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ONE-DIMENSIONAL SUBGROUPS AND CONNECTED COMPONENTS
IN NON-ABELIAN p-ADIC DEFINABLE GROUPS

WILLIAM JOHNSON AND NINGYUAN YAO

Abstract. We generalize two of our previous results on abelian definable groups in p-adically closed
fields [12, 13] to the non-abelian case. First, we show that if G is a definable group that is not definably
compact, then G has a one-dimensional definable subgroup which is not definably compact. This is a p-adic
analogue of the Peterzil–Steinhorn theorem for o-minimal theories [16]. Second, we show that if G is a
group definable over the standard model Qp , thenG0 = G00. As an application, definably amenable groups
over Qp are open subgroups of algebraic groups, up to finite factors. We also prove that G0 = G00 when
G is a definable subgroup of a linear algebraic group, over any model.

§1. Introduction. This paper continues our earlier work [12, 13] on definable
groups in the theory pCF of p-adically closed fields. We prove two main results. The
first is as follows:

Theorem 1.1. Let G be a definable group in a p-adically closed field. If G is not
definably compact, then G contains a one-dimensional definable subgroup H which is
not definably compact.

See Sections 2.1 and 2.2 for definitions of the relevant terms. The analogous
statement for definable groups in o-minimal structures is the classic Peterzil–
Steinhorn theorem [16]. The abelian case of Theorem 1.1 was the main result of [12].

Our second main result concerns the model-theoretic connected components G0

and G00. Recall that if G is a definable group in a monster model of an NIP theory
such as pCF, then the collection of definable (resp. type-definable) subgroups of finite
(resp. bounded) index is bounded, and the intersection is denoted G0 (resp. G00)
[22, Section 8.1]. We always have G00 ⊆ G0, and the inclusion can be strict. For
example, if G is the circle group in RCF, then G0 = G but G00 is an infinitesimal
neighborhood of the identity element. Our second main theorem shows that this
does not happen for groups definable over Qp:

Theorem 1.2. Let K be a highly saturated elementary extension of Qp and let G
be a Qp-definable group in K. Then G0 = G00.

We previously proved the abelian case in [13, Theorem 4.2]. The main goal of the
current note, then, is to deal with the non-abelian cases of Theorems 1.1 and 1.2.

In the course of proving Theorem 1.2, we need to prove the following variant,
which is interesting in its own right:
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2 WILLIAM JOHNSON AND NINGYUAN YAO

Theorem 1.3. Let K be a highly saturated p-adically closed field, let G be a linear
algebraic group over K, and letH ⊆ G(K) be a definable subgroup. ThenH 0 = H 00.

The assumption that G is a linear algebraic group is essential; Onshuus and Pillay
show that E(K)0 �= E(K)00 for certain elliptic curves [15, Proposition 3.7].

As in [13], Theorem 1.2 implies the following weak classification of definably
amenable groups over Qp:

Theorem 1.4. Let G be a definably amenable group defined in Qp. There is a finite
index definable subgroup E ⊆ G and a finite normal subgroup F � E such that the
quotient E/F is isomorphic to an open subgroup of an algebraic group over Qp.

Remark 1.5. Tracing through the proofs of Theorems 1.2 and 1.3, one can see
that in p-adically closed fields, instances of G0 �= G00 must be built out of primitive
instances G for which (1) G is abelian, (2) G is not Qp-definable, and (3) G is not a
definable subgroup of a linear algebraic group. These constraints might be strong
enough that one could classify all such groups, perhaps using the techniques of [1].
This would lead to a better understanding of the structure of G/G00 for general
definable groups G in pCF.

Remark 1.6. The term “p-adically closed field” is often used for the more general
class of fields elementarily equivalent to finite extensionsK/Qp. All of our theorems
generalize to this broader context. For simplicity we will only consider the case of
Th(Qp). In most cases, the proofs generalize with minimal changes. We leave the
details as an exercise to the reader. However, in Section 5, some of the intermediate
lemmas fail to generalize, as explained in Remark 5.1. Nevertheless, the main
theorems do successfully generalize, for reasons explained in Remark 5.14.

1.1. Notation and conventions. Let L be a first-order language and M be an
L-structure. The letters x, y, z will denote finite tuples of variables, and a, b, c will
denote finite tuples from M. For a subset A of M, LA is the language obtained from
L by adjoining constants for elements of A. For an LM -formula φ(x), φ(M ) denotes
the definable subset of M |x| defined by φ. A set X is definable in M if there is an
LM -formula φ(x) such that X = φ(M ). If M ≺ N , and X ⊆Mn is defined by a
formula � with parameters from M, then X (N ) will denote the definable set �(N ).
We will distinguish between definable and interpretable in the current paper.

1.2. Outline. In Section 2, we review the notions of definable compactness,
p-adic definable groups, and p-adic algebraic groups, as well as some useful tools.
In Section 3, we prove Theorem 1.1, the p-adic Peterzil–Steinhorn theorem. In
Section 4, we collect some useful information on compact Hausdorff groups and
apply it to the groups G/G00. Finally, in Section 5 we use this machinery to prove
Theorems 1.2 and 1.3.

§2. Preliminaries.

2.1. Definable compactness. We recall some notions from [9]. Let M be an
arbitrary structure. A definable topology on a definable set X ⊆Mn is a topology
with a (uniformly) definable basis of opens. A definable topological space is a
definable set with a definable topology. A definable topological space X is definably
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ONE-DIMENSIONAL SUBGROUPS AND CONNECTED COMPONENTS 3

compact if for any definable family F = {Yt | t ∈ T} of non-empty closed sets
Yt ⊆ X , if F is downwards directed, then

⋂
F �= ∅. A definable subset D ⊆ X is

definably compact if it is definably compact as a subspace.

Fact 2.1 [9, Section 3.1]. 1. If X is a compact definable topological space, then
X is definably compact.

2. If f : X → Y is definable and continuous, and X is definably compact, then the
image f(X ) ⊆ Y is definably compact.

3. If X is definably compact and Y ⊆ X is closed and definable, then Y is definably
compact.

4. If X is Hausdorff andY ⊆ X is definable and definably compact, then Y is closed.
5. If X1, X2 are definably compact spaces, then X1 × X2 is definably compact.
6. If X is a definable topological space and Y1, Y2 ⊆ X are definably compact, then
Y1 ∪ Y2 is definably compact.

Remark 2.2. Suppose X is a definable topological space in a structure M, and
N 	M . Then X (N ) is naturally a definable topological space in the structure N,
andX (N ) is definably compact if and only if X is definably compact. In other words,
definable compactness is invariant in elementary extensions.

2.2. pCF and definable groups. Let p be a prime and Qp the field of p-adic
numbers. We call the complete theory of Qp, in the language of rings, the theory
of p-adically closed fields, written pCF. For any K |= pCF, O(K) will denote the
valuation ring and ΓK will denote the value group, which is an elementary extension
of (Z,+, <). Let v : K → ΓK ∪ {∞} be the valuation map and

B(a, α) = {x ∈ Qp | v(x – a) ≥ α}

for a ∈ K and α ∈ ΓK ∪ {∞}. Then K is topological field with basis given by the
sets B(a, α). The p-adic field Qp is locally compact. We callX ⊆ K bounded if there
is α ∈ ΓK such that X is a subset of some n-dimensional ball B(0, α)n.

Fact 2.3 [12, Lemmas 2.4 and 2.5]. Let X be a definable subset of Kn. Then X is
definably compact iff X is closed and bounded.

An n-dimensional definable Ck-manifold over K is a Hausdorff definable
topological space X with a finite covering by open sets each homeomorphic to
an open definable subset of Kn with transition maps definable and Ck .

By a definable group over K, we mean a definable set with a definable group
operation. By adapting the methods of [17] one sees that for any group G definable
in K and for any k < �, G can be definably equipped with the structure of a definable
Ck-manifold in K with respect to which the group structure is Ck . Moreover, this
Ck-manifold structure is unique. We will always use this manifold structure when
making topological statements about G. For example, G is “definably compact” if
it is definably compact with respect to this Ck-manifold structure.

As observed in Proposition 2.1 of [8], p-adically closed fields are geometric fields,
in the sense that (1) they have uniform finiteness and (2) model-theoretic algebraic
closure agrees with field-theoretic algebraic closure:

a ∈ acl(F ) ⇐⇒ a ∈ F alg.
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4 WILLIAM JOHNSON AND NINGYUAN YAO

Consequently, there is a sensible dimension theory for definable sets. Assuming
X ⊆ Kn is definable over a set A, then the dimension dim(X ) can be described
as the maximum of dim(ā/A) as ā ranges over points of X (N ), where N is an
|A|+-saturated elementary extension of K. The dimension dim(X ) coincides with
the algebro-geometric dimension of the Zariski closure of X.

2.3. Algebraic groups. Let K be a p-adically closed field and L be an algebraically
closed field containing K. Let G be an algebraic group definable in L, with parameters
from K, which means that the variety structure as well as the group structure are
given by data over K (see [18] for more details). Then G and its group operation are
defined by quantifier-free formulas over K in the language of rings. The K-points
G(K) of the algebraic group G is of course a definable group in K. By a “definable
subgroup of an algebraic group,” we mean a definable subgroup of G(K) for some
algebraic group G.

2.4. Centralizer-connected groups. Let (G, ·) be a definable group in a p-adically
closed field K. The following definition is standard:

Definition 2.4. G is centralizer-connected if there is no a ∈ G such that the
centralizer ZG(a) is a proper subgroup of G of finite index.

The proofs of the next two theorems are variants of the proof of [19,
Proposition 2.3].

Theorem 2.5. Let G ′ be the intersection of all finite-index centralizers in G. Then
G ′ is a definable subgroup of finite index in G. Moreover, G ′ is centralizer-connected.

Proof. Recall that G acts on itself via conjugation, ZG(a) is the stabilizer of a,
and the orbit of a is the conjugacy class aG . Thus the index of ZG(a) in G is the size
of aG , and ZG(a) has finite index if and only if aG is finite. The theory of p-adically
closed fields has uniform finiteness, so there is some n such that

|aG | <∞ =⇒ |aG | ≤ n
for every a ∈ G . Equivalently,

|G : ZG(a)| <∞ =⇒ |G : ZG(a)| ≤ n.
In an NIP theory such as pCF, if G is a definable group and φ(x, y) is a formula and
n is an integer, then the family

{H : H is a subgroup of G,

H is defined by φ(x, b) for some b,

and |G : H | ≤ n}
is finite.1 Consequently, once we have a uniform bound n on the index of finite-index
centralizers, it follows that there are only finitely many finite-index centralizers.
Thus, the group G ′ =

⋂
{ZG(a) : a ∈ G, |G : ZG(a)| <∞} is definable and has

finite index.

1The intersection of this family has finite index by the Baldwin–Saxl theorem for NIP theories [22,
Theorem 8.3 and the following discussion]. Therefore the family is finite.
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ONE-DIMENSIONAL SUBGROUPS AND CONNECTED COMPONENTS 5

Next, suppose thatG ′ fails to be centralizer-connected, witnessed by some element
a ∈ G ′ such that

1 < |G ′ : ZG ′(a)| <∞.
Then ZG ′(a) has finite index in G ′, which has finite index in G. As ZG(a) contains
ZG ′(a), we see that ZG(a) also has finite index in G. Then G ′ ⊆ ZG(a) by
choice of G ′, implying that every element of G ′ commutes with a. This makes
ZG ′(a) = G ′. �

Theorem 2.6. Suppose (G, ·) is centralizer-connected and non-abelian.
1. dim(ZG(a)) < dim(G) for every a ∈ G \ Z(G).
2. dim(Z(G)) < dim(G).

Proof. 1. There is an interpretable bijection between the conjugacy class aG

and the set of cosets G/ZG(a). By dimension theory,

dim(G) = dim(ZG(a)) + dim(aG).

Suppose that dim(ZG(a)) = dim(G) for the sake of contradiction. Then
dim(aG) = 0, implying that aG is finite and ZG(a) has finite index in G. As G
is centralizer-connected, ZG(a) = G . But then a ∈ Z(G).

2. Take any a ∈ G \ Z(G). Then Z(G) ⊆ ZG(a), so dim(Z(G)) ≤ dim(ZG(a))
< dim(G). �

We will also need the following related facts from [19]:

Fact 2.7. Let G be a group definable in K. If G has a commutative open
neighborhood of the identity, then G is commutative-by-finite.

Fact 2.8. Let G be a group definable in K. If dim(G) = 1, then G is commutative-
by-finite.

2.5. “Affine” groups and the adjoint action. Let K be a p-adically closed field. Let
G be a group definable in K of dimension n. For g ∈ G the map Inn(g) : x �→ gxg–1

is a Ck automorphism of G and thus has a differential d (Inn(g))1 at the identity
1 ∈ G . The differential d (Inn(g))1 is a linear map on the tangent spaceT1G → T1G .
The map Ad : g �→ d (Inn(g))idG is a definable group homomorphism from G to
GL(T1G), called the adjoint representation of G.

Theorem 2.9. Suppose Ad : G → GL(T1G) is trivial.
1. There is a commutative open neighborhood U of 1 ∈ G .
2. G is commutative-by-finite.

Proof. By Fact 2.7, it suffices to prove part (1). The statement of (1) can be
expressed via infinitely-many first-order sentences, so we may assume thatK = Qp.
Then G is a p-adic Lie group. By [21, Corollary 18.18], it suffices to show that the
Lie algebra of G is abelian, i.e., trivial.2 That is, we must show that [s, t] = 0 for
s, t ∈ Lie(G).

2If Lie(G) is trivial, then Lie(G) ∼= Lie(Qnp), so [21, Corollary 18.18] gives isomorphic open subgroups
of U1 ⊆ G and U2 ⊆ Qnp . The isomorphism U1 ∼= U2 shows that U1 is abelian.
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6 WILLIAM JOHNSON AND NINGYUAN YAO

The correct way to see this is to apply the functor Lie(–) from Lie groups to
Lie algebras to the morphism Ad : G → GL(T1G). The result is known to be the
adjoint representation

ad : Lie(G) → gl(Lie(G))

ad(s) = [s, –]

(though we had trouble finding a reference for this fact in the p-adic Lie group
setting). The triviality of Ad : G → GL(T1G) implies triviality of ad(–), which
means that [s, t] = 0 for any s and t.

Here is a different proof. The fact that G acts trivially on the tangent space implies
that any vector s ∈ T1G extends uniquely to a vector field �s on G that is both
left and right invariant. Indeed, if �g and �g denote left and right multiplication by
g ∈ G , then �–1

g ◦ �g fixes s by triviality of the adjoint representation Ad(–), and so
�g(s) = �g(s).

The Lie algebra structure on T1G is induced by the Lie algebra structure on
right-invariant vector fields:

�[s,t] = [�s , �t ]

(see [21, p. 100, Definition]). However, a left-invariant vector field �1 commutes
with a right-invariant vector field �2, by an easy calculation related to the fact that
the action of G on the left commutes with the action of G on the right. Since �s
and �t are both left-invariant and right-invariant, they commute. Therefore, the Lie
algebra of G is abelian. �

Recall that an algebraic group G is said to be “linear” if it is an algebraic subgroup
of GLn for some n. Analogously,

Definition 2.10. A definable group G is affine if G is a definable subgroup of
GLn(K) for some n.

Perhaps “linear” would have been a better term than “affine”, but it seemed helpful
to use separate terminology for the two concepts—one is a property of algebraic
groups and one is a property of definable groups. At any rate, the two concepts are
related as follows:

1. If H is a linear algebraic group, then any definable subgroup G ⊆ H (K) is an
affine definable group. In other words, affine definable groups are exactly the
definable subgroups of linear algebraic groups.

2. If G ⊆ GLn(K) is an affine definable group, then the Zariski closure of G in
GLn is a linear algebraic group.

Note that Theorem 1.3 is a statement about affine definable groups.

Lemma 2.11. If G is a definable group in K, then there is a definable short exact
sequence of K-definable groups

1 → A→ G 	→ H → 1,

where A is commutative-by-finite, and H is an affine group.
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ONE-DIMENSIONAL SUBGROUPS AND CONNECTED COMPONENTS 7

Proof. Consider the adjoint representation Ad : G → GL(T1G) of G. Let
	 = Ad,A = ker(Ad), andH = im(Ad). Note that the adjoint action of A is trivial,
and so A is commutative-by-finite by Theorem 2.9. �

2.6. Definable compactness in extensions and quotients. Let G be a definable group
in a p-adically closed field K, and let H be a definable subgroup. As noted above,
G and H have the structure of definable manifolds, making them into topological
groups.

Fact 2.12 [11, Section 5.4]. The inclusion of H into G is a closed embedding, and
a clopen embedding if dim(H ) = dim(G).

In particular, if G is a definable group and H is a definable subgroup of the same
dimension, then H is clopen as a subset of G.

Corollary 2.13. If H has finite index in G, then H is definably compact if and only
if G is definably compact.

Proof. The groups H and G have the same dimension, so H is a clopen subgroup
of G. Then G is homeomorphic to the disjoint union of finitely many copies of H. �

Moving beyond the finite-index case, regard the interpretable set G/H as a
topological space using the quotient topology. By the argument of [13, Proposition
5.1], the continuous map G → G/H is an open map and the quotient topology is
definable—or rather, interpretable. Consequently, it makes sense to say that G/H is
or isn’t definably compact.

Theorem 2.14. The group G is definably compact if and only if H and G/H are
definably compact.

Proof. First suppose G is definably compact. By Fact 2.12, H is a closed subspace
of G, and so H is definably compact. The continuous surjection G → G/H shows
that G/H is definably compact.

Conversely, suppose that H and G/H are definably compact. By Proposition 2.8
in [12], there is a definable family of sets {U
}
∈Γ such that (1) each U
 is open and
definably compact, (2) the family is increasing in the sense that


 ≤ 
 ′ =⇒ U
 ⊆ U
′ ,
and (3) G =

⋃

∈ΓU
 . Let f : G → G/H be the quotient map. Because f is a

continuous open map, each set f(U
) is open and definably compact. By definable
compactness of G/H , there is some 
 such that f(U
) = G/H , implying that G ⊆
U
 ·H . Then G is the image of the definably compact space U
 ×H under the
continuous map (x, y) �→ x · y, so G is definably compact. �

A nearly identical proof shows the following.

Theorem 2.15. If K = Qp, then the group G is compact if and only if H and G/H
are compact.

In fact, Theorem 2.15 follows from Theorem 2.14, because definable compactness
agrees with compactness for interpretable topological spaces in Qp [2, Theorem
8.15], but this is overkill.
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8 WILLIAM JOHNSON AND NINGYUAN YAO

Fact 2.16 [11, Proposition 5.19]. In the case where H is a normal subgroup and
the quotient G/H is definable (rather than interpretable), the quotient topology on
G/H agrees with the definable manifold topology as a definable group.

Corollary 2.17. Let 1 → A→ B → C → 1 be a short exact sequence of definable
groups. Regard A,B,C as definable manifolds.

1. The maps A→ B and B → C are continuous.
2. The map A→ B is a closed embedding.
3. The map B → C is an open map.
4. B is definably compact if and only if A and C are definably compact.

§3. The p-adic Peterzil–Steinhorn theorem. In this section, we will prove the
following theorem.

Theorem 3.1. Let G be a group definable in a p-adically closed field K. If G is not
definably compact, then G contains a one-dimensional subgroup which is not definably
compact.

Let G be a group definable in K. Say that G is nearly abelian if there is a definably
compact definable normal subgroup O ⊆ G with G/O abelian. The following was
proved in [12]:

Fact 3.2. If G is not definably compact and G is nearly abelian, then there is a
one-dimensional definable subgroup H ⊆ G that is not definably compact.

3.1. Reduction to the standard model Qp. We first show that Theorem 3.1 is
independent of K, by finding an equivalent condition which depends only on Th(K).

Definition 3.3. Let (G, ·) be a definable group in a p-adically closed field K.

1. (G, ·) is a counterexample if G is not definably compact, but every one-
dimensional definable subgroup of G is definably compact. In other words,
G is a counterexample to Theorem 3.1.

2. (G, ·) is a special counterexample if G is not definably compact, but the center
Z(G) is definably compact, and the centralizerZG(a) is definably compact for
any a ∈ G \ Z(G).

Lemma 3.4. If G is a special counterexample, then G is a counterexample.

Proof. Otherwise, there is a one-dimensional definably non-compact subgroup
H ⊆ G . By Fact 2.8, there is a finite-index abelian definable subgroupH ′ ⊆ H . Then
H ′ is not definably compact (Corollary 2.13). Replacing H withH ′, we may assume
that H is abelian. By Corollary 2.17(4), H cannot be contained in any definably
compact definable subgroups of G. In particular, H �⊆ Z(G). Take a ∈ H \ Z(G).
Then H �⊆ ZG(a), which means that H is non-abelian, a contradiction. �

Lemma 3.5. If G is a counterexample and H is a definable subgroup, then H is
definably compact or H is a counterexample.

Proof. Any one-dimensional definably non-compact subgroup of H would be a
one-dimensional definably non-compact subgroup of G. �
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Lemma 3.6. Let G be a definable group and H be a definable subgroup of finite
index. Then H is a counterexample if and only if G is a counterexample.

Proof. By Corollary 2.13, G is definably compact if and only if H is. Suppose
neither group is definably compact. If C is a one-dimensional definably non-compact
subgroup of H, then C is also a one-dimensional definably non-compact subgroup
of G. Conversely, if C is a one-dimensional definably non-compact subgroup of G,
then C ∩H is a one-dimensional subgroup of H which is definably non-compact
because it has finite index in C, using Corollary 2.13 again. �

Theorem 3.7. For a fixed p-adically closed field K, the following are equivalent:

1. There is a counterexample G.
2. There is a special counterexample G.

Proof. (2) =⇒ (1) is Lemma 3.4. For (1) =⇒ (2), suppose there is at least one
counterexample. Take a counterexample G minimizing dim(G). By Theorem 2.5
and Lemma 3.6, we may replace G with a finite index subgroup and assume that G
is centralizer-connected. If G is abelian, then G is not a counterexample, by Fact 3.2.
Therefore G is non-abelian, and Theorem 2.6 applies, showing that

dim(Z(G)) < dim(G)

dim(ZG(a)) < dim(G) for a ∈ G \ Z(G).

Then Z(G) and ZG(a) are not counterexamples, by choice of G. By Lemma 3.5,
they must be definably compact, making G be a special counterexample. �

Remark 3.8. Let {Gt}t∈X be a definable family of definable groups.

1. The set {t ∈ X : Gt is definably compact} is definable [11, Theorem 6.6].
2. The set {t ∈ X : Gt is a special counterexample} is definable. This follows

almost immediately from the previous point.

Consequently, if K ≡ Qp, then there is a special counterexample in K if and only
if there is a special counterexample in Qp.3 By Theorem 3.7, K has a counterexample
if and only if Qp has a counterexample. Therefore, in Theorem 3.1, we may assume
that K = Qp.

3.2. The case of Qp. Now assume that K is Qp. We prove Theorem 3.1 by
induction on the dimension of G. The assumption that K = Qp will only be used in
the proof of Lemma 3.13.

Say that a definable group G is good if it is not a counterexample to Theorem 3.1,
meaning that either G is definably compact, or G has a one-dimensional definably
non-compact subgroup.

Lemma 3.9. Suppose that 1 → A→ B → C → 1 is a short exact sequence of
definable groups, and A and C are good. Then B is good.

3To see this, embed K and Qp both into a highly saturated monster model K. If G is a special
counterexample in K, it sits inside a 0-definable family {Gt}t∈X of definable groups. The set {t ∈
X : Gt is a special counterexample} is definable and Aut(K)-invariant, hence 0-definable. Then it must
contain a Qp-definable point by Tarski–Vaught, and so there is a special counterexample over Qp . The
other direction is similar.
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Proof. If B is definably compact, there is nothing to prove. Suppose B is
definably non-compact. If A is definably non-compact, it has a one-dimensional
definably non-compact subgroup X, which shows that B is good. Otherwise, A
is definably compact. Then C is definably non-compact by Corollary 2.17. As C
is good, there is a one-dimensional definably non-compact subgroup X ⊆ C . By
Fact 2.8, we may replace X with a finite index subgroup, and assume that X is
abelian. Let X ∗ ⊆ B be the preimage of X under B → C . The short exact sequence
1 → A→ X ∗ → X → 1 shows that X ∗ is definably non-compact (by Corollary
2.17) and nearly abelian (as X is abelian and A is definably compact). By the nearly
abelian case (Fact 3.2),X ∗ has a one-dimensional definably non-compact subgroup,
which shows that B is good. �

Lemma 3.10. Suppose that G is a definable group contained in a solvable linear
algebraic group B(Qp). Then G is good: if G is non-compact, then G has a one-
dimensional definable subgroup which is not definably compact.

Proof. Proceed by induction on the solvable length of B, the length of the derived
series. If the derived length is ≤ 1, then B and G are abelian, and G is good by the
abelian case (Fact 3.2). Otherwise, there is a normal algebraic subgroup B1 ⊆ B
such that the algebraic groups C := B/B1 and B1 have lower solvable length. Let
f : G → C (Qp) be the composition

G ↪→ B(Qp) → C (Qp).

The kernel is G ∩ B1(Qp), which is good by induction. The image is a definable
subgroup of C (Qp), which is good by induction. By Lemma 3.9, G is good. �

Recall from Definition 2.10 that a definable group is affine if it is a subgroup of
some linear algebraic group G(Qp). Lemma 3.10 shows that certain affine groups
are good, and we next generalize this to all affine groups. But first, we need a lemma.

Lemma 3.11. Let D, H and A be topological groups, with H an open subgroup of D,
and A a subgroup of D.

1. In the quotient topology on D/A, the subset H/(A ∩H ) is clopen.
2. The quotient topology onH/(A ∩H ) as a quotient of H agrees with the subspace

topology as a subspace of D/A.
3. If the quotient topology on D/A is compact, then the quotient topology on
H/(A ∩H ) is compact.

Proof. 1. Note that D acts on D/A on the left, and the subset H/(A ∩H ) is
{hA : h ∈ H}, which is the H-orbit of 1A ∈ D/A. It suffices to show that every
H-orbit is open, which implies then that every H-orbit is closed.
Let 	 : D → D/A be the quotient map 	(x) = xA. For any d ∈ D, the
H-orbit ofdA∈D/A is {hdA : h ∈H}, whose preimage under	 is {hda : h ∈H,
a ∈ A} = HdA. This set is open, because it is a union of right-translates of
the open subgroup H. By definition of the quotient topology, {hdA : h ∈ H}
is open in D/A.

2. Let S be a subset ofH/(A ∩H ). LetQ = {h ∈ H : 	(x) ∈ S}. Then S is open
in the quotient topology if and only if Q is open in H or equivalently in D. As
H/(A ∩H ) is open inD/A, S is open in the subspace topology if and only if S
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is open as a subset ofD/A, meaning thatQ′ = {d ∈ D : 	(d ) ∈ S} is open. So
we must show that Q is open if and only if Q′ is open. Note that Q = Q′ ∩H ,
and H is open, so openness of Q′ implies openness of Q.

Claim 3.12. Q′ = Q · A.

Proof. If h ∈ Q and a ∈ A, then 	(ha) = haA = hA = 	(h) ∈ S, so
ha ∈ Q′. Conversely, suppose d ∈ Q′. Then 	(d ) = dA ∈ S. As S ⊆ H/(H ∩
A) = 	(H ), we have 	(d ) = 	(h) for some h ∈ H . The fact that dA = hA
means that d = ha for some a ∈ A. Also, 	(h) = 	(d ) ∈ S, so h ∈ Q. Then
d = ha ∈ Q · A. �

If Q is open, then Q′ is open, being a union of right-translates of Q.
3. This follows from the previous two points—ifD/A is compact, then the closed

subspace H/(H ∩ A) is compact, and this space is homeomorphic to the
quotient space H/(H ∩ A). �

Lemma 3.13. If G is affine, then G is good.

Proof. Suppose G is a definable subgroup of V (Qp) for some linear algebraic
group V over Qp. Replacing V with the Zariski closure of G, we may assume that
G is Zariski dense in V. Then G is open in V (Qp), because G and V (Qp) have the
same dimension as definable groups. Let B be a maximal connected K-split solvable
algebraic subgroup of V. By Theorem 3.1 of [20], the quotient space V (Qp)/B(Qp)
is compact. By Lemma 3.11, G/(G ∩ B(Qp)) is compact. If G is compact, then G
is good. Suppose G is not compact. Theorem 2.15 shows that G ∩ B(Qp) is non-
compact. The group G ∩ B(Qp) is also definably non-compact, since compactness
and definable compactness agree for definable manifolds over the standard model
[12, Remark 2.12].

On the other hand, G ∩ B(Qp) is good by Lemma 3.10, so it contains a
one-dimensional non-compact definable subgroup. Then G has a one-dimensional
non-compact definable subgroup, as desired. �

Finally, we can complete the proof of the p-adic Peterzil–Steinhorn theorem:

Proof(of Theorem 3.1). By Section 3.1, we may assume K = Qp. Let G be a
definable group in Qp. Lemma 2.11 gives a short exact sequence of definable groups

1 → A→ G → H → 1,

where A is abelian-by-finite and H is affine. The group A is good by the abelian case
(Fact 3.2, together with Lemma 3.6), and the group H is good by the affine case
(Lemma 3.13). Then G is good by Lemma 3.9. �

§4. Compact Hausdorff groups and G/G00. In this section, we review some facts
about compact Hausdorff groups, and apply them to the groups G/G00.

Fact 4.1. 1. A compact Hausdorff group G is profinite if and only if G is totally
disconnected [7, Theorem 1.34].

2. If G is profinite and f : G → H is a continuous surjection onto another compact
Hausdorff group H, then H is profinite [7, Exercise E1.13].
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3. If G is a compact Hausdorff group, then the family of continuous homomorphisms
from G to the orthogonal groups O(2),O(3), ... separates points [7, Corollary
2.28].

4. Any closed, compact subgroup of O(n) is a compact Lie group [7, Corollary 2.40
and Definition 2.41].

5. Any profinite compact Lie group is finite [7, Exercise E2.8].
6. If G is a non-discrete compact Lie group, then G has a non-trivial one-parameter

subgroup, meaning a non-trivial continuous homomorphism R → G [7, Theorem
5.41(iv)] (see also Definition 5.7 and Proposition 5.33(iv) in [7]).

Corollary 4.2. Let 1 → A→ B → C → 1 be a continuous short exact sequence
of compact Hausdorff groups. Then B is profinite if and only if A and C are profinite.

Proof. If B is profinite, then C is profinite by Fact 4.1(2), B is totally disconnected
by Fact 4.1(1), the subspace A is totally disconnected, and then A is profinite by
Fact 4.1(1).

Conversely, suppose A and C are profinite, or equivalently, totally disconnected.
Any connected component X ⊆ B maps onto a connected set in C, which must be
a single point. Then X is contained in a coset of A, but each such coset is totally
disconnected because A is. Therefore X is a point, and B is totally disconnected,
hence profinite. �

Corollary 4.3. Let G be a compact Hausdorff group. Then G is profinite if and
only if every continuous homomorphism f : G → O(n) has finite image.

Proof. If G is profinite andf : G → O(n) is a continuous homomorphism, then
the image is profinite by Fact 4.1(2), a compact Lie group by (4), and finite by (5).

Conversely, suppose every continuous homomorphism from G to an orthogonal
group has finite image. Let {fi}i∈I enumerate all continuous homomorphisms
fi : G → O(ni). By assumption, im(fi) is finite for each i. Consider the product
homomorphism

∏

i∈I
fi : G →

∏

i∈I
im(fi).

By Fact 4.1(3), this map is injective, hence an embedding. Then G is a closed
subgroup of the profinite group

∏
i∈I im(fi), so G is itself profinite. �

Corollary 4.4. Let G be an infinite compact subgroup of O(n). Then G contains
a non-torsion element.

Proof. By Fact 4.1(4), G is a compact Lie group. Since G is infinite, it is
non-discrete. By Fact 4.1(6), there is a non-trivial continuous homomorphism
f : R → G . For n ≥ 1 let Sn be the closed subgroup

Sn = {t ∈ R : f(t)n = 1} = {t ∈ R : f(nt) = 1} = n–1 ker(f).

If every element of G is torsion, then
⋃∞
n=1 Sn = R, and so some Sn has non-empty

interior by Baire category. But then Sn is a clopen subgroup of R, so Sn = R. As
Sn = n–1 ker(f), this implies ker(f) = R, contradicting the non-triviality of f. �

Recall that if G is a definable group in a highly saturated structure and G00 exists,
then the quotient G/G00 is naturally a compact Hausdorff group with respect to
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the logic topology, the topology where a set X ⊆ G/G00 is closed iff its preimage in
G is type-definable. Similarly, G/G0 is a compact Hausdorff group under its logic
topology. The groupG0 is the intersection of the definable subgroups of finite index,
and these correspond to the clopen subgroups of G/G00, so the group G/G0 is
precisely the maximal profinite quotient of G/G00. In particular, G0 = G00 if and
only if G/G00 is already profinite.

In light of this, we get the following corollaries of the facts above.

Corollary 4.5. Let 1 → A→ B → C → 1 be a short exact sequence of definable
groups in an NIP theory. If A0 = A00 and C 0 = C 00, then B0 = B00.

Proof. See Lemma 2.2 in [13], which assumed Corollary 4.2. �

Remark 4.6. LetA ⊆ B be definable groups in an NIP theory, with |B : A| <∞.
Then A0 = A00 iff B0 = B00. Indeed, the fact that B has finite index implies that
B0 = A0 and B00 = A00.

Corollary 4.7. Let M be a monster model of an NIP L-theory, and let L0 be a
sublanguage. Let G be a group definable in the reduct M � L0. If G0 = G00 in M, then
G0 = G00 in M � L0.

Proof. Let H1 and H2 be G00 in M and G00 in M � L0, respectively. In the
original structure M, the group H2 is a type-definable subgroup of G of bounded
index, so H2 ⊇ H1. Then G/H2 is a quotient of G/H1, so profiniteness of G/H1

implies profiniteness of G/H2 by Fact 4.1(2). �

Corollary 4.8. Let G be a definable group in a monster model M of an NIP
theory. Suppose G0 �= G00. Then there is an abelian definable subgroup H ⊆ G such
thatH 0 �= H 00.

Proof. The groupG/G00 isn’t profinite so there is a continuous homomorphism
f : G/G00 → O(n) with infinite image (Corollary 4.3). By Corollary 4.4, there is
some a ∈ im(f) such that a isn’t torsion. Write a as f(g) for some g ∈ G . Then
f(gn) = an �= 1 for all n. Let H be the center of the centralizer of g. Then H is
an abelian definable subgroup of G and g ∈ H . Let f′ : H/H 00 → O(n) be the
composition

H/H 00 → G/G00 f→ O(n).

Then f′ is a continuous homomorphism, and f′(g) = a. Again, f′(gn) = an for
all n. Then the image of f′ contains the infinite cyclic group 〈a〉, and soH/H 00 isn’t
profinite (Corollary 4.3). �

Warning. It might appear that we can now complete the proof of Theorem 1.2
as follows. Suppose for the sake of contradiction that G is a Qp-definable group
G in a highly saturated elementary extension K � Qp, and G0 �= G00. Applying
Corollary 4.8 we get an abelian definable subgroup H ⊆ G such that H 0 �= H 00,
contradicting the abelian case of Theorem 1.2. But the abelian case of Theorem 1.2
was proven previously [13, Theorem 4.2].

This proof doesn’t work, because the group H from Corollary 4.8 might not be
Qp-definable, and then the abelian case of Theorem 1.2 won’t be applicable.
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§5. G0 vs G00. In this section, we verify Theorems 1.2 and 1.3 comparing G0

and G00. Our strategy will be to first consider the expansion of pCF by restricted
analytic functions. In this expansion, there are exponential and logarithm maps for
abelian p-adic Lie groups, which allow us to locally identify algebraic tori with vector
groups, simplifying the problem and mostly reducing to the case of vector groups.
After proving the main theorems in the analytic setting, we transfer the results back
to the base theory pCF via Corollary 4.7. We learned this trick from the work of
Acosta López [1, Section 5]. A variant also appears in [15, Section 3].

Until Theorem 5.13, work in the following setting. Let Qp,an be the expansion of Qp
by restricted analytic functions as in [5, Section 3]. The theory of Qp,an is P-minimal
[6], hence NIP. Let K be a monster model of Qp,an.

Remark 5.1. In most of this paper, all the results trivially generalize from Qp
to finite extensions of Qp. In this section, we really need to be working with Qp
rather than a finite extension. Later, however, we will generalize from Qp to finite
extensions (Remark 5.14).

Lemma 5.2. Let G be a definable subgroup of (Kn,+). Then

G =
n⊕

i=1

ai ·Hi,

where {a1, ... , an} is an K-linear basis of Kn, and each Hi ∈ {0,O,K}, for O the
valuation ring.

For n = 1, this was proven by Acosta López [1] (see Proposition 4.6, plus remarks
above Lemma 5.2).

Proof. The lemma is equivalent to a conjunction of first-order sentences, so we
may replace K with the standard model Qp,an. Definable groups are always closed4,
so G is closed as a subset of Qnp. We claim that G is a Zp-submodule of Qnp. It is
certainly closed under addition and negation. Suppose a ∈ Zp and v ∈ G . Write a
as limn→∞ an with an ∈ Z. (Here we use the fact that Z is dense in Qp, which would
fail in a finite extension of Qp!) Then av = limn→∞ anv. Each element anv is in G
because G is a group (a Z-module), and then the limit av is in G because G is closed.

Now proceed as in the proof of [10, Theorem 2.6], using the fact that Qp is
spherically complete. �

Theorem 5.3. If G is a definable subgroup of (Kn,+), then G0 = G00.

Proof. G is definably isomorphic to a direct sum of some copies of K and and O.
By Corollary 4.5, we reduce to showing that K0 = K00 and O0 = O00.

If L denotes the original language of Qp, and Lan denotes the language of the
expansion Qp,an, then K and K � L have the same definable sets in one variable,
becauseQp,an is P-minimal. Therefore,K andK � L also have the same type-definable

4This follows from dimension theory: if G isn’t closed then the frontier ∂G := G \ G is non-empty. If
u ∈ G then translation x �→ u + x preserves G so it preserves the frontier ∂G . That is, G + ∂G = ∂G ,
and then ∂G is a union of cosets of G. But P-minimal structures like Qp,an have a nice dimension theory
with the small boundary property: dim(∂G) < dim(G) (see [4, Theorem 3.5]). This contradicts the fact
that ∂G contains a coset of G.
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sets and type-definable groups, and we can calculate the connected components K00

and O00 in the reduct K � L. In other words, we can move to the original theory
pCF rather than the analytic expansion. Then it is well-known that

K00 = K0 = K

O00 = O0 =
∞⋂

n=1

pnO.

Alternatively, K00 = K0 and O00 = O0 hold by Theorem 4.2 in [13]. �
Remark 5.4. When n = 1, Lemma 5.2 says that the only definable subgroups of

(K,+) are 0, K, and balls aO. This would fail if we were working with the theory
of some finite extensionK/Qp rather than Qp. For example, ifK = Q3(

√
– 1), then

the subring Z3[3
√

– 1] ⊆ K is definable, but not an OK -submodule of (K,+).
On the other hand, Theorem 5.3 continues to hold, essentially because we can

interpret (Kn,+) as (Qdnp ,+), for d = [K : Qp]. See Remark 5.14 for the details.

Fact 5.5. If G is a definable subgroup of (Γ,+), then G is nΓ for some 0 ≤ n < �.

This is [1, Lemma 3.3], modulo the fact that Γ is a pure model of Presburger
arithmetic [3, Theorem 6].

Corollary 5.6. If G is a definable subgroup of (Γ,+), then G0 = G00.

Proof. By Fact 5.5, G is trivial or isomorphic to (Γ,+). In both these cases,
G0 = G00 is known. For example, one roundabout way to see that Γ00 = Γ0 is
to use the fact that Γ/Γ00 is a quotient of K×/(K×)00 by [13, Lemmas 2.1 and
2.2], and K×/(K×)00 is profinite by [13, Theorem 4.2]. Then Γ/Γ00 is profinite by
Fact 4.1(2). �

Since we are working in the language with restricted analytic functions, we
have exponential and logarithm maps, and we can use these to move between the
multiplicative group and the additive group.

Theorem 5.7. Let G be a definable subgroup of K×. Then G0 = G00.

Proof. Using the short exact sequence

1 → O× → K× → Γ → 1,

we can get a short exact sequence

1 → H → G → Δ → 1,

where H is a definable subgroup of O×, namely G ∩ O×, and Δ is a definable sub-
group of Γ, namely {v(x) : x ∈ G}. By Corollary 5.6, Δ0 = Δ00. By Corollary 4.5,
it remains to show that H 0 = H 00.

If U = 1 + pnO is a small enough ball around 1, then the p-adic logarithm map
gives an injective definable homomorphism

logp : U → Qp.

The index of U in O× is finite. By Remark 4.6, we may replace H withH ∩U , and
assume that H ⊆ U . Then H ∼= logp(H ), and we are done by Theorem 5.3. �

Next, we consider the case where G is a subgroup of an irreducible non-split torus.
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Remark 5.8. Let T be an algebraic torus over K. Then T is defined over Qp.
Indeed, over any perfect field K of characteristic zero, n-dimensional algebraic
tori are classified by actions of Gal(K) on Zn [20, Theorem 2.1]. Boundedness of
Gal(Qp) implies that Gal(K) ∼= Gal(Qp), and so the classification of algebraic tori is
the same over both fields. More precisely, the base-change functor from tori over Qp
to tori over K is an equivalence of categories. In particular, the functor is essentially
surjective, as claimed.

Remark 5.9. Let T be an irreducible non-split torus over Qp. Then T (Qp) is
compact, by [20, Theorem 3.1].

Theorem 5.10. Let T be an irreducible non-split torus over K. Let G be a definable
subgroup of T (K). Then G0 = G00.

Proof. By Remark 5.8, T is definable over Qp. Let n = dim(T ). By properties
of p-adic Lie groups, there is a neighborhood U of 1 in T (Qp) such that U is a
subgroup and U is isomorphic to a ball in Qnp via an analytic logarithm map. For
example, T (Qp) and Qnp have isomorphic Lie algebras; apply [21, Corollary 18.18].

Therefore, there is a Qp-definable open subgroup U ⊆ T (K) and a definable
injective homomorphism log : U → Kn. Note thatU (Qp) has finite index in T (Qp)
because T (Qp) is compact (by Remark 5.9) andU (Qp) is open. Then finitely many
translates of U (Qp) cover T (Qp). As K 	 Qp, finitely many translates of U cover
T (K). Thus U has finite index in T (K). By Remark 4.6, we may replace G with
the finite index subgroup G ∩U , and assume that G ⊆ U . Then G is definably
isomorphic to a subgroup of Kn via the logarithm map, and so G0 = G00 by
Theorem 5.3. �

So we have seen that G0 = G00 when G is a definable subgroup of the additive
group, the multiplicative group, or an irreducible non-split torus.

Fact 5.11. If V is a connected abelian linear algebraic group over a field K of
characteristic zero, then there is a chain of algebraic subgroups (over K):

1 = V0 ⊆ V1 ⊆ ··· ⊆ Vn = V

such that each quotient Vi/Vi–1 is one of the following algebraic groups:
1. The additive group Ga .
2. The multiplicative group Gm.
3. An irreducible non-split torus.

This follows from the fact that V is a direct product of a vector group and a torus, and
a torus decomposes into irreducible tori which are either split (Gm) or non-split (see
[14, Corollary 16.15]).

By combining Theorems 5.3, 5.7, and 5.10, we get the following:

Theorem 5.12. Let G be an affine definable group (in K 	 Qp,an). ThenG0 = G00.

Proof. By Corollary 4.8, we may assume that G is abelian. Let V be the linear
algebraic group such that G ⊆ V (K). Replacing V with the Zariski closure of G,
we may assume that G is Zariski dense in V. Then V is abelian. By Remark 4.6, we
may replace G with a finite index subgroup. Therefore, we may replace V with its
connected component, and assume that V is connected.
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Let {Vi}0≤i≤n be as in Fact 5.11. For each i, consider the map

G ∩ Vi(K) ↪→ Vi(K) → (Vi/Vi–1)(K).

Let Gi be the image. The kernel is G ∩ Vi–1(K). Then we have an ascending chain
of definable subgroups

1 = G ∩ V0(K) ⊆ G ∩ V1(K) ⊆ ··· ⊆ G ∩ Vn(K) = G

such that the consecutive quotients are the definable groups Gi ⊆ (Vi/Vi–1)(K). By
Corollary 4.5, it suffices to show that (Gi)0 = (Gi)00 for each i. Therefore, we reduce
to the case where V is one of the following:

1. The additive group.
2. The multiplicative group.
3. An irreducible non-split torus.

These cases are handled by Theorems 5.3, 5.7, and 5.10, respectively. �

Theorem 5.13. Let G be a definable group in a highly saturated elementary
extension of Qp. Suppose one of the following holds:

1. G is affine.
2. G is defined over Qp.

Then G0 = G00.

Proof.

1. Theorem 5.12, plus Corollary 4.7 to change the language.
2. Apply Lemma 2.11 to get a Qp-definable short exact sequence

1 → A→ G → H → 1,

where A is abelian-by-finite and H is affine. Then H 0 = H 00 by part (1),
and A0 = A00 by the abelian case [13, Theorem 4.2] plus Remark 4.6. By
Corollary 4.5, G0 = G00. �

Remark 5.14. In this section we have been working with Qp rather than a finite
extension K/Qp. Nevertheless, Theorems 5.12 and 5.13 generalize to this setting,
essentially because Kan is interpretable in Qp,an via a Qp-linear map K ∼= Qdp , for
d = [K : Qp]. Under this interpretation, GLn(K) is interpreted as a subgroup of
GLnd (Qp), and therefore any affine group in (an elementary extension of) K is
interpreted as an affine group in (an elementary extension of) Qp. This shows that
Theorem 5.12 extends from Qp to its finite extensions, and then the other proofs
carry through with minimal changes.

Theorem 5.13 has the following corollary:

Corollary 5.15. Let G be a definably amenable group defined in Qp. There is a
finite index definable subgroup E ⊆ G and a finite normal subgroup F � E such that
the quotient E/F is isomorphic to an open subgroup of an algebraic group over Qp.

Proof. Like Corollary 4.3 in [13]. �
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