

COMPOSITIO MATHEMATICA

Twisted gamma filtration of a linear algebraic group

Kirill Zainoulline

Compositio Math. 148 (2012), 1645–1654.

 ${\rm doi:} 10.1112/S0010437X11007494$

Twisted gamma filtration of a linear algebraic group

Kirill Zainoulline

Abstract

In the present paper we introduce and study the twisted γ -filtration on $K_0(G_s)$, where G_s is a split simple linear algebraic group over a field k of characteristic prime to the order of the center of G_s . We apply this filtration to construct nontrivial torsion elements in γ -rings of twisted flag varieties.

1. Introduction

Let X be a smooth projective variety over a field k. Consider the Grothendieck γ -filtration on $K_0(X)$. It is given by subgroups (see [SGA6, § 2.3] and [Kar98, § 2])

$$\gamma^{i}K_{0}(X) = \langle c_{n_{1}}(b_{1}) \cdots c_{n_{m}}(b_{m}) \mid n_{1} + \cdots + n_{m} \ge i, b_{1}, \dots, b_{m} \in K_{0}(X) \rangle, \quad i \ge 0$$

generated by products of characteristic classes in K_0 . Let $\gamma^i(X)$ be the *i*th subsequent quotient and let $\gamma^*(X) = \bigoplus_{i \ge 0} \gamma^i(X)$ be the associated graded ring called the γ -ring of X.

The ring $\gamma^*(X)$ was invented by Grothendieck to approximate the topological filtration on K_0 and, hence, the Chow ring $\operatorname{CH}^*(X)$ of algebraic cycles modulo rational equivalence. Indeed, by the Riemann–Roch theorem (see [SGA6, §2]) the *i*th Chern class c_i induces an isomorphism with \mathbb{Q} -coefficients, that is, $c_i : \gamma^i(X; \mathbb{Q}) \xrightarrow{\simeq} \operatorname{CH}^i(X; \mathbb{Q})$. Moreover, in some cases the ring $\gamma^*(X)$ can be used to compute $\operatorname{CH}^*(X)$, for example $\gamma^1(X) = \operatorname{CH}^1(X)$, and there is a surjection $\gamma^2(X) \xrightarrow{\sim} \operatorname{CH}^2(X)$ (see [Ful98, Example 15.3.6]).

In the present paper, we provide a uniform lower bound for the torsion part of $\gamma^*(X)$, where $X = {}_{\xi}\mathfrak{B}_s$ is a twisted form of the variety of Borel subgroups \mathfrak{B}_s of a split simple linear algebraic group G_s by means of a G_s -torsor ξ . Note that the groups $\gamma^2(X)$ and $\operatorname{CH}^2(X)$ had been studied for $G_s = PGL_n$ in [Kar98] and for strongly inner forms in [GZ10]. In particular, it was shown in [GZ10, §§ 3 and 7] that in the strongly inner case the torsion part of $\gamma^2(X)$ determines the Rost invariant.

Our main tool is the twisted γ -filtration on $K_0(G_s)$, where G_s is a split simple linear algebraic group. Roughly speaking, it is defined to be the image (see Definition 4.3) of the γ -filtration on K_0 of the twisted form X under the composition $K_0(X) \to K_0(\mathfrak{B}_s) \to K_0(G_s)$, where the first map is given by the restriction and the second map is induced by taking the quotient. The associated graded ring γ_{ξ}^* of the twisted γ -filtration has the following properties.

(i) It can be explicitly computed (see Theorem 4.5). Observe that $\gamma_{\xi}^0 = \mathbb{Z}$, $\gamma_{\xi}^1 = 0$ and γ_{ξ}^i is torsion and finitely generated for i > 1.

https://doi.org/10.1112/S0010437X11007494 Published online by Cambridge University Press

Received 3 June 2011, accepted in final form 18 October 2011, published online 25 July 2012. 2010 Mathematics Subject Classification 20G15 (primary), 14C25, 14L30 (secondary). Keywords: torsor, linear algebraic group, gamma filtration, twisted flag variety. This journal is © Foundation Compositio Mathematica 2012.

(ii) There is a surjective ring homomorphism $\gamma^*(X) \twoheadrightarrow \gamma^*_{\xi}$. Hence, γ^*_{ξ} provides a uniform lower bound for the torsion part of the γ -ring of X.

(iii) The assignment $\xi \mapsto \gamma_{\xi}^*$ respects the base change and, therefore, can be viewed as an invariant of a torsor ξ .

In the last section, we use these properties to construct nontrivial torsion elements in $\gamma^2(X)$ for some twisted flag varieties X (see Examples 5.2 and 5.4). In particular, we establish the connection between the indexes of the Tits algebras of ξ and the order of the special cycle $\theta \in \gamma^2(X)$ constructed in [GZ10].

2. Preliminaries

In the present section, we recall several basic facts concerning linear algebraic groups, characters and the Grothendieck K_0 (see [KMRT98, §24] and [GZ10, §1B and §6]).

Let G_s be a split simple linear algebraic group of rank n over a field k. We assume that the characteristic of k is prime to the order of the center of G_s . We fix a split maximal torus T and a Borel subgroup B such that $T \subset B \subset G_s$.

Let Λ_r and Λ be the root and the weight lattices of the root system of G_s with respect to $T \subset B$. Let $\{\alpha_1, \ldots, \alpha_n\}$ be a set of simple roots (a basis of Λ_r) and let $\{\omega_1, \ldots, \omega_n\}$ be the respective set of fundamental weights (a basis of Λ), that is, $\alpha_i^{\vee}(\omega_j) = \delta_{ij}$. The group of characters T^* of T is an intermediate lattice $\Lambda_r \subset T^* \subset \Lambda$ that determines the isogeny class of G_s . If $T^* = \Lambda$, then the group G_s is simply connected and if $T^* = \Lambda_r$ it is adjoint.

Let $\mathbb{Z}[T^*]$ be the integral group ring of T^* . Its elements are finite linear combinations $\sum_i a_i e^{\lambda_i}$, $\lambda_i \in T^*$. Let \mathfrak{B}_s denote the variety of Borel subgroups G_s/B of G_s . Consider the characteristic map for K_0 (see [Dem74, §2.8])

$$\mathfrak{c}:\mathbb{Z}[T^*]\to K_0(\mathfrak{B}_s)$$

defined by sending e^{λ} , $\lambda \in T^*$, to the class of the associated line bundle $[\mathcal{L}(\lambda)]$. Observe that the ring $K_0(\mathfrak{B}_s)$ does not depend on the isogeny class of G_s while the group of characters T^* and, hence, the image of \mathfrak{c} does.

Since $K_0(\mathfrak{B}_s)$ is generated by the classes $[\mathcal{L}(\omega_i)]$, $i = 1, \ldots, n$, the characteristic map \mathfrak{c} is surjective if G_s is simply connected. If G_s is adjoint, then the image of \mathfrak{c} is generated by the classes $[\mathcal{L}(\alpha_i)]$, where

$$\alpha_i = \sum_j c_{ij}\omega_j$$
 and therefore $\mathcal{L}(\alpha_i) = \otimes_j \mathcal{L}(\omega_j)^{\otimes c_{ij}}$,

and $c_{ij} = \alpha_i^{\vee}(\alpha_j)$ are the coefficients of the Cartan matrix of G_s .

The Weyl group W of G_s acts on weights via simple reflections s_{α_i} as

$$s_{\alpha_i}(\lambda) = \lambda - \alpha_i^{\lor}(\lambda)\alpha_i, \quad \lambda \in \Lambda.$$

For each element $w \in W$, we define (cf. [Ste75, § 2.1]) the weight $\rho_w \in \Lambda$ as

$$\rho_w = \sum_{\{i \in 1, \dots, n | w^{-1}(\alpha_i) < 0\}} w^{-1}(\omega_i).$$

In particular, for a simple reflection $w = s_{\alpha_i}$, we have

$$\rho_w = \sum_{\{i \in 1, \dots, n \mid s_{\alpha_j}(\alpha_i) < 0\}} s_{\alpha_j}(\omega_i) = s_{\alpha_j}(\omega_j) = \omega_j - \alpha_j.$$

Observe that the quotient Λ/Λ_r coincides with the group of characters of the center of the simply connected cover of G_s . Since W acts trivially on Λ/Λ_r , we have

$$\bar{\rho}_w = \sum_{\{i \in 1, \dots, n | w^{-1}(\alpha_i) < 0\}} \bar{\omega}_i \quad \in \Lambda/T^*,$$

where $\bar{\rho}_w$ denotes the class of $\rho_w \in \Lambda$ modulo T^* . In particular, $\bar{\omega}_i = \bar{\rho}_{s_{\alpha_i}}$.

Let $\mathbb{Z}[\Lambda]^W$ denote the subring of *W*-invariant elements. Then the integral group ring $\mathbb{Z}[\Lambda]$ is a free $\mathbb{Z}[\Lambda]^W$ -module with the basis $\{e^{\rho_w}\}_{w\in W}$ (see [Ste75, Theorem 2.2]). Now let $\epsilon : \mathbb{Z}[\Lambda] \to \mathbb{Z}, e^{\lambda} \mapsto 1$ be the augmentation map. By the Chevalley theorem, the kernel of the surjection \mathfrak{c} is generated by elements $x \in \mathbb{Z}[\Lambda]^W$ such that $\epsilon(x) = 0$. Hence, there is an isomorphism

$$\mathbb{Z}[\Lambda] \otimes_{\mathbb{Z}[\Lambda]^W} \mathbb{Z} \simeq \mathbb{Z}[\Lambda] / \ker(\mathfrak{c}) \simeq K_0(\mathfrak{B}_s).$$

So, the elements

$$\{g_w = \mathfrak{c}(e^{\rho_w}) = [\mathcal{L}(\rho_w)]\}_{w \in W}$$

form a \mathbb{Z} -basis of $K_0(\mathfrak{B}_s)$ called the Steinberg basis.

Following [Tit71], we associate with each $\chi \in \Lambda/T^*$ and each cocycle $\xi \in Z^1(k, G_s)$ the central simple algebra $A_{\chi,\xi}$ over k called the Tits algebra. This defines a group homomorphism

$$\beta_{\xi} : \Lambda/T^* \to Br(k) \quad \text{with } \beta_{\xi}(\chi) = [A_{\chi,\xi}].$$

Let $\mathfrak{B} = {}_{\xi}\mathfrak{B}_s$ denote the twisted form of the variety of Borel subgroups \mathfrak{B}_s by means of ξ . Consider the restriction map on K_0 over the separable closure k_{sep} :

res :
$$K_0(\mathfrak{B}) \to K_0(\mathfrak{B} \times_k k_{sep}) = K_0(\mathfrak{B}_s),$$

where we identify $K_0(\mathfrak{B} \times_k k_{sep})$ with $K_0(\mathfrak{B}_s)$. By [Pan94, Theorem 4.2], the image of the restriction can be identified with the sublattice

$$\langle \imath_w \cdot g_w \rangle_{w \in W},$$

where $g_w = [\mathcal{L}(\rho_w)]$ is an element of the Steinberg basis and $\iota_w = \operatorname{ind}(\beta_{\xi}(\bar{\rho}_w))$ is the index of the respective Tits algebra. Observe that if G_s is simply connected, then all indexes ι_w are trivial and the restriction map becomes an isomorphism.

3. The K_0 of a split simple (adjoint) group

In the present section, we provide an explicit description of the ring $K_0(G_s)$ in terms of generators and relations for every simple split linear algebraic group G_s .

DEFINITION 3.1. Let $\mathfrak{c}: \mathbb{Z}[\Lambda] \to K_0(\mathfrak{B}_s)$ be the characteristic map for the simply connected cover of G_s . We define the ring \mathfrak{G}_s to be the quotient

$$\mathfrak{G}_s := \mathbb{Z}[\Lambda/T^*]/(\ker \mathfrak{c})$$

and the surjective ring homomorphism q to be the composite

$$q: K_0(\mathfrak{B}_s) \xrightarrow{\mathfrak{c}^{-1}} \mathbb{Z}[\Lambda]/(\ker \mathfrak{c}) \longrightarrow \mathbb{Z}[\Lambda/T^*]/\overline{(\ker c)} = \mathfrak{G}_s.$$

Observe that if G_s is simply connected, then $\mathfrak{G}_s = \mathbb{Z}$.

Remark 3.2. By [Mer05, Corollary 33] applied to $X = G_s$ and to the simply connected cover $G = \hat{G}_s$ of G_s , there is an isomorphism

$$K_0(G_s) \simeq \mathbb{Z} \otimes_{R(\hat{G}_s)} K_0(\hat{G}_s, G_s)$$

where $R(\hat{G}_s) \simeq \mathbb{Z}[\Lambda]^W$ is the representation ring. By [Mer05, Corollary 5] applied to $G = \hat{G}_s$, X = Spec k and $G/H = G_s$, there is an isomorphism

$$K_0(G_s, G_s) \simeq R(H),$$

where $R(H) \simeq \mathbb{Z}[\Lambda/T^*]$ is the representation ring. Therefore,

$$K_0(G_s) \simeq \mathbb{Z} \otimes_{\mathbb{Z}[\Lambda]^W} \mathbb{Z}[\Lambda/T^*] \simeq \mathfrak{G}_s.$$

LEMMA 3.3. The ideal $\overline{(\ker \mathfrak{c})} \subset \mathbb{Z}[\Lambda/T^*]$ is generated by the elements

$$d_i(1-e^{\bar{\omega}_i}), \quad i=1,\ldots,n,$$

where d_i is the number of elements in the W-orbit of the fundamental weight ω_i .

Proof. By the Chevalley theorem, the subring of invariants $\mathbb{Z}[\Lambda]^W$ can be identified with the polynomial ring $\mathbb{Z}[\rho_1, \ldots, \rho_n]$, where

$$\rho_i = \sum_{\lambda \in W(\omega_i)} e^{\lambda},$$

where $W(\omega_i)$ denotes the W-orbit of the fundamental weight ω_i . Since $d_i = \epsilon(\rho_i)$, we have $\ker \mathfrak{c} = (d_1 - \rho_1, \ldots, d_n - \rho_n)$. To finish the proof, note that $\overline{(d_i - \rho_i)} = d_i(1 - e^{\bar{\omega}_i})$. \Box

Remark 3.4. Observe that by definition and Lemma 3.3, we have $\mathfrak{G}_s \otimes \mathbb{Q} \simeq \mathbb{Q}$.

In the following examples, we compute the ring $\mathfrak{G}_s \simeq K_0(G_s)$ for every simple split linear algebraic group G_s . We refer to [KMRT98, §24] for the description of Λ/T^* . Note that in most of the examples provided below, ω_i corresponds to a minuscule representation; in this case d_i is the dimension of the respective fundamental representation that can be found in [Bou05, ch. 8, Table 2].

Λ/T^*	$G_s, m \ge 1$	Example
$\mathbb{Z}/m\mathbb{Z}, \ m \ge 2$	SL_{n+1}/μ_m	(3.5)
$\mathbb{Z}/2\mathbb{Z}$	$O_{m+4}^+, PSp_{2m+2}, HSpin_{4m+4}, E_7^{ad}$	(3.6)
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$	PGO_{4m+4}^+	(3.7)
$\mathbb{Z}/3\mathbb{Z}$	E_6^{ad}	(3.8)
$\mathbb{Z}/4\mathbb{Z}$	PGO_{4m+2}^+	(3.9)

Example 3.5. Consider the case $G_s = SL_{n+1}/\mu_m$, $m \ge 2$. The group G_s has type A_n and $\Lambda/T^* = \langle \sigma \rangle$ is cyclic of order m. The quotient map $\Lambda/\Lambda_r \to \Lambda/T^*$ sends $\bar{\omega}_i \in \Lambda/\Lambda_r$, $i = 1, \ldots, n$, to $(i \mod m)\sigma \in \Lambda/T^*$. By Definition 3.1 and Lemma 3.3, we have

$$\mathfrak{B}_s \simeq \mathbb{Z}[y]/(1-(1-y)^m, a_1y, \dots, a_{m-1}y^{m-1}),$$

where $y = (1 - e^{\sigma})$ and $a_j = \gcd\{\binom{n+1}{i} | i \equiv j \mod m, i = 1, ..., n\}$. In particular, for $G_s = SL_p/\mu_p = PGL_p$, where p is a prime, we obtain

$$\mathfrak{G}_s \simeq \mathbb{Z}[y]/(\binom{p}{1}y, \binom{p}{2}y^2, \dots, \binom{p}{p-1}y^{p-1}, y^p).$$

Example 3.6. Assume that $\Lambda/T^* = \langle \sigma \rangle$ has order two. Then

$$\mathfrak{G}_s \simeq \mathbb{Z}[y]/(y^2 - 2y, dy),$$

where $y = (1 - e^{\sigma})$ and d denotes the greatest common divisor (g.c.d.) of the d_i corresponding to the ω_i with $\bar{\omega}_i = \sigma$. The integer d can be determined as follows.

 B_n . We have $\Lambda/\Lambda_r = \{0, \bar{\omega}_n\} \simeq \mathbb{Z}/2\mathbb{Z}$, which corresponds to the adjoint group $G_s = O_{2n+1}^+$. Since $\bar{\omega}_i = 0$ for each $i \neq n$, we have $d = d_n = 2^n$.

 C_n . We have $\Lambda/\Lambda_r = \{0, \sigma = \bar{\omega}_1 = \bar{\omega}_3 = \cdots \} \simeq \mathbb{Z}/2\mathbb{Z}$, that is, $G_s = PSp_{2n}$. Since $\bar{\omega}_i = 0$ for even i, we have $d = \text{g.c.d.}(d_1, d_3, \ldots)$.

 D_n . If n is odd, then $\Lambda/\Lambda_r = \{0, \bar{\omega}_{n-1}, \bar{\omega}_1, \bar{\omega}_n\} \simeq \mathbb{Z}/4\mathbb{Z}$, where $\bar{\omega}_1 = 2\bar{\omega}_{n-1} = 2\bar{\omega}_n$. Therefore, $\Lambda/T^* \simeq \mathbb{Z}/2\mathbb{Z}$ if it is a quotient of Λ/Λ_r modulo the subgroup $\{0, \bar{\omega}_1\}$. In this case, $\Lambda/T^* = \{0, \sigma = \bar{\omega}_{n-1} = \bar{\omega}_n\}$, which corresponds to the special orthogonal group $G_s = O_{2n}^+$. Since $\bar{\omega}_s = s\bar{\omega}_1$ for $2 \leq s \leq n-2$ and $\bar{\omega}_1 = 0$ in Λ/T^* , we have $d = \text{g.c.d.}(d_{n-1}, d_n) = 2^{n-1}$.

If n is even, then $\Lambda/\Lambda_r = \{0, \bar{\omega}_{n-1}\} \oplus \{0, \bar{\omega}_n\} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, where $\bar{\omega}_1 = \bar{\omega}_{n-1} + \bar{\omega}_n$. In this case, we have two cases for Λ/T^* .

(i) It is the quotient of Λ/Λ_r modulo the diagonal subgroup $\{0, \bar{\omega}_{n-1} + \bar{\omega}_n\}$. Then $\Lambda/T^* = \{0, \sigma = \bar{\omega}_{n-1} = \bar{\omega}_n\}$, $G_s = O_{2n}^+$ and d is the same as in the odd case, that is, $d = 2^{n-1}$.

(ii) It is the quotient modulo one of the factors, for example $\Lambda/T^* = \{0, \sigma = \bar{\omega}_{n-1}\}$, where $\bar{\omega}_n = 0$. Then $G_s = \text{HSpin}_{2n}$, $\bar{\omega}_1 = \bar{\omega}_3 = \cdots = \bar{\omega}_{n-1}$ and $\bar{\omega}_i = 0$ if *i* is even. Therefore, $d = \text{g.c.d.}(d_1, d_3, \ldots, d_{n-1}) = 2^{v_2(n)+1}$, where $v_2(n)$ denotes the 2-adic valuation of *n*.

*E*₇. We have $\Lambda/\Lambda_r = \{0, \sigma = \bar{\omega}_7 = \bar{\omega}_5 = \bar{\omega}_2\} \simeq \mathbb{Z}/2\mathbb{Z}$ with $\bar{\omega}_1 = \bar{\omega}_3 = \bar{\omega}_4 = \bar{\omega}_6 = 0$. Therefore, $d = \text{g.c.d.}(d_7, d_5, d_2) = 8$.

Example 3.7. Assume that $\Lambda/T^* = \langle \sigma_1 \rangle \oplus \langle \sigma_2 \rangle$, where σ_1 and σ_2 are of order two. In this case, $G_s = \text{PGO}_{2n}^+$ is an adjoint group $(T^* = \Lambda_r)$ of type D_n with n even. We have $\sigma_1 = \bar{\omega}_{n-1}$ and $\sigma_2 = \bar{\omega}_n$, $\bar{\omega}_s = s\bar{\omega}_1$, $2 \leq s \leq n-2$, $2\bar{\omega}_1 = 0$ and $\bar{\omega}_1 = \bar{\omega}_{n-1} + \bar{\omega}_n$. Then

$$\mathfrak{G}_s \simeq \mathbb{Z}[y_1, y_2]/(y_1^2 - 2y_1, y_2^2 - 2y_2, a_1y_1, a_2y_2, a(y_1 + y_2 - y_1y_2)),$$

where $y_1 = (1 - e^{\sigma_1})$ and $y_2 = (1 - e^{\sigma_2})$; a_1 (respectively a_2) is the greatest common divisor of the d_i with $\bar{\omega}_i = \bar{\omega}_{n-1}$ (respectively $\bar{\omega}_i = \bar{\omega}_n$), that is, $a_1 = a_2 = 2^{n-1}$; and $a = \gcd(d_1, d_3, \ldots, d_{n-3})$. In particular, for $G_s = \operatorname{PGO}_8^+$, we obtain

$$\mathfrak{G}_s \simeq \mathbb{Z}[y_1, y_2]/(y_1^2 - 2y_1, y_2^2 - 2y_2, 8y_1, 8y_2).$$

Example 3.8. Assume that $\Lambda/T^* = \langle \sigma \rangle$ has order three. Then

$$\mathfrak{G}_s \simeq \mathbb{Z}[y]/(y^3 - 3y^2 + 3y, a_1y, a_2y^2),$$

where $y = (1 - e^{\sigma})$ and a_1 (respectively a_2) is the greatest common divisor of the d_i with $\bar{\omega}_i = \sigma$ (respectively $\bar{\omega}_i = 2\sigma$). For the adjoint group of type E_6 , we have $\Lambda/\Lambda_r = \{0, \sigma = \bar{\omega}_1 = \bar{\omega}_5, 2\sigma = \bar{\omega}_3 = \bar{\omega}_6\}$ with $\bar{\omega}_2 = \bar{\omega}_4 = 0$. Therefore, $a_1 = a_2 = 27$.

Example 3.9. Assume that $\Lambda/T^* = \langle \sigma \rangle$ has order four. Then

$$\mathfrak{G}_s \simeq \mathbb{Z}[y]/(y^4 - 4y^3 + 6y^2 - 4y, a_1y, a_2y^2, a_3y^3),$$

where $y = (1 - e^{\sigma})$. For the group PGO_{2n}^+ where *n* is odd, we have $\sigma = \bar{\omega}_{n-1}$, $2\sigma = \bar{\omega}_1$ and $3\sigma = \bar{\omega}_n$. Therefore, $a_1 = a_3 = 2^{n-1}$ and $a_2 = \text{g.c.d.}(d_1, d_3, \dots, d_{n-2})$.

4. The twisted γ -filtration

In the present section, we introduce and study the twisted γ -filtration.

Let $\gamma = \ker \epsilon$ denote the augmentation ideal in $\mathbb{Z}[\Lambda]$. It is generated by the differences

$$\langle (1 - e^{-\lambda}), \lambda \in \Lambda \rangle.$$

Consider the γ -adic filtration on $\mathbb{Z}[\Lambda]$:

$$\mathbb{Z}[\Lambda] = \gamma^0 \supseteq \gamma \supseteq \gamma^2 \supseteq \cdots .$$

The *i*th power γ^i is generated by products of at least *i* differences.

DEFINITION 4.1. We define the filtration on $K_0(\mathfrak{B}_s)$ (respectively on \mathfrak{G}_s) to be the image of the γ -adic filtration on $\mathbb{Z}[\Lambda]$ via \mathfrak{c} (respectively via q), that is,

$$\gamma^i K_0(\mathfrak{B}_s) := \mathfrak{c}(\gamma^i) \quad \text{and} \quad \gamma^i \mathfrak{G}_s := q(\gamma^i K_0(\mathfrak{B}_s)), \quad i \ge 0.$$

So, we have a commutative diagram of surjective group homomorphisms.

LEMMA 4.2. The γ -filtration on $K_0(\mathfrak{B}_s)$ coincides with the filtration introduced in Definition 4.1.

Proof. Since $K_0(\mathfrak{B}_s)$ is generated by the classes of line bundles,

$$\gamma^{i}K_{0}(\mathfrak{B}_{s}) = \langle c_{1}([\mathcal{L}_{1}]) \cdots c_{1}([\mathcal{L}_{m}]) \mid m \geq i, \mathcal{L}_{j} \in K_{0}(\mathfrak{B}_{s}) \rangle,$$

where c_1 is the first characteristic class in K_0 . Moreover, each line bundle \mathcal{L} is the associated bundle $\mathcal{L} = \mathcal{L}(\lambda)$ for some character $\lambda \in \Lambda$. Therefore, $c_1([\mathcal{L}]) = 1 - [\mathcal{L}^{\vee}] = \mathfrak{c}(1 - e^{-\lambda})$ (see [Dem74, § 2.8]).

DEFINITION 4.3. Given a G_s -torsor $\xi \in H^1(k, G_s)$ and the respective twisted form $\mathfrak{B} = {}_{\xi}\mathfrak{B}_s$, we define the twisted filtration on \mathfrak{G}_s to be the image of the γ -filtration on $K_0(\mathfrak{B})$ via the composite res $\circ q$, that is,

$$\gamma_{\xi}^{i}\mathfrak{G}_{s} := q(\operatorname{res}(\gamma^{i}K_{0}(\mathfrak{B}))), \quad i \ge 0.$$

Let $\gamma_{\xi}^{i/i+1}\mathfrak{G}_s = \gamma_{\xi}^i\mathfrak{G}_s/\gamma_{\xi}^{i+1}\mathfrak{G}_s$ denote the *i*th subsequent quotient. The associated graded ring $\bigoplus_{i\geq 0} \gamma_{\xi}^{i/i+1}\mathfrak{G}_s$ will be called the γ -invariant of the torsor ξ and will be denoted simply as γ_{ξ}^* .

Remark 4.4. Note that the Chern classes commute with restrictions; therefore, the restriction map res: $\gamma^i K_0(\mathfrak{B}) \to \gamma^i K_0(\mathfrak{B}_s)$ is well defined. By definition, there is a surjective ring homomorphism

$$\gamma^*(\mathfrak{B}) \twoheadrightarrow \gamma^*_{\xi}.$$

THEOREM 4.5. The twisted filtration $\gamma_{\varepsilon}^{i} \mathfrak{G}_{s}$ can be computed as follows:

$$\gamma_{\xi}^{i}\mathfrak{G}_{s} = \left\langle \prod_{j=1}^{m} \left(\frac{\operatorname{ind}(\beta_{\xi}(\bar{\rho}_{w_{j}}))}{n_{j}} \right) (1 - e^{\bar{\rho}_{w_{j}}})^{n_{j}} \middle| n_{1} + \dots + n_{m} \ge i, w_{j} \in W \right\rangle.$$

Proof. Since the characteristic classes commute with restrictions, the image of the restriction res: $\gamma^i K_0(\mathfrak{B}) \to \gamma^i K_0(\mathfrak{B}_s)$ is generated by the products

$$\langle c_{n_1}(\iota_{w_1}g_{w_1})\cdots c_{n_m}(\iota_{w_m}g_{w_m}) \mid n_1+\cdots+n_m \ge i, w_1, \ldots, w_m \in W \rangle,$$

where $\{i_{w_j}\}\$ are the indexes of the respective Tits algebras. Applying the Whitney formula for the characteristic classes [Ful98, § 3.2], we obtain

$$c_j(\imath_w g_w) = \binom{\imath_w}{j} c_1(g_w)^j.$$

$$(g_w)^j = \binom{\imath_w}{j} (1 - e^{-\bar{\rho}_w})^j, \text{ where } \imath_w = \operatorname{ind}(\beta_{\xi}(\bar{\rho}_w)).$$

Example 4.6. Since $\gamma^0(X) \simeq \mathbb{Z}$ and $\gamma^1(X) = \operatorname{Pic}(X)$ is torsion free for every smooth projective X, we obtain that $\gamma^0_{\xi} \simeq \mathbb{Z}$ and $\gamma^1_{\xi} = 0$ for any ξ .

Example 4.7 (Strongly inner case). If $\beta_{\xi} = 0$, then $\binom{i_{w_j}}{n_j} = 1$ and $\gamma^i_{\xi} \mathfrak{G}_s = \gamma^i \mathfrak{G}_s$.

Example 4.8 ($\mathbb{Z}/2\mathbb{Z}$ -case). As in Example 3.6, assume that $\Lambda/T^* = \langle \sigma \rangle$ has order two and $\beta_{\xi} \neq 0$. Then there is only one non-split Tits algebra $A = A_{\sigma,\xi}$ and it has exponent 2. Let $i_A = v_2(ind(A))$ denote the 2-adic valuation of the index of A. By definition, we have

$$\gamma_{\xi}^{i}\mathfrak{G}_{s} = \left\langle \binom{2^{\mathbf{i}_{A}}}{n_{1}} \cdots \binom{2^{\mathbf{i}_{A}}}{n_{m}} 2^{n_{1}+\cdots+n_{m}-1}y \middle| n_{1}+\cdots+n_{m} \ge i \right\rangle$$

in $\mathbb{Z}[y]/(y^2 - 2y, dy)$, where $y = 1 - e^{\sigma}$ and d is given in Example 3.6. Observe that modulo the relation $y^2 = 2y$ these ideals are generated by (for $j \ge 1$)

$$\begin{split} &\gamma_{\xi}^{2j-1}\mathfrak{G}_{s}=\gamma_{\xi}^{2j}\mathfrak{G}_{s}=\langle 2^{2j-1}y\rangle & \text{if } \mathbf{i}_{A}=1,\\ &\gamma_{\xi}^{4j-3}\mathfrak{G}_{s}=\gamma_{\xi}^{4j-2}\mathfrak{G}_{s}=\langle 2^{4j-2}y\rangle, \ \gamma_{\xi}^{4j-1}\mathfrak{G}_{s}=\gamma_{\xi}^{4j}\mathfrak{G}_{s}=\langle 2^{4j-1}y\rangle & \text{if } \mathbf{i}_{A}=2,\\ &\gamma_{\xi}^{1}\mathfrak{G}_{s}=\gamma_{\xi}^{2}\mathfrak{G}_{s}=\langle 2^{\mathbf{i}_{A}}y\rangle, \ \gamma_{\xi}^{3}\mathfrak{G}_{s}=\gamma_{\xi}^{4}\mathfrak{G}_{s}=\langle 2^{\mathbf{i}_{A}+1}y\rangle, \ \gamma_{\xi}^{5}\mathfrak{G}_{s}=\langle 2^{\mathbf{i}_{A}+4}y\rangle, \dots & \text{if } \mathbf{i}_{A}>2. \end{split}$$

Taking these generators modulo the relation dy = 0, we obtain the following formulas for the second quotient γ_{ξ}^2 :

$$\text{if } \mathbf{i}_A = 1, \text{ then } \gamma_{\xi}^2 = \begin{cases} 0 & \text{if } v_2(d) \leqslant 1, \\ \mathbb{Z}/2\mathbb{Z} & \text{if } v_2(d) = 2, \\ \mathbb{Z}/4\mathbb{Z} & \text{if } v_2(d) \geqslant 3, \end{cases}$$

$$\text{if } \mathbf{i}_A > 1, \text{ then } \gamma_{\xi}^2 = \begin{cases} 0 & \text{if } v_2(d) \leqslant \mathbf{i}_A, \\ \mathbb{Z}/2\mathbb{Z} & \text{if } v_2(d) > \mathbf{i}_A. \end{cases}$$

Example 4.9 $(\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \text{ case})$. Following Example 3.7, we assume that $\Lambda/T^* = \langle \sigma_1 \rangle \oplus \langle \sigma_2 \rangle$, where σ_1, σ_2 have order two. This is the case for the adjoint group PGO_{2n}^+ where *n* is even [KMRT98, § 25]. Assume that n = 4, which corresponds to the group of type D_4 , that is, PGO_8^+ . Let C^+ and C^- denote the Tits algebras corresponding to the generators $\sigma_1 = \bar{\omega}_3$ and $\sigma_2 = \bar{\omega}_4$.

Therefore, $q(\binom{i_w}{i}c_1$

Let A denote the Tits algebra corresponding to the sum $\sigma_1 + \sigma_2$. (Note that $C^+ \times C^-$ is the even part of the Clifford algebra of the algebra with involution A and $[A] = [C^+ \otimes C^-]$ in Br(k).)

By definition, we have in $\mathbb{Z}[y_1, y_2]$ that

$$\gamma_{\xi}^{i}\mathfrak{G}_{s} = \left\langle \binom{\operatorname{ind} C_{+}}{n_{1}} y_{1}^{n_{1}} \cdot \binom{\operatorname{ind} C_{-}}{n_{2}} y_{2}^{n_{2}} \cdot \binom{\operatorname{ind} A}{n_{3}} (y_{1} + y_{2} - y_{1}y_{2})^{n_{3}} \middle| n_{1} + n_{2} + n_{3} \ge i \right\rangle.$$

Modulo the relations $(y_1^2 - 2y_1, y_2^2 - 2y_2, 8y_1, 8y_2)$, we obtain that

$$\gamma_{\xi}^{2}\mathfrak{G}_{s} \simeq \frac{(\mathrm{ind}\ C_{+})\mathbb{Z}}{8\mathbb{Z}} \oplus \frac{(\mathrm{ind}\ C_{-})\mathbb{Z}}{8\mathbb{Z}} \oplus \frac{(\mathrm{ind}\ A)\mathbb{Z}}{8\mathbb{Z}}$$

5. Torsion in the γ -filtration

In the present section, we show how the twisted γ -filtration can be used to construct nontrivial torsion elements in the γ -ring of the twisted form \mathfrak{B} of a variety of Borel subgroups. For simplicity, we consider only the case of G_s (see Examples 3.6 and 4.8) with $\Lambda/T^* = \langle \sigma \rangle$ of order two.

Let d denote the greatest common divisor of dimensions of fundamental representations corresponding to σ . Given a G_s -torsor $\xi \in H^1(k, G_s)$, let i_A denote the 2-adic valuation of the index of the Tits algebra $A = A_{\sigma,\xi}$. Let $\mathfrak{B} = {}_{\xi}\mathfrak{B}_s$ denote the twisted form of the variety of Borel subgroups of G_s by means of ξ . Consider the respective twisted filtration $\gamma_{\xi}^i \mathfrak{G}_s$ on \mathfrak{G}_s .

PROPOSITION 5.1. Assume that $v_2(d) > i_A \ge 3$. Then, for each $\lambda \in \Lambda$ such that $\overline{\lambda} = \sigma$, there exists a nontrivial torsion element of order two in $\gamma^2(\mathfrak{B})$. Moreover, its image in $\gamma_{\xi}^2 = \mathbb{Z}/2$ (via q) is nontrivial and in $\gamma^2(\mathfrak{B}_s)$ (via res) is trivial.

Proof. The proof of this result was inspired by the proof of [Kar98, Proposition 4.13].

Let $g = [\mathcal{L}(\lambda)]$ denote the class of the associated line bundle. Using the formula for the first Chern class of a tensor product of line bundles for K_0 , we obtain

$$c_1(g)^2 = 2c_1(g) - c_1(g^2).$$

Hence,

$$c_1(g)^4 = (2c_1(g) - c_1(g^2))^2 = 4c_1(g)^2 - 4c_1(g)c_1(g^2) + c_1(g^2)^2.$$

Therefore,

$$\eta = 4c_1(g)^3 - c_1(g)^4 = 4c_1(g)^2 - c_1(g^2)^2 \in \gamma^3 K_0(\mathfrak{B}_s).$$

We claim that the class of $2^{i_A-3}\eta$ gives the desired torsion element.

Indeed, $c_1(g^2) = c_1([\mathcal{L}(2\lambda)])$. Since $2\lambda \in T^*$, $[\mathcal{L}(2\lambda)] \in \mathfrak{c}(T^*)$ and, therefore, by [GZ12, Corollary 3.1], $c_1(g^2) \in \gamma^1 K_0(\mathfrak{B})$. Moreover, we have $2^{i_A-1}c_1(g)^2 = c_2(2^{i_A}g)$, where $2^{i_A}g \in K_0(\mathfrak{B})$. Hence, $2^{i_A-1}c_1(g)^2 \in \gamma^2 K_0(\mathfrak{B})$. Combining these together, we obtain that $2^{i_A-3}\eta \in \gamma^2 K_0(\mathfrak{B})$.

Now, since $2^{i_A-3}\eta \in \gamma^2 K_0(\mathfrak{B})$, its image in $\gamma_{\xi}^2 \mathfrak{G}_s$ can be computed as

$$q(2^{\mathbf{i}_A-3}\eta) = 2^{\mathbf{i}_A-3}q(\eta) = 2^{\mathbf{i}_A-1}q(c_1(g)^2) = 2^{\mathbf{i}_A-1}(1-e^{-\sigma})^2 = 2^{\mathbf{i}_A}y.$$

But $q(2^{\mathbf{i}_A-3}\eta) \notin \gamma_{\xi}^3 \mathfrak{G}_s = \langle 2^{\mathbf{i}_A+1}y \rangle$. Therefore, $2^{\mathbf{i}_A-3}\eta \notin \gamma^3 K_0(\mathfrak{B})$.

Since $2^{i_A-2}\eta = 2^{i_A}c_1(g)^3 + 2^{i_A-2}c_1(g)^4$ is in $\gamma^3 K_0(\mathfrak{B})$, the class of $2^{i_A-3}\eta$ gives the desired torsion element of order two.

Example 5.2. Let $G_s = \text{HSpin}_{2n}$ be a half-spin group of rank $n \ge 4$. So, G_s is of type D_n , where n is even, $\Lambda/T^* = \langle \sigma = \bar{\omega}_1 \rangle \simeq \mathbb{Z}/2\mathbb{Z}$ and, according to Example 3.6, we have $d = 2^{v_2(n)+1}$.

Let $\xi \in H^1(k, G_s)$ be a nontrivial torsor. Then there is only one Tits algebra $A = A_{\sigma,\xi}$; it has exponent 2 and index 2^{i_A} such that $i_A \leq v_2(n) + 1$.

Recall that each such torsor corresponds to an algebra with orthogonal involution (A, δ) with trivial discriminant and trivial component of the Clifford algebra. The respective twisted form $\mathfrak{B} = {}_{\xi}\mathfrak{B}_s$ then corresponds to the variety of Borel subgroups of the group PGO⁺ (A, δ) . Applying Proposition 5.1 to this situation, we obtain that for any such algebra (A, δ) where $8 \mid \operatorname{ind}(A)$ and A is non-division, there exists a nontrivial torsion element of order two in $\gamma^2(\mathfrak{B})$ that vanishes over a splitting field of (A, δ) .

LEMMA 5.3. The γ -filtration on $K_0(\mathfrak{B}_s)$ is generated by the first Chern classes $c_1([\mathcal{L}(\omega_i)])$, $i = 1, \ldots, n$, that is,

$$\gamma^{i} K_{0}(\mathfrak{B}_{s}) = \left\langle \prod_{j \in 1, \dots, n} c_{1}([\mathcal{L}(\omega_{j})]) \middle| \text{ the number of elements in the product } \geqslant i \right\rangle.$$

In particular, the second quotient $\gamma^2(\mathfrak{B}_s)$ is additively generated by the products

$$\gamma^2(\mathfrak{B}_s) = \langle c_1([\mathcal{L}(\omega_i)]) c_1([\mathcal{L}(\omega_j)]) \mid i, j \in 1, \dots, n \rangle.$$

Proof. Each $b \in K_0(\mathfrak{B}_s)$ can be written as a linear combination $b = \sum_{w \in W} a_w g_w$. Therefore, any Chern class of b can be expressed in terms of $c_1(g_w)$.

Each ρ_w can be written uniquely as a linear combination of fundamental weights $\{\omega_1, \ldots, \omega_n\}$. Therefore, by the formula for the Chern class of the tensor product of line bundles [CPZ10, 8.2], each $c_1(g_w)$ can be expressed in terms of $c_1([\mathcal{L}(\omega_i)])$.

Example 5.4. Let G_s be an adjoint group of type E_7 and let $\xi \in H^1(k, G_s)$ be a nontrivial G_s torsor. Then there is only one non-split Tits algebra $A = A_{\sigma,\xi}$ of exponent 2 and $i_A \leq 3$. Let $\mathfrak{B} = {}_{\xi}\mathfrak{B}_s$ be the respective twisted flag variety.

By Lemma 5.3, any element of $\gamma^2(\mathfrak{B})$ can be written as

$$x = \sum_{ij} a_{ij} c_1([\mathcal{L}(\omega_i)]) c_1([\mathcal{L}(\omega_j)]) \in \gamma^2(\mathfrak{B})$$

for certain coefficients $a_{ij} \in \mathbb{Z}$. Since $\sigma = \bar{\omega}_7 = \bar{\omega}_5 = \bar{\omega}_2$ and $\bar{\omega}_1 = \bar{\omega}_3 = \bar{\omega}_4 = \bar{\omega}_6 = 0$, we obtain that

$$q(x) = C \cdot 2y \in \gamma_{\xi}^2$$
, where $C = a_{25} + a_{27} + a_{57} + a_{22} + a_{55} + a_{77}$.

Therefore, $q(x) \neq 0$ in γ_{ξ}^2 if and only if $4 \nmid C$ and $i_A \leq 2$.

Consider the class $\mathfrak{c}(\theta) \in \gamma^2 K_0(\mathfrak{B}_s)$ of the special cycle θ constructed in [GZ10, Definition 3.3]. Note that the image of θ in $CH^2(\mathfrak{B})$ can be viewed as a generalization of the Rost invariant for split adjoint groups (see [GZ10, §6]).

If $i_A = 1$, then, by [GZ10, Proposition 6.5], we know that $\mathfrak{c}(\theta) \in \gamma^2(\mathfrak{B})$ is a nontrivial torsion element. If $i_A = 2$, then, following the proof of [GZ10, Proposition 6.5], we obtain that $2\mathfrak{c}(\theta) \in \gamma^2(\mathfrak{B})$.

We claim that if $i_A \leq 2$, then $x = 2\mathbf{c}(\theta)$ is nontrivial. Indeed, in this case $4 \nmid C = a_{22} + a_{55} + a_{77} = 6$; therefore, we have $q(x) \neq 0$, and $x \neq 0$ in $\gamma^2(\mathfrak{B})$. In particular, this shows that for $i_A = 1$ the order of the special cycle θ in $\gamma^2(\mathfrak{B})$ is divisible by 4.

Example 5.5. Let $\xi \in H^1(k, \text{PGO}_8^+)$. Applying the same arguments as in Example 5.4 to Example 4.9, we obtain that if $\operatorname{ind}(A)$, $\operatorname{ind}(C_+)$, $\operatorname{ind}(C_-) \leq 4$, then $2\mathfrak{c}(\theta) \in \gamma^2(\mathfrak{B})$ is nontrivial.

Acknowledgements

I am grateful to Alexander Merkurjev for pointing out Remark 3.2. This work has been supported by NSERC Discovery 385795, DAS 396100 and ERA grants.

References

- Bou05 N. Bourbaki, *Lie groups and Lie algebras*, in *Elements of Mathematics* (Springer, Berlin, 2005), chs 7–9.
- CPZ10 B. Calmès, V. Petrov and K. Zainoulline, Invariants, torsion indices and oriented cohomology of complete flags, Preprint (2010), arXiv:0905.1341.
- Dem74 M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. Éc. Norm. Supér. 7 (1974), 53–88.
- GZ10 S. Garibaldi and K. Zainoulline, The γ -filtration and the Rost invariant, Preprint (2010), arXiv.org 1007.3482.
- GZ12 S. Gille and K. Zainoulline, Equivariant pretheories and invariants of torsors, Transform. Groups 17 (2012), 471–498.
- SGA6 A. Grothendieck, Exposé 0, in Théorie des intersections et théorème de Riemann-Roch (SGA6), Lecture Notes in Mathematics, vol. 225 (Springer, 1971).
- Ful98 W. Fulton, Intersection theory, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Springer, Berlin, 1998).
- Kar98 N. Karpenko, Codimension 2 cycles on Severi-Brauer varieties, K-Theory J. 13 (1998), 305–330.
- KMRT98 M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, *The book of involutions*, American Mathematical Society Colloquium Publications, 44 (American Mathematical Society, Providence, RI, 1998).
- Mer05 A. Merkurjev, *Equivariant K-theory*, in *Handbook of K-theory*, vols. 1, 2 (Springer, Berlin, 2005), 925–954.
- Pan94 I. Panin, On the algebraic K-theory of twisted flag varieties, K-Theory J. 8 (1994), 541–585.
- Ste75 R. Steinberg, On a theorem of Pittie, Topology 14 (1975), 173–177.
- Tit71 J. Tits, Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque,
 J. Reine Angew. Math. 247 (1971), 196–220.

Kirill Zainoulline kirill@uottawa.ca

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward, Ottawa, ON K1N6N5, Canada