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Abstract

We prove that the coherent cohomology of a proper morphism of noetherian schemes can be
made arbitrarily p-divisible by passage to proper covers (for a fixed prime p). Under some extra
conditions, we also show that p-torsion can be killed by passage to proper covers. These results
are motivated by the desire to understand rational singularities in mixed characteristic, and have
applications in p-adic Hodge theory.
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1. Introduction

Fix a prime p. We will study the following question in mixed and positive
characteristic geometry.

QUESTION 1.1. Given a scheme X and a class α ∈ H n(X,OX ) for some n > 0,
does there exist a ‘cover’ π : Y → X such that π∗α is divisible by p?

Of course, as stated, the answer is trivially yes: take Y to be a disjoint union of
opens occurring in a Čech cocyle representing α. However, the question becomes
interesting if we impose geometric conditions on the cover π , such as properness.
The first obstruction encountered is the potential noncompactness of X : passage
to proper covers cannot make cohomology classes p-divisible for the simplest of
open varieties (such as A2

Fp
− {0}; see Example 2.29). Our main result is that this

is the only obstruction. In fact, we affirmatively answer the relative version of
Question 1.1 for proper maps.
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THEOREM 1.2. Let f : X → S be a proper morphism of noetherian schemes
with S affine. Then there exists an alteration π : Y → X such that π∗(H i(X,
OX )) ⊂ p(H i(Y,OY )) for i > 0.

In fact, we prove a more precise derived category statement (see Remark 2.27),
an analogous ‘global’ result (see Corollary 2.28), a stronger result in positive
characteristic (see Theorem 3.1), and provide examples to show why the
assumptions in Theorem 1.2 are essentially optimal (see Examples 2.29 and 2.30);
we refer the reader to the body of the paper for a further discussion of these topics.

Theorem 1.2 is trivially true if p is invertible on S. At the opposite extreme, if S
is an Fp-scheme, then Theorem 1.2 says that alterations kill the higher (relative)
cohomology of the structure sheaf for proper maps, which is the main theorem
of [Bhab]. Hence, one may view Theorem 1.2 as a mixed characteristic lift of
[Bhab]. However, the techniques of [Bhab] depend heavily on the availability of
the Frobenius endomorphism, and thus do not transfer to the mixed characteristic
world. Instead, our proof of Theorem 1.2 is geometric—we crucially use ideas
from geometric class field theory and de Jong’s work on stable curve fibrations—
and can, in fact, be used to reprove [Bhab, Theorem 1.5].

The results of [Bhab] are quite useful in studying singularities in positive
characteristic (see, for example, [BST]), and we expect that Theorem 1.2 will be
similarly useful in studying singularities in mixed characteristic. Moreover,
Theorem 1.2 (together with a derived refinement that is available when
dim(S) 6 1; see Remark 2.11) has found surprising applications recently in
p-adic Hodge theory: Beilinson’s recently discovered h-localization approach to
Fontaine’s p-adic comparison conjectures (see [Bei12, Bei11] and also [Bhac])
uses Theorem 1.2 as the key geometric ingredient in the proof of the p-adic
Poincaré lemma. A generalization of Theorem 1.2 (see Remark 3.3) would help
extend these p-adic comparison results to the relative setting, and also have purely
algebraic applications (see Remark 2.12). Additionally, Theorem 1.2 together
with a geometric refinement has also been used by Deninger and Werner in the
extension of their theory [DW05] of p-adic Higgs bundles to higher-dimensional
cases. (This refinement requires an improvement of de Jong’s alteration theorems
that imposes finer control on the étale locus of the relevant alterations, and will
appear elsewhere.)

Outline of the proof of Theorem 1.2. Assume first that f has relative dimension 1.
If S was a point, then a natural strategy is the following: replace X with its
normalization, identify the group H 1(X,OX ) with the tangent space to the Picard
variety Pic0(X) at the origin, and construct maps of curves such that the pullback
on Picard varieties is divisible by p, at least at the expense of extending the ground
field (these maps can be constructed by pulling back multiplication by p on the
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Picard variety along the Abel–Jacobi map, an old trick from geometric class field
theory). For a nontrivial family of curves, the preceding argument can be applied
to solve the problem over the generic point. Using the existence of compact
moduli spaces of stable curves (or, even better, stable maps) and the theory of
Neron models, one can then extend the generic solution to one over an alteration
of S. This is not quite enough as the alteration is no longer affine, but it reduces
Theorem 1.2 for maps of relative dimension 61 to maps of relative dimension
60. In general, theorems of de Jong show that an arbitrary proper morphism
f of relative dimension d can be altered into a sequence of d iterated stable
curve fibrations over an alteration of the base. The previous argument then lets
us inductively reduce the general problem to that for maps of relative dimension
60. At this point, we carefully fibre S itself over a lower-dimensional base while
preserving certain cohomological properties, and proceed by (nested) induction
on dim(S).

Organization of this paper. Theorem 1.2 is proved in Section 2: we discuss a
reduction to relative dimension 0 in Section 2.1, and then prove this case in
Section 2.2. Note that, when dim(S) 6 1, the latter step is unnecessary. In
Section 3, we explain how to deduce the apparently stronger sounding [Bhab,
Theorem 1.5] from Theorem 1.2.

Conventions. For any morphism f : X → S of noetherian schemes of finite Krull
dimension, we define the relative dimension of f to be the supremum of the
dimensions of the fibres of f over the generic points of S (with the convention that
the dimension of the empty set is −1); this nonstandard convention will be useful
in inductive arguments. For example, with this convention, any proper morphism
of relative dimension 0 between integral noetherian schemes is an alteration.
Given S-schemes f : X → S and g : Y →, as well as an S-map π : Y → X ,
we will write π∗(Ri f∗OX ) ⊂ p(Ri g∗OY ) to mean that the image of the pullback
π∗ : Ri f∗OX → Ri g∗OY is contained in the subsehaf p(Ri g∗OY ) ⊂ Ri g∗OY ); a
similar convention describes the meaning of π∗(H i(X,OX )) ⊂ p(H i(Y,OY )).

2. The main theorem

In order to flesh out the outline from Section 1, we first make the following
trivial observation.

LEMMA 2.1. If Theorem 1.2 is true for excellent schemes S, then it is true in
general.

Proof. This is a standard approximation argument (see [Gro66, Section 8] and
[Sta14, Tag 01YT] for more); for the convenience of the reader, we sketch the
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argument. Let f : X → S be a proper morphism of noetherian schemes. Then⊕
i>0 H i(X,OX ) is a finite OS-module, so it suffices to construct alterations of

X that make any fixed class α ∈ H n(X,OX ) (for n > 0) divisible by p. For
a fixed α, the quadruple (X, S, f, α) can be approximated by a quadruple (X i ,

Si , fi , αi) with X i and Si excellent (see [Sta14, Tag 0A0X] for approximating
(X, S, f ) and [Sta14, Tag 09RE] for approximating α). By assumption, there is
an alteration πi : Yi → X i such that π∗(αi) ∈ p(H n(Yi ,OYi )). The fibre product
π ′ : Yi ×X i X → X is then a proper surjective map such that π ′∗(α) = 0. Pick a
closed subscheme Y ⊂ Yi ×X i X such that Y → X is an alteration; such a scheme
Y exists as π ′ is surjective, and clearly does the job.

Lemma 2.1 allows us to restrict to excellent schemes in what follows, which
will be very convenient: it allows us to normalize our schemes in various
constructions without leaving the noetherian world. We now make the following
definition, integral to the rest of Section 2.

DEFINITION 2.2. Given a scheme S, we say that Condition Cd(S) is satisfied if S
is excellent, and the following is satisfied by each irreducible component Si of S:
given a proper surjective morphism f : X → Si of relative dimension d with X
integral, there exists an alteration π : Y → X such that, with g = f ◦ π , we have
π∗(Ri f∗OX ) ⊂ p(Ri g∗OY ) for i > 0.

Note that C−1(S) is vacuous: there is nothing to prove if S is empty, and, when
S is nonempty, we simply observe there are no proper surjective maps between
integral noetherian schemes of relative dimension−1. Hence, in what follows, we
implicitly assume that d > 0. The main reason to make the preceding definition
is the following elementary observation.

LEMMA 2.3. If Cd(S) is satisfied for all excellent S and integers d > 0, then
Theorem 1.2 is true.

Proof. Choose f : X → S as in Theorem 1.2. It is enough to verify the conclusion
of Theorem 1.2 when S is excellent thanks to Lemma 2.1. Write X =

⋃
i X i as

the union of irreducible components, and let Si = f (X i) ⊂ S be the scheme-
theoretic image. Then each Si is an integral excellent scheme, and f induces
proper surjective maps fi : X i → Si of relative dimension di for di > 0. By
assumption, there exist alterations πi : Yi → X i such that, with g = fi ◦ πi , we
have π∗i (R

j fi,∗OX i ) ⊂ p(R j gi , ∗OYi ) for j > 0. As S is affine by assumption, so
is each Si , and hence the preceding containment translates to π∗i (H

j(X i ,OX i )) ⊂

p(H j(Yi ,OYi )) for j > 0. The induced map Y :=
⊔

i Yi → X then does the
job.
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What follows is dedicated to verifying Cd(S) for excellent S and d > 0. (For
the reader’s convenience, we note here that this verification is local on the scheme
S (see Lemma 2.15 below), so there is no loss of generality in assuming that S is
affine.) More precisely, in Section 2.1, we will show that the validity of C0(S) for
all excellent base schemes S implies the validity of Cd(S) for all integers d and all
excellent schemes S. We then proceed to verify Condition C0(S) in Section 2.2.

2.1. Reduction to the case of relative dimension 0. The objective of the
present section is to show that the relative dimension of maps considered in
Theorem 1.2 can be brought down to 0 using suitable curve fibrations. The
necessary technical help is provided by the following result, essentially borrowed
from [dJ97], on extending maps between semistable curves.

PROPOSITION 2.4. Fix an integral excellent base scheme B with generic point
η. Assume that we have semistable curves φ : C → B and φ′η : C ′η → η, and a
B-morphism πη : C ′η→ C. If C ′η is geometrically irreducible, then we can alter B
to extend πη to a map of semistable cures over B; that is, there exists an alteration
B̃ → B such that C ′η ×B B̃ extends to a semistable curve over C̃ ′ → B̃ with C̃ ′

integral, and the map πη ×B B̃ extends to a B̃-map π̃ : C̃ ′→ C ×B B̃.

Proof. We may extend C ′η to a proper B-scheme using the Nagata
compactification theorem (see [Con07, Theorem 4.1]). By taking the closure
of the graph of the rational map defined from this compactification to C by
πη, we obtain a proper dominant morphism φ′ : C ′ → B of integral schemes
whose generic fibre is the geometrically irreducible curve φ′η : C ′η → η, and a
B-map π : C ′ → C extending πη : C ′η → C . The idea, borrowed from [dJ96,
Section 4.18], is the following: modify B to make the strict transform of C ′→ B
flat, alter the result to get enough sections which make the resulting datum
generically a stable curve, use compactness of the moduli space of stable curves
to extend the generically stable curve to a stable curve after further alteration, and
then use stability and flatness to get a well-defined morphism from the resulting
stable curve to the original one extending the existing one over the generic point.
Instead of rewriting the details here, we refer the reader to [dJ97, Theorem 5.9],
which directly applies to φ′, to finish the proof (the integrality of C̃ ′ follows from
the irreducibility of the generic fibre C ′η ×B B̃).

REMARK 2.5. Proposition 2.4, while sufficient for the application we have in
mind, is woefully inadequate in terms of the permissible generality. Similar ideas
can, in fact, be used to show something much better: for any flat projective
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morphism X → B, there exists an ind-proper algebraic stack Mg(X) → B
parameterizing B-families of stable maps from genus g curves to X ; see [AO01].

In addition to constructing maps of semistable curves, we will also need to
construct maps that preserve sections. The following lemma says that we can do
so at a level of generality sufficient for our purposes.

LEMMA 2.6. Fix an integral excellent base scheme B, two semistable curves
φ1 : C1 → B and φ2 : C2 → B, and a surjective B-map π : C2 → C1. Then
any section of φ1 extends to a section of φ2 after an alteration of B; that is, given
a section s : B → C1, there exists an alteration b : B̃ → B such that the induced
map B̃ → B → C1 factors through a map B̃ → C2.

Proof. Let η be the generic point of B, let s : B → C1 be the section of φ1 under
consideration, and let sη : η→ C1 denote the restriction of s to the generic point.
By the surjectivity of π , the map πη : (C2)η → (C1)η is surjective. Thus, there
exists a finite surjective morphism η′ → η such that the induced map η′ → C1

factors through some map s ′η : η
′
→ C2. If B ′ denotes the normalization of B in

η′→ η, then the map s ′η spreads out to give a rational map B ′ 99K C2. Taking the
closure of the graph of this rational map (over B) gives an alteration b : B̃ → B
such that the induced map B̃ → C1 factors through a map s̃2 : B̃ → C2, proving
the claim.

Proposition 2.4 lets us to construct maps of semistable curves by constructing
them generically. We now construct the desired maps generically; the idea of this
construction belongs to class field theory.

LEMMA 2.7. Let X be a proper curve over a field k. Then there exist a field
extension k ′ of k, a proper smooth curve Y over k ′ with geometrically irreducible
connected components, and a finite surjective map π : Y → Xk′ such that the
induced map π∗ : Pic(Xk′)→ Pic(Y ) of fppf sheaves of abelian groups on Spec(k)
is divisible by p in Hom(Pic(Xk′),Pic(Y )).

Proof. We first assume that k = k is algebraically closed. To prove the statement,
we may replace X with any finite cover, so we can assume that X is normal, and
hence smooth as k is perfect. Moreover, it is enough to solve the problem over
each connected component of X (by taking a disjoint union), so we may even
assume that X is a proper smooth geometrically connected curve. After possibly
replacing X with some ramified cover, we may assume that X has genus >1. Fix
a point x0 ∈ X (k) (which always exists as k is algebraically closed). The point x0
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defines the Abel–Jacobi map X→ Pic0(X)⊂ Pic(X) via x 7→ O([x])⊗O(−[x0]).
The Riemann–Roch theorem implies that this map is a closed immersion. We set
π : Y → X to be the normalized inverse image of X under the multiplication
by p map [p] : Pic(X) → Pic(X). It follows that the pullback π∗ : Pic(X) →
Pic(Y ) factors through multiplication by p on Pic(X) and is therefore divisible
by p. Moreover, by construction, Y is a proper smooth k-curve, so this solves
the problem over k. The general case is easily deduced from this case by a limit
argument as every proper smooth connected curve over k descends to a proper
smooth geometrically connected curve over some finite extension k ′/k; the details
are left to the reader.

REMARK 2.8. Lemma 2.7 and the discussion below use basic properties of the
relative Picard scheme of a proper flat family f : X → S of curves. A general
reference for this object is [BLR90, Sections 8–9]. In this paper, we define
Pic(X/S) as the fppf sheaf R1 f∗Gm on the category of all S-schemes. If f has
a section, then one can identify Pic(X/S)(T ) ' Pic(X ×S T )/Pic(T ). Since f
has relative dimension 1, deformation theory implies that Pic(X/S) is smooth
(as a functor). Two additional relevant properties are the following: (a) if f
has geometrically reduced fibres, then Pic(X/S) is representable by a smooth
group scheme (by Artin’s work), and (b) if f is additionally semistable, then the
connected component Pic0(X/S) is semiabelian.

Lemma 2.7 allows us to construct covers of curves that induce a map
divisible by p on Picard schemes. Note that this latter property is meaningful
in characteristic 0, and yet implies divisibility by p on cohomology in all
characteristics. Using this observation, we globalize the construction in
Lemma 2.7 to arrive at one of the primary ingredients of our proof of Theorem 1.2.

PROPOSITION 2.9. Let φ : X → T be a projective family of semistable curves
with T integral and excellent. Then there exists a commutative diagram

X̃ π //

φ̃

��

X

φ

��
T̃

ψ // T

satisfying the following.

(1) The scheme T̃ is integral, and the map ψ is an alteration.

(2) φ̃ is a projective family of semistable curves, and the map π is proper and
surjective.
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(3) The pullback map ψ∗R1φ∗OX → R1φ̃∗OX̃ is divisible by p in Hom(ψ∗R1

φ∗OX ,R1φ̃∗OX̃ ).

Proof. For any family φ : X → T of projective semistable curves, there is a
natural identification of R1φ∗OX with the normal bundle of the zero section of the
semiabelian scheme Pic0(X/T ) → T ; see [BLR90, Theorem 1, Section 8.4].
Moreover, given another semistable curve φ̃ : X̃ → T and a morphism of
semistable curves π : X̃ → X over T , the induced map R1π : R1φ∗OX → R1φ̃∗OX̃
can be identified as the map on the corresponding normal bundles at 0 induced by
the natural morphism Pic0(π) : Pic0(X/T )→ Pic0(X̃/T ). As multiplication by
n on smooth commutative T -group schemes induces multiplication by n on the
normal bundles at 0, if Pic0(π) is divisible by p, so is R1π . As the formation
of R1φ∗OX commutes with arbitrary base change on T , it suffices to show that
there exist an alteration ψ : T̃ → T and a morphism of semistable curves
π : X̃ → X ×T T̃ over T̃ such that the induced map Pic0(π) is divisible by
p. Our strategy will be to construct a solution to this problem generically on T ,
and then use Proposition 2.4 and properties of semiabelian schemes to globalize.

Let η denote the generic point of T . By Lemma 2.7, we can find a finite
extension η′ → η, and a proper smooth curve Yη′ → η′ with geometrically
irreducible components such that the induced map Pic0(Xη′) → Pic0(Yη′) is
divisible by p. After replacing the map X → T with its base change along the
normalization of T in η′→ η, we may assume that η′ = η. The situation so far is
summarized in the diagram ⊔

i Yη i = Yη

��

// X

��
η // T

where the Yη i are the (necessarily) geometrically irreducible components of Yη.
As each of the Yη i is smooth as well, we may apply Proposition 2.4 to extend each
Yη i to a semistable curve Yi → Ti , where Ti → T is some alteration of T , such
that the map Yη i → X extends to a map Yi → X . Setting T̃ to be a dominating
irreducible component of the fibre product of all the Ti over T , and setting X̃ to
be the disjoint union of Yi ×Ti T̃ , we find the following: an alteration T̃ → T , a
semistable curve X̃ → T̃ extending Yη×T T̃ , and a map π̃ : X̃ → X extending the
existing one over the generic point. We will now check the required divisibility.

As explained earlier, we must show that the resulting map Pic0(X ×T T̃ /T̃ )→
Pic0(X̃/T̃ ) is divisible by p. This divisibility holds at the generic point of T̃ by
construction, and hence also over a sufficiently small Zariski dense open subset
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W ⊂ T̃ (as the functors involved are finitely presented). Next, note that the relative
Pic0 of any semistable curve is a semiabelian group scheme. The normality of
T̃ implies that restriction to W is a fully faithful functor from the category
of semiabelian schemes over T̃ to the analogous category over W (see [FC90,
Proposition I.2.7]). In particular, the divisibility by p over W ensures the global
divisibility by p, proving the existence of X̃ with the desired properties.

Recall that our immediate goal is to reduce Theorem 1.2 to verifying Condition
C0(S). Proposition 2.9 lets us make the relative cohomology of a curve fibration
divisible by p on passage to alterations, while de Jong’s theorems let us alter
an arbitrary proper dominant morphism into a tower of curve fibrations over
an alteration of the base. These two ingredients combine to yield the promised
reduction in relative dimension.

PROPOSITION 2.10. Let S be an excellent scheme such that Condition C0(S) is
satisfied. Then Cd(S) is satisfied for all d > 0.

Proof. As Condition Cd(S) is defined in terms of the irreducible components of S,
we may assume that S is integral itself. Fix integers d, i > 0, an integral scheme
X , and a proper surjective morphism f : X → S of relative dimension d . By
[dJ97, Corollary 5.10], after replacing X by an alteration, we may assume that
f : X → S factors as follows:

X
f

��
φ

��
T

f ′ // S

Here φ is a projective semistable curve, and f ′ is a proper surjective morphism
of integral excellent schemes of relative dimension d − 1. Also, at the expense
of altering T further, we may assume that φ has a section s : T → X . As φ is a
semistable curve, we have OT ' φ∗OX . Using the section s and the Leray spectral
sequence, we find an exact sequence

0→ Ri f ′
∗
OT → Ri f∗OX → Ri−1 f ′

∗
R1φ∗OX → 0

that is naturally split by the section s; in fact, this arises by applying Ri f ′
∗

to the
triangle

OT → Rφ∗OX → R1φ∗OX [−1]
+1
→ OT [1],

which is split by the choice of s. Our strategy will be to prove divisibility for
Ri f∗OX by working with the two edge pieces occurring in the exact sequence
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above. In more detail, we apply the inductive hypothesis to choose an alteration
π ′ : T ′ → T such that, with g′ = f ′ ◦ π ′, we have π ′∗(Ri f ′

∗
OT ) ⊂ p(Ri g′

∗
OT ′)

for i > 0. The base change of φ and s along π ′ define for us a diagram

X ′ = X ×T T ′
pr1 //

φ′

��

X
f

��
φ

��
T ′ π ′ //

s′

CC

T
f ′ //

s

AA

S

The commutativity of the preceding diagram gives rise to a morphism of exact
sequences

0 // Ri f ′
∗
OT

//

π ′∗

��

Ri f∗OX

s∗
tt

//

pr∗1
��

Ri−1 f ′
∗
R1φ∗OX

R1 pr∗1
��

// 0

0 // Ri g′
∗
OT ′

// Ri( f ◦ pr1)∗OX ′
//

s′∗
tt

Ri−1g′
∗
R1φ′

∗
OX ′

// 0

compatible with the exhibited splittings. The map φ′ is a semistable curve with
a section s ′. Applying Proposition 2.9 and using Lemma 2.6, we can find a
commutative diagram

X ′′ a //

φ′′

��

X ′ = X ×T T ′
pr1 //

φ′

��

X
f

��
φ

��
T ′′ π ′′ //

s′′

AA

T ′ π ′ //

s′

CC

T
f ′ //

s

AA

S

where π ′′ is an alteration, φ′′ is a semistable curve, a is an alteration, and s ′′ is a
section of φ′′ (compatible with s ′ and s thanks to the commutativity of the picture),
such that a∗R1φ′

∗
OX ′ → R1φ′′

∗
OX ′′ is divisible by p. Setting g′′ = g′ ◦ π ′′ gives a

diagram of exact sequences

0 // Ri f ′
∗
OT

//

π ′∗

��

Ri f∗OX

s∗
tt

//

pr∗1
��

Ri−1 f ′
∗
R1φ∗OX

R1 pr∗1
��

// 0

0 // Ri g′
∗
OT ′

//

π ′′∗

��

Ri( f ◦ pr1)∗OX ′

s′∗
tt

//

a∗

��

Ri−1g′
∗
R1φ′

∗
OX ′

//

R1a∗

��

0

0 // Ri g′′
∗
OT ′′

// Ri( f ◦ pr1 ◦ a)∗OX ′′
//

s′′∗
tt

Ri−1g′′
∗
R1φ′′

∗
OX ′′

// 0
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which is compatible with the exhibited splittings of each sequence; here the
vertical maps on the right are the evident pullbacks induced by pr1 and a,
respectively. As R1a∗ is divisible by p, the image of the right vertical composition
is divisible by p. The image of the left vertical composition is divisible by p by
construction of π ′. By compatibility of the morphism of exact sequences with the
exhibited splittings, the image of the middle vertical composition is also divisible
by p. Replacing X ′′ by an irreducible component dominating X then proves the
claim.

REMARK 2.11. Consider the special case of Theorem 1.2 when the base S has
dimension 61; for example, S could be the spectrum of a discrete valuation
ring. Any alteration of such an S is a finite cover of S, so C0(S) is trivially
satisfied. Proposition 2.10 then already implies that Theorem 1.2 is true for
such S. In fact, tracing through the proof (and using the strong p-divisibility in
Proposition 2.9(3)), one observes that a stronger statement has been shown: for
any proper morphism f : X → S, there is a proper surjective morphism π : Y →
X such that, with g = f ◦ π , the pullback π∗ : τ>1R f∗OX → τ>1Rg∗OY induces
the 0 map on −

⊗L
Z Z/p. Concretely, this means the following: in addition to

making higher cohomology classes p-divisible on passage to alterations, one can
also kill p-torsion classes by alterations. It is this stronger statement that is used
in [Bei12, Bei11, Bhac]. We hope in the future to extend this stronger conclusion
to higher-dimensional base schemes S.

REMARK 2.12. The stronger statement discussed at the end of Remark 2.11
has purely algebraic consequences: it lifts [Bhab, Theorem 1.5] to p-adically
complete noetherian schemes (after a small extra argument). In particular, it
implies that splinters over Zp have rational singularities after inverting p. Such
a statement is interesting from the perspective of the direct summand conjecture
(see [Hoc07]) as there are no known nontrivial restrictions on a splinter in mixed
characteristic (to the best of our knowledge).

2.2. The case of relative dimension 0. In this section we will verify Condition
C0(S) for all excellent schemes S. After unwrapping definitions and some easy
reductions, one reduces to showing the following: given an alteration f : X → S
with S affine and a class α ∈ H i(X,OX ) with i > 0, there exists an alteration
π : Y → X such that p | π∗(α). If α arose as the pullback of a class under a
morphism X → X with X proper over an affine base of dimension dim(S) − 1,
then we may conclude by induction using Proposition 2.10. The proof below will
show that, at the expense of certain technical but manageable modifications, this
method can be pushed through; the basic geometric ingredient is Lemma 2.21.
The main result is the following.
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PROPOSITION 2.13. Condition C0(S) is satisfied by all excellent schemes S.

Our proof of Proposition 2.13 will consist of a series of reductions which
massage S until it becomes a geometrically accessible object (see Lemma 2.19
for the final outcome of these ‘easy’ reductions); these reductions are standard,
especially in arguments involving the h-topology (see [Org06], for example), but
they are included here for completeness and clarity.

WARNING 2.14. For conceptual clarity, we often commit the following abuse of
mathematics in what follows: when proving a statement of the form that Cd(S)
is satisfied for all integers d and a particular scheme S, we ignore the restrictions
on integrality and relative dimension imposed by Condition Cd(S) while making
certain constructions; the reader can check that in each case the statement to be
proven follows from our constructions by taking suitable irreducible components
(see Lemma 2.15 for an example). We strongly believe that this abuse, while
easily fixable, enhances readability.

We first observe that the problem is Zariski local on S.

LEMMA 2.15. Condition Cd(S) is local on an excellent scheme S for the Zariski
topology; that is, if {Ui ↪→ S} is a Zariski open cover of S, then Cd(S) is satisfied
if and only if Cd(Ui) is satisfied for all i .

Proof. We will first show that Cd(S) implies Cd(U ) for any open j : U → S.
By Nagata compactification (see [Con07, Theorem 4.1]), given any alteration
f : X → U , we can find an alteration f : X → S extending f over U . As
j : U → S is flat, we have that j∗Ri f ∗OX = Ri f∗OX . By assumption, we can
find an alteration π : Y → X such that, with g = f ◦ π , we have π∗Ri f ∗OX ⊂

p(Ri g∗OY ). Restricting to U and using flat base change for g produces the desired
result.

Conversely, assume that there exists a cover {Ui ↪→ S} such that Cd(Ui) is true.
Given an alteration f : X → S, define fi : XUi → Ui to be the natural map.
The assumption implies that we can find alterations πi : Yi → XUi such that, with
gi = fi ◦πi , we have π∗i (R

j fi ∗OXUi
) ⊂ p(R j gi ∗OYi ) for each i . By an elementary

closure argument (see [Bhab, Proposition 4.1]), we can find π : Y → X such
that π ×S Ui factors through πi . As taking higher pushforwards commutes with
restricting to open subsets, we see that π∗(R j f∗OX ) ⊂ R j g∗OY is a subsheaf that
is locally inside p(R j g∗OY ). As containments between two subsheaves of a given
sheaf can be detected locally, the claim follows.

https://doi.org/10.1017/fms.2015.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.11


p-divisibility for coherent cohomology 13

Next, we note that the problem is insensitive to certain finite covers.

LEMMA 2.16. Let g : S′→ S be a finite surjective morphism of excellent schemes
such that each generic point of S′ lies over a generic point of S. Then Cd(S) is
satisfied if and only if Cd(S′) is satisfied.

Any finite flat surjection has the property of this lemma.

Proof. By Lemma 2.15, we may assume that S and S′ are affine. Let S :=
⊔

Si

and S′ =
⊔

S′j be the decomposition of S and S′ into irreducible components. The
assumption on g ensures that each S′j dominates some Si via a finite surjective
map, and further that each Si is dominated by some S′j via a finite surjective map.

Now assume that Cd(S′) is satisfied. Fix some proper surjective map f : X →
Si of relative dimension d for some i . Choose some j such that g(S′j) = Si .
Then X ×Si S′j → S′j is a proper surjective map of relative dimension d . By
the assumption, we can find an alteration Y → X ×Si S′j such that the image of
H k(X ×Si S′j ,OX×Si S′j ) in H k(Y,OY ) is divisible by p for k > 0. The composite
Y → X ×Si S′j then does the job for X .

Conversely, assume that Cd(S) is satisfied. Fix some proper surjective map
f : X → S′j of relative dimension d . Choose i such that g(S′j) = Si . Then the
composite X → S′j → Si is a proper surjective map of relative dimension d , so we
can find an alteration Y → X in the category of Si -schemes such that the image
of H k(X,OX ) in H k(Y,OY ) is divisible by p for k > 0. Viewing Y → X as a
morphism of S′j -schemes then solves the problem.

Finally, we show how to étale localize.

LEMMA 2.17. Condition Cd(S) is étale local on S; that is, if g : S′ → S is a
surjective étale morphism, then Cd(S) is satisfied if and only if Cd(S′) is satisfied.

Proof. Assume first that Cd(S) is satisfied. By Lemma 2.15, we may assume that
S and S′ are affine. By Zariski’s main theorem [Gro66, Théorème 8.12.6], we can

factor g as S′
j
→ S′

g
→ S with j a dense open immersion, and g finite surjective.

By density of j , since g is étale, it follows that g carries generic points of S′
to generic points of S. Lemma 2.16 then shows that Cd(S′) is satisfied, whence
Lemma 2.15 shows that Cd(S′) is also satisfied.

For the converse direction, assume that Cd(S′) is satisfied. Using Lemma 2.15,
we may assume that S and S′ are both affine. An observation of Gabber (see
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[Bhaa, Lemma 2.1]) lets us find a diagram⊔
i Ui

//

h
��

T

π

��
S′

g // S

such that π is finite flat and surjective,
⊔

Ui → T forms a Zariski cover, and
h is some map of S-schemes. The commutativity of the diagram forces h to be
quasifinite, while the flatness of π and g ensures that h carries generic points of⊔

i Ui to generic points of S′ (which, in turn, lie over the generic points of S). We

can then factor h as
⊔

i Ui
k
→ U

h
→ S′ with k a dense open immersion, and h a

finite morphism that carries generic points of U to generic points of S′ (but h may
fail to be surjective). The proof of the second half of Lemma 2.16 then shows that
Cd(U ) is satisfied. Lemma 2.15 then shows that Cd(

⊔
i Ui) and Cd(T ) are also

satisfied. This implies that Cd(S) is satisfied by Lemma 2.16.

Having étale localized, we prove an approximation result.

LEMMA 2.18. Condition Cd(S) is satisfied by all excellent schemes S if it is
satisfied by all affine schemes S of finite type over Z.

Proof. Assume that Cd(S) is satisfied for all affine schemes of finite type over Z.
By Lemma 2.15, it is enough to check Cd(S) for a fixed affine excellent S. In fact,
by the very definition of Cd(S), we may assume that S is integral. Fix a proper
surjective map f : X → S of relative dimension d with X integral. Standard
approximation results (see [Sta14, Tag 0A0P]) allow us to write S = lim Si as
an inverse limit of affine schemes of finite type over Z such that f arises as the
inverse limit of a tower { fi : X i → Si} of proper morphisms. By replacing each
X i with the scheme-theoretic closure of the image of X , we may assume that each
X i is integral, and that X → X i is dominant. Applying the same procedure to the
tower {Si} then allows us to realize f : X → S as a limit of a tower { fi : X i → Si}

of proper surjective maps between integral schemes of finite type over Z with Si

affine; here the surjectivity of fi is the consequence of the dominance of X →
S → Si and the properness of fi . If ηi ⊂ Si denotes the pro-open subset defined
by the generic point of each Si , then base change gives a system {Xηi → ηi}whose
limit realizes the generic fibre Xη→ η of f . As the category of finitely presented
η-schemes is the filtered colimit of the category of finitely presented ηi -schemes
(see, for example, [Sta14, Tag 01ZM]), it follows that d := dim(Xη) = dim(Xηi )

for i � 0. In other words, after possibly passing to a cofinal index set, each fi has
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relative dimension d . Now any cohomology class α ∈ H j(X,OX ) arises as the
pullback of some αi ∈ H j(X i ,OX i ) for i � 0, as in the proof of Lemma 2.1. If
j > 0, then, by assumption, there exists an alteration πi : Yi → X i such that π∗i αi

is divisible by p. It follows then that any irreducible component of : Yi ×X i X
dominating X provides the desired alteration.

Next, we localize at p.

LEMMA 2.19. Condition Cd(S) is satisfied by all affine excellent schemes S if it
is satisfied by all affine schemes S of finite type over Z(p).

Proof. Assume that Cd(S) is satisfied by all finite type affine Z(p)-schemes. By
Lemma 2.18, we must check that Cd(S) is satisfied for any affine finite type Z-
scheme S. Clearly we may assume that S is integral. If p is invertible on S, there
is nothing to show. If p = 0 on S, then S is itself a finite type Z(p)-scheme, so
we know the claim. For the remaining case, we may assume that S is Z(p)-flat.
Fix a proper surjective morphism f : X → S of relative dimension d with X
integral, and write S(p) for the localization of S at p, etc. Then f(p) is a proper
surjective morphism of relative dimension d between integral schemes as well (as
the generic point of S comes from S(p)). By assumption, there exists an alteration
π(p) : Y(p) → X(p) of integral schemes such that the image of H i(X(p),OX(p))

is divisible by p in H i(Y(p),OY(p)) for i > 0. Spreading out, there exist an open
U ⊂ S containing S(p) and an alteration πU : YU → XU of integral U -schemes
realizing π(p) on restriction to S(p). By Nagata compactification, we may find an
alteration π : Y → X of integral S-schemes realizing π(p) over S(p). Let g : Y → S
denote the structure map. It remains to check that π∗(Ri f∗OX ) ⊂ pRi g∗OY . This
assertion can be checked locally on S and is thus clear: it is trivially true on
S[1/p], and true by construction on S(p).

Finally, we record the following elementary observation for ease of reference
later.

LEMMA 2.20. Fix a noetherian integral scheme S of dimension 61. Any
alteration f : X → S with X integral is a finite morphism.

Proof. The fibres of f are forced to be finite (as X has dimension 61, and f is
an alteration), so f is finite by Zariski’s main theorem.

We have reduced the proof of Theorem 1.2 to showing Condition C0(S) for
affine schemes S of finite type over Z(p). Given an alteration of such an S, the
subset Z ⊂ S where the alteration is not finite is closed of codimension >2 by
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Lemma 2.20; we will call Z the centre of the alteration. Our strategy for proving
Theorem 1.2 is to construct, at the expense of localizing a little on S, a partial
compactification S ↪→ S with S proper over a lower-dimensional base such that
Z remains closed in S. This last condition ensures that the alteration in question
can be extended to an alteration of S without changing the centre. As the centre
has not changed, the cohomology of the newly created alteration maps onto that
of the older alteration, thereby paving the way for an inductive argument via
Proposition 2.10. The precise properties needed to carry out the above argument
are ensured by the presentation lemma that follows.

LEMMA 2.21. Let B be the spectrum of a discrete valuation ring with a separably
closed residue field. Let Ŝ be a local, flat, and essentially finitely presented B-
scheme of relative dimension >1 that is integral. Given a closed subset Ẑ ⊂ Ŝ of
codimension >2, we can find a diagram of B-schemes

s ∈ Z
iZ //

((

S

��

j // S

π

��

∂S

~~

ioo

W

satisfying the following.

(1) All the schemes in the diagram above are of finite type over B.

(2) S is an integral scheme, iZ is a closed subscheme, s is a closed point, and the
germ of iZ at s agrees with Ẑ ⊂ Ŝ.

(3) i is the inclusion of a Cartier divisor, and j is the open dense complement
of i .

(4) W is an integral affine scheme with dim(W ) = dim(S)− 1.

(5) π is proper, π |S is affine, and both these maps have fibres of equidimension
1.

(6) π |Z and π |∂S are finite. In particular, j (iZ (Z)) is closed in S.

To avoid confusion, we note that the assumption on Ŝ, by definition, implies
that Ŝ → B is a local morphism of local schemes that is obtained by localizing a
finitely presented flat B-scheme at a closed point of the special fibre. In particular,
the closed point s ∈ Ŝ maps to the closed point of B.

Proof. The strategy of the proof is to construct the desired data by first
compactifying Ŝ to a projective B-scheme, constructing a suitable projection

https://doi.org/10.1017/fms.2015.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.11


p-divisibility for coherent cohomology 17

by using a point not on the closure of Ẑ , and then deleting an ample divisor on
the base to get affineness. In fact, if B was a point, then this method yields the
conclusion of the lemma with the weaker assumption that Ẑ ⊂ Ŝ has codimension
>1; the extra constraint on the codimension is necessary to lift this conclusion
from the special fibre in the absence of B-flatness of Ẑ .

We begin by choosing an ad hoc finite type model of Ẑ ↪→ Ŝ over B; that is,
we find a map iY : Y → T and a point y ∈ Y satisfying the following: the map iY

is a closed immersion of finite type affine B-schemes with codimension >2 and
T integral, and the germ of iY at y is the given map Ẑ ↪→ Ŝ; this is possible since,
by assumption, both Ẑ and Ŝ are essentially finitely presented over B. Note that,
since T is integral, the monomorphism Ŝ → T is scheme-theoretically dense.
Next, we choose an ad hoc compactification T ↪→ T over B; that is, T is a
projective flat B-scheme containing T as a dense open subscheme. Choose a B-
ample B-flat divisor ∂T ⊂ T that misses y in the special fibre (and hence in all
of T by properness); this is possible since k is separably closed. We may then
replace T with T − ∂T to assume that T − T is a relatively ample B-flat divisor.
Let Y be the closure of Y in T , and let ∂Y = Y − Y = ∂T ∩ Y be its boundary.
As Y has codimension >2 in T , its closure Y also has codimension >2 in T , and
hence the boundary ∂Y has codimension >3 in T . We will modify T and T to
eventually find the required S and S.

Let d denote the dimension of a fibre of the flat projective morphism T → B.
By construction, this is also the relative dimension of the flat local B-scheme Ŝ.
The next step is to find a finite morphism φ : T → Pd

B such that φ(y) /∈ φ(∂T ).
We find such a map by repeatedly projecting. In slightly more detail, say we
have a finite morphism φ : T → PN

B for some N > d such that φ(y) /∈ φ(∂T ).
Then φ(∂T ) is a closed subscheme of codimension >2. Moreover, by the flatness
of ∂T over B, the same is true in the special fibre PN

k ⊂ PN
B . By basic facts

of projective geometry in the special fibre, we can find a line ` through φ(y)
that does not meet φ(∂T ). By the ampleness of ∂T , this line cannot entirely
be contained in φ(T ). Thus, we can find a point on it that is not contained in
φ(T ). By projecting from this point, we see that we can find a finite morphism
φ′ : T k → PN−1

k such that φ′(y) /∈ φ′(∂T ). So far the discussion has been
regarding the special fibre. However, by choosing a lift of this point to a B-point
(by explicit description of points of projective space) and using the properness
of ∂T to transfer the nonintersection condition from the special fibre to the total
space, this construction can be made over B. Continuing this way, we can find
a finite morphism φ : T → Pd

B with the same property. As φ(∂T ) is now a
B-ample effective Cartier divisor, its complement U ↪→ Pd

B is an open affine
containing φ(y). We may now replace T with φ−1(U ) and Y with Y ∩ φ−1(U )
(this is permissible as y ∈ Y ∩φ−1(U ) ⊂ Y ) to assume that we have produced the
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following: a finite type B-scheme model iY : Y → T of the germ Ẑ → Ŝ for some
point y ∈ Y with T integral, a compactification T ↪→ T with T integral and a flat
projective B-scheme, and a finite morphism φ : T → Pd

B such that T = φ−1(U )
for some open affine U ⊂ Pd

B that is the complement of a B-ample B-flat divisor
H .

Now we project once more to obtain the desired curve fibration. As explained
earlier, the closure Y has codimension >2 in T . Since we do not know that it is
flat over B, the most we can say is that its image φ(Y ) has codimension >1 in
the special fibre Pd

k ⊂ Pd
B . On the other hand, we know that ∂T is a B-flat divisor.

Thus, its image φ(∂T ) also has codimension >1 in the special fibre Pd
k ⊂ Pd

B .
It follows that φ(Y ∪ ∂T ) has codimension >1 in the special fibre Pd

k ⊂ Pd
B .

By choosing a closed point not in this image inside U and lifting to a B-point
as above, we find a B-point p : B → U ⊂ Pd

B whose image does not intersect
φ(Y ∪ ∂T ). Projecting from this point gives rise to the following diagram:

Blφ−1(p)(T )
a //

��

Blφ−1(p)(T )
b //

��

Blp(Pd
B)

c //

��

P(Tp(Pd
B)) ' Pd−1

B

T // T // Pd
B .

The horizontal maps enjoy the following properties: c is a P1-fibration (in
the Zariski topology), b is a finite surjective morphism, and a is an open
immersion. In particular, the composite map cb is a proper morphism with
fibres of equidimension 1. As the map φ : T → Pd was chosen to ensure that
φ−1(U ) = T , the composite map cba can be factored as

Blφ−1(p)(T )→ Blp(U )→ Pd−1
B .

The first map in this composition is finite surjective as φ is so, while the second
map is an affine morphism with fibres of equidimension 1 thanks to Lemma 2.22
below. It follows that the composite map cba is an affine morphism with fibres of
equidimension 1. Lastly, by our choice of p, the map cb restricts to a finite map
on Y and T (here we identify subschemes of T not intersecting φ−1(p) with those
of the blowup). As explained earlier, the boundary ∂Y has codimension >3 in T .
This implies that its special fibre has codimension >2 in the special fibre of T .
Therefore, its image in Pd−1

B has codimension >1. It follows that we can find an
open affine W ↪→ Pd−1

B not meeting the image of φ(∂Y ). Restricting the entire
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picture thus obtained to W , we find a diagram that looks like the following:

y ∈ Y //

++

Blφ−1(p)(T )W
//

''

Blφ−1(p)(T )W

π

��

∂T W
oo

xx
W

Setting s = y, Z = Y , S = Blφ−1(p)(T )W , S = Blφ−1(p)(T )W , and ∂S = ∂T W

implies the claim.

The following elementary fact concerning blowups was used in Lemma 2.21.

LEMMA 2.22. Let B be a scheme, and let π : P → B be a projective bundle.
Let H ↪→ P be an effective Cartier divisor that is B-flat and B-ample, and let
U = P − H. For any point p ∈ U (B), the blowup map Blp(U )→ P(Tp(Pn)) is
an affine morphism with fibres of equidimension 1.

Proof. Let b : Blp(P)→ P be the blowup map, and let π : Blp(P)→ P(Tp(P))
be the morphism defined by projection. It is easy to see that π is a P1-bundle.
As H is disjoint from the centre of the blowup, b∗(H) defines an ample divisor
on the fibres of π . Using the fibre-wise criterion for ampleness (see [Laz04,
Theorem 1.7.8]), one concludes that b∗(H) is π -ample, and hence Blp(U ) =
Blp(P)−b∗(H) is affine over P(Tp(P)). The assertion about the fibres is clear.

REMARK 2.23. The main strategy in the proof of Lemma 2.21 was to first
perform the desired construction over the special fibre, and then lift the
construction to the total space. In particular, one readily checks that the conclusion
of Lemma 2.21 is true verbatim if B is assumed to be the spectrum of a field.

Before proceeding to the proof of Theorem 1.2, we record a cohomological
consequence of certain geometric hypotheses. The hypotheses in question are the
kind ensured by Lemma 2.21, while the consequences are those used in proof of
Theorem 1.2.

PROPOSITION 2.24. Fix a quasicompact quasiseparated scheme X. Let j : X ↪→

X be a dense quasicompact open immersion whose complement ∆ ⊂ X is affine
and the support of a Cartier divisor. Then H i(X ,OX )→ H i(X,OX ) is surjective
for all i > 0.
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Proof. As∆ ⊂ X is the support of a Cartier divisor, the complement j is an affine
map. This implies that

j∗OX ' R j∗OX .

Now consider the exact sequence

0→ OX → j∗OX → Q→ 0

where Q is defined to be the cokernel. As j∗OX ' R j∗OX , the middle term in the
preceding sequence computes H i(X,OX ). By the associated long exact sequence
on cohomology, to show the claim, it suffices to show that H i(X ,Q) = 0 for
i > 0. By construction, we have a presentation

j∗OX = colimn OX (n∆).

Thus, we also have a presentation

Q = colimn OX (n∆)/OX .

This presentation defines a natural increasing filtration F•(Q) with

Fn(Q) = OX (n∆)/OX

for n > 0. The associated graded pieces of this filtration are

grn
F(Q) = OX (n∆)⊗ O∆.

In particular, these pieces are supported on ∆, which is an affine scheme
by assumption. Consequently, these pieces have no higher cohomology. By a
standard devissage argument, the sheaves Fn(Q) have no higher cohomology for
any n. Then Q has no higher cohomology either (as cohomology commutes with
filtered colimits of sheaves on quasicompact quasiseparated schemes; see [Sta14,
Tag 07TA]), establishing the claim.

We now have enough tools to finish proving Theorem 1.2.

Proof of main theorem. Our goal is to show that Condition C0(Ŝ) is satisfied by
an induction on dim(Ŝ). By Lemmas 2.19 and 2.15 and a limit argument, we
may assume that Ŝ is a local integral scheme that is essentially of finite type
over the strict henselization B of Z(p) with a characteristic p residue field at the
closed point. We give the argument in the (harder) case that Ŝ is flat over B; the
remaining case is when Ŝ is an Fp-scheme, and this case follows using the same
argument below and Remark 2.23 (or simply by invoking [Bhab, Theorem 1.5]).
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If dim(Ŝ) = 1, there is nothing to show thanks to Lemma 2.20, as finite
morphisms have no higher cohomology. We may therefore assume that the
relative dimension of Ŝ over B is at least 1, and that C0(T ) is satisfied by all
schemes T of dimension < dim(Ŝ). For such T , Proposition 2.10 then ensures
that Cd(T ) is also satisfied for any d > 0, which will be used crucially in the
proof below (for B-flat T ).

With the assumptions as above, given an alteration f̂ : X̂ → Ŝ with X̂
integral, we want to find an alteration π̂ : Ŷ → X̂ such that π̂∗(H i(X̂ ,OX̂ )) ⊂

p(H i(Ŷ ,OŶ )). After replacing X̂ by a suitable blowup, we may assume that f̂ is
projective. As f̂ is an alteration, one has a closed subset Ẑ ⊂ Ŝ of codimension >2
such that f̂ is finite away from Ẑ . Applying the conclusion of Proposition 2.21,
we can find a diagram

s ∈ Z
iZ //

((

S

��

j // S

π

��

∂S

~~

ioo

W

satisfying the conditions guaranteed by Proposition 2.21. By spreading out f̂ ,
we may choose an open neighbourhood U ⊂ S containing Ŝ, and a projective
alteration fU : XU → U that is finite outside Z ∩ U , and agrees with f̂ over Ŝ.
Applying Zariski’s main theorem (as well as a scheme-theoretic closure trick; see
[Bhab, Proposition 3.1]) to the restriction of XU → U → S over S−Z , we obtain
a finite morphism f ′ : X ′ → S − Z that agrees with fU over U − U ∩ Z . Set
V = (S − Z)∪U ⊂ S to be the displayed open subset. Glueing fU with f ′ gives
a projective alteration f ′′ : X ′′ → V that is finite over S − Z ⊂ V and extends
fU . Finally, we extend f ′′ to some projective alteration f : X → S; this is always
possible, for example, by taking a closure in a projective embedding. Then f is
finite outside Z , and agrees with fU over U , and thus extends f̂ . Let f : X → S
denote the restriction of f to S. We summarize the preceding constructions by the
following diagram:

X ×S Z //

fZ

��

X

f

��

jX // X

f

��

∆ = ∂S ×S X
iXoo

f∂S

��
s ∈ Z

iZ //

((

S

��

j // S

π

��

∂S

xx

ioo

W

,

Here the first row is obtained by base change from the second row via f . In

https://doi.org/10.1017/fms.2015.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.11


B. Bhatt 22

particular, iX is the inclusion of a Cartier divisor. As f is finite away from the
closed set Z which does not meet ∂S, the map f∂S is finite. In particular, the
scheme ∂S ×S X is affine. Applying Proposition 2.24 to the map iX , we find that
H i(X ,OX ) → H i(X,OX ) is surjective for i > 0. Since dim(W ) < dim(S), the
inductive hypothesis and Proposition 2.10 ensure that Condition Cd(W ) is true
for all d . As X → W is proper surjective, we can find an alteration π : Y → X
such that π∗(H i(X ,OX )) ⊂ p(H i(Y ,OY )). It follows that a similar p-divisibility
statement holds for the alteration π : Y → X obtained by restricting π to X ↪→ X .
Lastly, by flat base change, we know that H i(X,OX ) generates H i(X̂ ,OX̂ ) as a
module over Γ (Ŝ,OŜ). Thus, pulling back this alteration along X̂ → X produces
the desired alteration π̂ : Ŷ → X̂ .

REMARK 2.25. One noteworthy feature of the proof of Proposition 2.13 is the
following: while trying to show that C0(S) is satisfied, we use that Cd(S′) is
satisfied for d > 0 and certain affine schemes S′ with dim(S′) < dim(S). We
are allowed to make such arguments thanks to Proposition 2.10 and induction.
Moreover, this phenomenon explains why Proposition 2.10 appears before
Proposition 2.13 in this paper, despite the relevant statements naturally preferring
the opposite order.

REMARK 2.26. Theorem 1.2, while ostensibly being a statement about coherent
cohomology, is actually motivic in that it admits obvious analogues for most
natural cohomology theories such as de Rham cohomology or étale cohomology.
For the former, one can use Theorem 1.2 and the Hodge-to-de Rham spectral
sequence to reduce to proving a p-divisibility statement for H i(X,Ω j

X/S) with
j > 0. Choosing local representatives for differential forms and extracting pth
roots out of the relevant functions can then be shown to solve the problem.
In étale cohomology, there is an even stronger statement: for any noetherian
excellent scheme X , there exist finite covers π : Y → X such that π∗(H i

ét(X,Zp))

⊂ p(H i
ét(Y,Zp)) for any fixed i > 0; this statement follows, for example, from

[Bhaa, Theorem 1.1] using the exact sequences of (continuous p-adic) étale
sheaves

0→ Zp
p
→ Zp → Z/p→ 0.

Alternately, one may simply observe that étale cohomology of torsion
constructible sheaves is effaceable in the category of torsion constructible
sheaves, and that each torsion constructible sheaf is a subsheaf of the pushforward
of a constant sheaf along a finite cover (see [Del77, Section IV.3, Arcata]). We
hope to find finite covers that work for coherent cohomology (see Remark 3.3),
but cannot do so yet.
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REMARK 2.27. The proof of Theorem 1.2 actually shows the following: given a
proper morphism f : X→ S with S excellent, there exists an alteration π : Y → S
such that, with g = π ◦ f , we have the following.

(1) π∗(R1 f∗OX ) ⊂ p(R1g∗OY ).

(2) The map τ>2R f∗OX → τ>2Rg∗OY is divisible by p as a morphism in Dcoh(S).

The reason one has to truncate above 2 and not 1 in the second statement above
is that divisibility by p in a Hom-group imposes torsion conditions not visible
when requiring individual classes to be divisible by p. For instance, the second
conclusion above implies that the p-torsion in Ri f∗OX for i > 2 can be killed
by alterations. We do not know how to prove this for i = 1. The main reason is
that the map in Proposition 2.24 is an isomorphism for i > 1, but only surjective
for i = 1. In the notation of the proof of Theorem 1.2 above, this means that p-
torsion classes H 1(X,OX ) need not lift to p-torsion classes in H 1(X ,OX ). This
last problem, and hence the lacuna discussed in this remark, can be solved by
showing that functions in H 0(X,OX/p) on the special fibre of X lift to functions
on all of X for any scheme X that is proper over an affine, provided we allow
passage to alterations.

We have checked the validity of Cd(S) for all noetherian S and integers d . This
implies the following.

COROLLARY 2.28. Let f : X → S be a proper morphism of noetherian schemes.
Then there exists an alteration π : Y → X such that, with g = f ◦ π , we have
π∗(Ri f∗OX ) ⊂ p(Ri g∗OY ) for each i > 0.

Next, we give an example showing that Theorem 1.2 fails as soon as the
properness of f is relaxed.

EXAMPLE 2.29. Let k be a characteristic p field, and let X = Pn
k − {x} for some

x ∈ Pn(k) and n > 2. Then H n−1(X,OX ) ' H n
x (Pn

k ,OPn
k
) is nonzero. Moreover,

for any proper surjective morphism π : Y → X , the pullback OX → Rπ∗OY is
a direct summand (by [Bhab, Corollary 8.10]), so H n−1(X,OX )→ H n−1(Y,OY )

is also a direct summand. In particular, nonzero classes in H n−1(X,OX ) cannot
be killed by proper covers. Replacing X with the obvious mixed characteristic
variant X ′ gives an example of a Zp-flat scheme X ′ with nonzero higher coherent
cohomology that cannot be made divisible by p on passage to proper covers:
the annihilation result for X ′ implies that the result for X as H n−1(X ′,OX ′) →

H n−1(X,OX ) is surjective by explicit calculation.
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We end with an example showing that one cannot replace ‘alteration’ with
‘modification’ in Theorem 1.2, even when f is itself a modification.

EXAMPLE 2.30. Let S ⊂ A3 be the affine cone over an elliptic curve E ⊂ P2
k

over some perfect field k of characteristic p. Let f : X → S be the blowup of S
at the origin s ∈ S, so X is smooth, and f is an isomorphism over U := S − {s}.
One can compute easily that H 1(X,OX ) ' H 1(E,OE) is a one-dimensional k-
vector space. We will show the following: for any modification π : Y → X , the
pullback H 1(X,OX )→ H 1(Y,OY ) is injective. This shows that one must allow
genuine alterations in Theorem 1.2. To see the previous claim, it is enough to
show that OX → Rπ∗OY is a split monomorphism. By resolution of singularities
for surfaces (see [Lip78]), there exists a further modification π ′ : Z → Y such
that the composite ψ : Z → X is a blowup along a smooth centre. In particular,
one computes OX ' Rψ∗OZ via the natural pullback. The claim now follows by
factoring this pullback as OX → Rπ∗OY → Rψ∗OZ .

3. A stronger result in positive characteristic

Our goal in this section is to explain an alternative proof of the [Bhab,
Theorem 1.5] (the main result of [Bhab]) using Theorem 1.2. We first recall the
following statement.

THEOREM 3.1. Let f : X → S be a proper morphism of noetherian Fp-schemes.
Then there exists a finite surjective map π : Y → X such that, with g = f ◦ π ,
the pullback π∗ : τ>1R f∗OX → τ>1Rg∗OY is 0.

Applying Theorem 1.2 in positive characteristic, a priori, only allows us to
kill cohomology on passage to proper covers. The point of the proof below,
therefore, is that annihilation by proper covers implies annihilation by finite
covers for coherent cohomology; see [Bhaa, Section 6] for an example with étale
cohomology with coefficients in an abelian variety where such an implication
fails.

Proof of Theorem 3.1. We first explain the idea informally. Using Corollary 2.28,
one finds proper surjective maps Y ′ → X and Y ′′ → Y ′ annihilating the higher
coherent cohomology of X → S and Y ′ → X , respectively; then one simply
checks that the Stein factorization of Y ′′→ X does the job.

In more detail, by repeatedly applying Corollary 2.28 and using elementary
facts about derived categories (see [Bhab, Lemma 3.2]), we may find a proper
surjective map π ′ : Y ′→ X such that, with g′ = f ◦π ′, the pullback τ>1R f∗OX →
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τ>1Rg′
∗
O′Y is 0. Applying the same reasoning now to the map π ′ : Y ′ → X , we

find a map π [ : Y ′′→ Y ′ such that, with π ′′ = π [ ◦π ′, we have that τ>1Rπ ′
∗
OY →

τ>1Rπ ′′
∗
OY ′′ is 0. The picture obtained thus far is

Y ′′ π [ //

π ′′

  

Y ′

π ′

��

g′

��
X

f // S

The diagram restricted to X gives rise to the following commutative diagram of
exact triangles in Dcoh(X):

OX

��

OX

��

// 0 //

��

OX [1]

��
π ′
∗
OY ′

//

a

��

Rπ ′
∗
OY ′

//

b
��

s

zz

τ>1Rπ ′
∗
OY ′

//

c=0
��

π ′
∗
OY ′[1]

a[1]
��

π ′′
∗
OY ′′

// Rπ ′′
∗
OY ′′

// τ>1Rπ ′′
∗
OY ′′

// π ′′
∗
OY ′′[1]

Here the vertical arrows are the natural pullback maps, and the dotted arrow s
is a chosen lifting of b guaranteed by the condition c = 0 (which is true by
construction). Applying R f∗ to the above diagram, we find a factorization:

R f∗OX
h //

d

((

R f∗(π ′′∗OY ′′)

R( f ◦ π ′)∗OY ′ = Rg′
∗
OY ′

e
55

The map d induces the 0 map on τ>1 by construction. It follows that the same
is true for the map h. On the other hand, the sheaf π ′′

∗
OY ′′ is a coherent sheaf of

algebras on X . Hence, it corresponds to a finite morphism π : Y → X . In fact,
π is simply the Stein factorization of π ′′. In particular, π is surjective. It then
follows that π : Y → X is a finite surjective morphism such that, with g = f ◦π ,
the induced map τ>1R f∗OX → τ>1Rg∗OY is 0, as desired.

REMARK 3.2. There is an alternative and more conceptual explanation of the
preceding reduction from proper covers to finite covers in the case of H 1. Namely,
let α ∈ H 1(X,OX ) be a cohomology class, and let f : Y → X be a proper
surjective map such that f ∗α = 0. We may represent α as a Ga-torsor T → X .
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The assumption on Y then says that there is an X -map Y → T . By the defining
property of the Stein factorization Y → Y ′′ → X , the map Y → T factors as
a map Y ′′ → T ; that is, the pullback of T (or, equivalently α) along the finite
surjective map Y ′′ → X is the trivial torsor, as wanted. The key cohomological
idea underlying this argument is that the pullback H 1(Y ′′,OY ′′)→ H 1(Y,OY ) is
injective. This injectivity fails for higher cohomological degree, so one cannot
argue similarly in all degrees.

REMARK 3.3. Assume for a moment that the conclusion of Theorem 1.2 can
be lifted to the derived category as discussed in Remark 2.11; that is, we can
kill p-torsion in higher coherent cohomology by passage to alterations. Then the
argument given in the proof of Theorem 3.1 applies directly to show that, in fact,
one can make cohomology p-divisible (in the derived sense) by passage to finite
covers. In particular, we can then replace ‘alteration’ with ‘finite surjective map’
in the statement of Theorem 1.2. We have checked this consequence in a few
nontrivial examples (like the blowup of an elliptic two-dimensional singularity
over Zp), and we hope that it is a reasonable expectation in general.
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Marie SGA 4 1

2 , Lecture Notes in Mathematics, 569 (Springer, Berlin, 1977), Avec la
collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier.

[DW05] C. Deninger and A. Werner, ‘Vector bundles on p-adic curves and parallel transport’,
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