) the resistive electromagnetic fields due to Ohmic heating

Figure 16. Results of 2D PIC simulations. Figure shows the angular
distribution of emitted photons and the frequency spectra of emitted
photons, where we have plotted

∫
∞

h̄ωk
[dE/d(h̄ω)] d(h̄ω) as a function of

cut-off frequency ωk. Note h̄ω0 = 1.24 eV, corresponding to the energy of
a photon with wavelength 1 µm.

play nonignorable roles and must be taken into account in
such interactions.
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Appendix A. The calculation of Coulomb logarithm

To calculate Coulomb logarithm, one of the practical ap-
proaches, as used in models in Refs. [51–53], is to sum
binary collisions over a distance of the order of the Debye
length. Under the potential of 1/r , the differential cross sec-
tion reads, σ(θ) ∼ 1/ sin4(θ/2), and the Coulomb logarithm
reads, L ∼

∫ π
0 sin θ sin2(θ/2)σ (θ) dθ ∼ ln[sin(θ/2)]|π0 .

This integration is not a convergent value, when θ →

0. While in plasmas, the potential of a charged particle
should be screened. When b (i.e., the distance of the closest
approach between the two charges) is larger than λD, the
potential is artificially set to be zero. Therefore, the lower
limit θmin of scattering angle is obtained when b = λD, i.e.,
θmin/2 = b/λD. Thus we have L ∼ ln(λD/b).

However instead of the above method, a rigorous way
is to sum full binary collisions with all particles using the
screened potential exp(−r/λD)/r . Acted by this screened
potential, the differential cross section reads, σ(θ) ∼
1/[sin2(θ/2) + η], where η is the smallest value between
h̄/γβλD (quantum) and Za Zbe2/meβ

2λD (classical). The
Coulomb logarithm L ∼

∫ π
0 sin θ sin2(θ/2)σ (θ) dθ by
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applying the new differential cross section is L ∼ ln(1+2η−
cos θ)|π0 . This is a convergent value, with L ∼ ln[(1+η)/η].
This expression of Coulomb logarithm will converge to
L = ln (λD/b) when b � λD for high-temperature plasmas.

Appendix B. A brief introduction to LAPINE code

LAPINE[61] is the abbreviation of LAser-Plasma-
INtEraction, and along with KLAPS[62] and LARED-P[63]

codes, it is one of the first-generation PIC codes fully
developed by Chinese. LAPINE is a parallel PIC code,
written in C++ language, capable of performing 1D, 2D
and 3D simulations. The 1D, 2D and 3D versions are self-
consistently written into a single group of files. Setup of 1D,
2D or 3D is defined in pre-compilation to compile the code
to the specific LAPINE-1D, 2D or 3D.

Physical models. Many advanced physical modules have
been implemented into LAPINE code, which include bulk
ionization[3] (coupling impact ionization, electron–ion re-
combination and ionization potential depression by sur-
rounding plasmas), binary collisions[4] (partially ionized
plasmas and also pure plasmas for all temperature ranges),
field ionization[36] and QED[37] modules. Note that all the
physical modules have been well benchmarked and applied
for related physical research.

Numerical scheme. High-order electromagnetic field
solver, high-order particle shape and current smooth tech-
nique have been implemented into LAPINE to improve its
ability in calculating high-density plasmas. The proposed
‘layered density’ method is first implemented into the
LAPINE code, showing strong power in performing laser–
solid simulations in large scale.
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