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Abstract

A method for three-dimensional reconstruction of objects from defocused images collected at multiple illumination directions in high-res-
olution transmission electron microscopy is presented. The method effectively corrects for the Ewald sphere curvature by taking into
account the in-particle propagation of the electron beam. Numerical simulations demonstrate that the proposed method is capable of accu-
rately reconstructing biological molecules or nanoparticles from high-resolution defocused images under conditions achievable in single-
particle electron cryo-microscopy or electron tomography with realistic radiation doses, non-trivial aberrations, multiple scattering, and
other experimentally relevant factors. The physics of the method is based on the well-known Diffraction Tomography formalism, but
with the phase-retrieval step modified to include a conjugation of the phase (i.e., multiplication of the phase by a negative constant). At
each illumination direction, numerically backpropagating the beam with the conjugated phase produces maximum contrast at the location
of individual atoms in the molecule or nanoparticle. The resultant algorithm, Conjugated Holographic Reconstruction, can potentially be
incorporated into established software tools for single-particle analysis, such as, for example, RELION or FREALIGN, in place of the
conventional contrast transfer function correction procedure, in order to account for the Ewald sphere curvature and improve the spatial
resolution of the three-dimensional reconstruction.
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Introduction model assuming straight-line propagation of the illuminating
beams through the sample, the DT techniques take into account
the effect of free-space propagation (Fresnel diffraction) inside
the sample. The latter is mathematically equivalent to taking
into account the curvature of the Ewald sphere in the reciprocal
space (DeRosier, 2000; Paganin, 2006; Wolf et al., 2006; Russo
& Henderson, 2018; Chen et al., 2021). Note that the Fresnel dif-
fraction outside the sample, that takes place in the course of free-
space propagation of the beam transmitted through the sample
toward the detector, is a separate phenomenon tackled by the
Contrast Transfer Function (CTF) correction method in electron
microscopy (Cowley, 1995) and several well-established phase-
contrast CT methods (Paganin, 2006). These methods still use
the projection approximation and the conventional CT model
for the 3D reconstruction of the sample, ignoring the Fresnel dif-
fraction effects inside the sample. The latter effects become
important in practice only when the depth of field (which is
closely related to the depth of focus) is smaller than the thickness
of the imaged sample, such as, for example, in high-resolution
*CC.:rr:lf}ionii.ﬂlg al(l;th‘m TiI;l]lzlr IF;- GU{CYCIV),BIZ-n;aili timﬁgugY?V@u‘;;eli;iu-ail electron microscopy (Lentzen, 2008; Erni, 2015; Glaeser, 2016,
(20221)eA I\lje:lholg E;;)r ;fg}{?;esol;tioafa;}:ee—Di;ezzv(:;lal Re’conlsl:l:fcytion v;ith Elvlvald 2019; Gureyev et al" 2022)' The depth Of? field can ,be €xp reséed
(Glaeser, 2019) as zgr=A/(21), where A is the spatial resolution

Sphere Curvature Correction from Transmission Electron Images. Microsc Microanal
28, 1550-1566. doi:10.1017/51431927622000630 and A is the wavelength of the illuminating wave, so z4r becomes

The imaging technique studied in the present paper belongs to the
general class of methods for reconstruction of the three-
dimensional (3D) structure of an object from multiple two-
dimensional (2D) transmission images (views) of the object illu-
minated from different incident directions. Such techniques
form the theoretical basis of single-particle electron cryo-
microscopy (cryo-EM), electron tomography using tilt series,
and many other experimental methods using electrons, X-rays,
and visible light. From a theoretical perspective, the Conjugated
Holographic Reconstruction (CHR) method developed here, as
well as the related Differential Holographic Tomography (DHT)
method (Gureyev et al., 2020, 2021), are variants of Diffraction
Tomography (DT) (Wolf, 1969; Devaney, 1982; Gbur & Wolf,
2002). In contrast to conventional Computed Tomography (CT)
(Born & Wolf, 1999; Natterer, 2001), which is based on the pro-
jection approximation (Paganin, 2006), that is, on the physical

© The Author(s), 2022. Published by Cambridge University Press on behalf of the Microscopy Society of America. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/51431927622000630 Published online by Cambridge University Press


https://orcid.org/0000-0002-1103-0649
mailto:timur.gureyev@unimelb.edu.au
https://doi.org/10.1017/S1431927622000630
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1431927622000630

Microscopy and Microanalysis

lJamm 1 -

‘Jatom 2 . Pl.
Jl ' iéj iﬁz‘@%

g =

&=

Fig. 1. Schematic representation of the CHR algorithm. Images are collected in an
experiment at defocus planes Py, P,,..., P, at different orientations (illumination
directions) zg, ¢, Z6,,¢,, -++ » Z4,,6,- Fragments of idealized defocused images of two
atoms are shown in each image plane. The waves with conjugated retrieved phases
(shown as cones of different colors), backpropagating from these planes, are calcu-
lated numerically. The wide arrows in the figure indicate the backpropagation direc-
tions. These numerically calculated waves converge in the vicinity of individual
atoms, creating strong peaks in the resultant signal, leading to efficient localization
of the atoms in the reconstruction.

smaller as the spatial resolution gets finer. For example, at a spa-
tial resolution of A=1 A and a wavelength of A = 0.02 A (for elec-
trons at ~300 keV energy), the depth of field is equal to 25 A,
which is significantly smaller than the size of typical protein mol-
ecules or viruses imaged in cryo-EM. Therefore, the Fresnel dif-
fraction inside the samples (the Ewald sphere curvature)
becomes an important factor that needs to be taken into account
in atomic-resolution electron imaging.

In CHR, as in the general DT approach, the effect of Fresnel
diffraction in the course of image formation is accounted for by
means of Fresnel backpropagation of a complex amplitude from
each of the defocus planes onto multiple planes in the recon-
structed volume, before averaging the partial reconstructions
over all available illumination directions (Fig. 1). The numerical
Fresnel backpropagation allows one to exploit the Ewald sphere
curvature (shallow depth of field) and achieve a non-trivial local-
ization of the atomic positions inside the reconstructed volume
along the illumination direction in each partial reconstruction
from a single defocused image (Figs. 2, 3). A number of alterna-
tive approaches for taking the Ewald sphere curvature into
account have been suggested in recent years (DeRosier, 2000;
Wolf et al, 2006; Russo & Henderson, 2018; Zivanov et al,
2018; Glaeser, 2019; Chen et al.,, 2021). As shown in these publi-
cations, the effect of Ewald sphere curvature on the quality of 3D
reconstruction becomes significant only at high spatial resolu-
tions. Figure 2 indicates that, when used in high-energy electron
imaging, the CHR technique is also likely to produce results
that are superior to conventional CT-based techniques only at
spatial resolutions finer than approximately 2 A (the relevant
details can be found in Appendix A).

When the Fresnel diffraction inside the sample is ignored and
the projection approximation is used for the 3D reconstruction,
the whole sample is effectively mapped onto a single plane
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Fig. 2. CHR longitudinal point-spread functions (LPSFs), that is, the normalized back-
propagation contrast functions at the central point (0, 0) of transverse (xq, Yo,
slices through the reconstructed 3D distribution of the electrostatic potential at dif-
ferent positions along the optic axis z,, which corresponds to a given illumination
direction described by angles 6 and ¢. The multislice forward simulations, followed
by the CHR, were performed for a single carbon atom located at the origin of coor-
dinates and imaged with a plane monochromatic electron wave with E=300 keV,
spherical aberration C3=2.7 mm, defocus distance of Dy, =5,000 A, and pixel size
of 0.457 A, at different effective spatial resolutions equal to 2 A (blue curve), 1.5 A
(green curve), 1A (orange curve), and 0.5 A (gray curve). Shifting each curve to the
left by the corresponding distance dp,.x moves the maximum to the position of the
atom. Backprojected amplitude corresponding to conventional CT reconstruction is
also shown (dotted purple line). See details in Appendix A.

orthogonal to the illumination direction at each view angle, as
is clearly illustrated in reciprocal space by the Fourier slice theo-
rem (Crowther et al., 1970; Born & Wolf, 1999; Natterer, 2001).
The equivalent picture in real space is that of “backprojection,”
that is, the uniform “spreading” of the image contrast along
straight rays passing through the sample volume, as implemented
for example in the Filtered Backprojection (FBP) reconstruction
method of conventional CT (Natterer, 2001). This indicates that
the longitudinal spatial resolution which determines the position
of different atoms inside the sample along the optic axis (i.e., the
view direction) is as coarse as the total thickness of the sample
(see the dotted purple line in Fig. 2). The spatial resolution in
CT only improves after the partial reconstructions obtained at dif-
ferent illumination directions are added together. Note that this
does not contradict the idea of using the CTF correction in a
CT-based reconstruction (Cowley, 1995; Scheres, 2012;
Grigorieff, 2016). Indeed, as mentioned above, the CTF correction
accounts for the effect of free-space propagation of the transmit-
ted electron beam from the imaged molecule to the detector, but
it does not account for the propagation of the beam inside the
molecule, because, for each defocused image, a single CTF correc-
tion is applied to all atoms in the molecule, regardless of their
positions along the optic axis. In contrast, in the DT approach
in general and in CHR in particular, multiple CTF corrections
are effectively applied to each defocused image in accordance
with the propagation distances from different transverse planes
inside the volume occupied by the molecule to the detector.
This allows one, under suitable circumstances, to resolve the lon-
gitudinal positions of different atoms in the molecule from a sin-
gle image by locating the peaks of the “longitudinal point-spread
function” (LPSF) (Fig. 2). This constitutes the first potential
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Fig. 3. One-dimensional transverse profiles (along the yy , coordinate) of the electro-
static potential at the z-position of a carbon atom which was located either at the
geometric center of the reconstruction volume (zy,=0) or away from the center
along the illumination direction (at z5,=60 A). The profiles were reconstructed in
each case from a single defocused image obtained using multislice forward simula-
tions, with a plane monochromatic electron wave illumination with E=300 keV,
spherical aberration C3=2.7 mm, defocus distance of Dy, = 10,000 A, and the effec-
tive spatial resolution of 0.5A (limited by the objective aperture of 20 mrad). The
CHR backpropagation results are shown by the red dashed curve (for the atom at
29,=0) and the black dotted curve (for the atom at z,,=60 A), the two curves
being almost identical. The CTF-corrected CT backprojection results are shown by
the purple dashed curve (for the atom at z,,=0) and the purple dotted curve (for
the atom at zy,=60A). The latter result shows significant broadening, lowering,
and distortion of the reconstructed atomic potential.

benefit offered by the CHR method in high-resolution TEM
reconstruction of single molecules or nanoparticles. Note that
by LPSF we denote a one-dimensional function L(z) = PSF(x, y,
z), where z corresponds to the direction of the optic axis and
PSF(x, y, z) is the conventional point-spread function.

A related benefit is provided by the CHR method in the recon-
struction of the 3D electrostatic potential in a molecule or nano-
particle from multiple defocused images collected at different
orientations. Here, the CHR method is capable of reducing the
blurring of the electrostatic potential which may occur in conven-
tional CTF-corrected CT reconstruction in the vicinity of atoms
located far away from the center of rotation (i.e., on the periphery
of the reconstructed volume). As the conventional CTF correction
uses a single defocus distance for all atoms in the particle at each
orientation, the atoms on the periphery of the particle are effec-
tively treated in this method using a defocus distance that can
be off by as much as half of the thickness of the particle.
Consequently, when the thickness of the particle is large com-
pared to the depth of field, this can lead to a noticeable broaden-
ing and distortion of the reconstructed atomic potentials. One
such example is presented in Figure 3 for a carbon atom inside
a simulated “particle volume” with a diameter of 138 A which
corresponds, for example, to the size of the apoferritin molecule
7KOD (Sun et al, 2020, 2021). It can be observed in Figure 3
that while the CTF-corrected CT result for an atom located at
the center of the particle volume is accurate, the corresponding
result for an atom located on the periphery exhibits significant
blurring and distortion due to the incorrect effective propagation
distance. Indeed, the CTF correction was performed using the
fixed defocus distance of 10,000 A for the whole particle volume,
while the atom located at 60 A downstream from the center of the
volume had the actual defocus distance of 9,940 A. In contrast,
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the CHR method delivers accurate results for both the central
and the peripheral positions of the atom using the same defocus
distance of 10,000 A. This is achieved in the CHR method via the
use of multiple backpropagation planes in the reconstruction of
the potential inside the particle, with the highest magnitude and
the narrowest transverse distribution of the reconstructed signal
always appearing at the correct longitudinal position for each
atom (see Figs. 1, 2). Note that the actual different defocus dis-
tances for different atoms in the reconstructed particle are cer-
tainly not assumed to be known a priori in the CHR method.
Instead, they are reconstructed in CHR from the average defocus
distance given for the whole particle and the information intrin-
sically contained in the contrast of the defocused images.

In conventional CT-based reconstruction, the achievable spa-
tial resolution directly depends on the range of available view
angles. The Nyquist sampling conditions for uniform 3D spatial
resolution in conventional CT require that the number of view
angles, n,, is commensurate with the number of resolvable effec-
tive pixels in each detector row, n,, as for example n, = (7/2)n, in
the case of plane-wave illumination and a 180 degree rotation
scan (Natterer, 2001). In contrast to this situation, in conventional
CT, the longitudinal resolution in each partial reconstruction
from a single view angle in DT is proportional to the depth of
field, and it can already provide some information about the local-
ization of different elements in the sample along the view direc-
tion from a single projection, even before the angular
summation (Hovden et al., 2014). In particular, under suitable
conditions in CHR, the single-view LPSF can approximate the
Dirac delta-function (Fig. 2), negating the need for any filtering
in the 3D reconstruction. The summation over different view
angles in CHR acts as a simple averaging (Fig. 1) which increases
the signal-to-noise (SNR) in the reconstruction and reduces some
artifacts, as explained below. This allows the Nyquist sampling
conditions for the number of view angles in a scan to be signifi-
cantly relaxed. Ultimately, under suitable conditions, with a suffi-
ciently shallow depth of field and a sufficiently “sparse” sample,
where different spatially localized components (such as, e.g., indi-
vidual atoms) do not shade each other along the rays of a given
view, the whole 3D structure can be accurately reconstructed in
CHR from a single view, similar to the way demonstrated previ-
ously in the Big Bang Tomography method (van Dyck et al,
2012; Chen et al, 2016, 2017). The “non-shading” condition is
related to the problem of multiple scattering (Brown et al,
2018; Ren et al., 2020; Donatelli & Spence, 2020; Gureyev et al.,
2021). When two atoms are located in close proximity along
the same illuminating ray, the second atom will be “shaded” by
the first one and hence cannot be considered illuminated by the
initial unperturbed wave as assumed in the single-scattering
first Born approximation (Born & Wolf, 1999).

While DT is superior to conventional CT in that it takes the
in-sample free-space propagation (Ewald sphere curvature)
explicitly into account, DT techniques are usually based on the
first Born or first Rytov approximation (Wolf, 1969; Devaney,
1982; Gbur & Wolf, 2002). Correspondingly, they generally do
not incorporate the effects of multiple scattering into their under-
lying models. However, in the case of CHR, the summation over
different view angles strongly mitigates the multiple scattering
contributions by averaging them out. The latter happens because
in the majority of real-life samples multiple scattering tends to be
highly directional, and hence, it averages out into a low
quasi-uniform “background” during the angular averaging. On
the other hand, the single-scattering cross-section tends to be
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relatively uniform with respect to the illumination directions (due
to the spherical symmetry of the atomic potential), which leads to
a positive reinforcement of the single-scattering signal in the pro-
cess of angular averaging in CHR. In particular, the angular aver-
aging relaxes the “non-shading” condition mentioned above, as,
for example, two adjacent atoms in a molecule cannot shade
each other along all possible illumination angles. This two-atom
case represents the simplest example explaining the directional
nature of multiple scattering and the reasons for the contribution
of multiple-scattering effects to weaken when the images collected
at different illuminating directions are utilized in a 3D reconstruc-
tion (Ciston et al., 2007). More sophisticated approaches to 3D
reconstruction have been developed in recent years which
explicitly take multiple scattering into account (Van den Broek
& Koch, 2012; Ren et al, 2020; Du et al., 2021). While these
approaches can certainly produce more quantitatively accurate
results compared to DT-based methods in the presence of strong
multiple scattering, they tend to be more computationally
demanding. Convergence to the “global minimum” may also
become a problem if the input data is very noisy, incomplete,
or internally inconsistent. It may be interesting to investigate in
the future an option of using a simple non-iterative DT-based sol-
ution, like the one described in the present paper, as an initial
approximation for these more sophisticated reconstruction
approaches.

Another common challenge with DT methods is the need to
know the complex amplitude of the diffracted wave in the detector
plane at each view angle. This is necessary in order to perform the
Fresnel backpropagation step of the DT reconstruction process,
which replaces the backprojection step of conventional CT. In a
typical experiment, only the intensity distribution of the transmit-
ted beam is registered at each view angle. The phase needs to be
retrieved from these intensity images, possibly with the help of
available a priori information. When several images at different
propagation (defocus) distances are available at a given view
(illumination) angle, various phase-retrieval methods, such as,
for example, the Iterative Wave Function Reconstruction
(IWFR) method (Allen et al., 2004) or the method based on
L,-difference minimization of the CTF (Paganin et al., 2004)
can be applied. The problem of phase retrieval from a single
image per view angle is much more challenging in general,
although some potentially suitable methods have been suggested
(Morgan et al.,, 2011). In the present work, we propose a new
method for phase retrieval from a single defocused image per
view angle, which is suitable under the first Born approximation.
However, crucially, we also show that backpropagation with the
“true” phase is not necessarily the most effective method for 3D
reconstruction from complex amplitudes available at different
view angles. We demonstrate both theoretically and in numerical
simulations that using instead a numerically “conjugated” phase
(i.e., the phase with the opposite sign) can lead to a better-
localized LPSF (Fig. 2) and hence to a higher-quality reconstruc-
tion. The idea of phase conjugation in holographic imaging has
been discussed previously (Nieto-Vesperinas, 2006), however, to
the best of our knowledge, it has not been previously considered
in the context of DT-type reconstructions.

Three-Dimensional Transmission Imaging and
Reconstruction Models

As mentioned in the Introduction, the CHR method is based on
the general DT approach. CHR is closely related to the earlier
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DHT method (Gureyev et al., 2020, 2021), with the key difference
being the phase conjugation used in CHR, as described below.
The present version of CHR is introduced in the context of the
first Born approximation, but the first Rytov approximation can
be used instead, if preferred. Compared to the generic DT formal-
ism, the CHR technique has the following distinguishing features.

(1) The imaged sample is modeled as a set of independent atoms
(or possibly other localized components), with each defo-
cused image treated as an incoherent sum of contributions
produced by the interference between the incident wave and
the wave scattered by one atom. The “independent atom
model” is used in the reconstruction scheme of CHR as well.

(2) Particular forms of phase retrieval and phase conjugation are
applied at each of the defocus planes using a single intensity
image.

(3) An additional longitudinal offset dy,,,, which can be esti-
mated a priori for a given imaging setup, is introduced in
the reconstruction, effectively moving the peaks of the
LPSFs to the atomic positions (see details in Appendix A).
Remarkably, this optimal offset is independent of the dis-
tances between different atoms in the imaged structure and
the detector plane.

These key points are expanded and explained below, leading to
the central new result, equation (4), which describes the proposed
CHR algorithm.

Let us introduce the necessary notation and outline the overall
physical picture and key assumptions used in the imaging model
underl}ring the DHT and CHR methods. A monochromatic plane
wave Iin/ ® exp (i27kz) is assumed to illuminate a weakly scattering
object, where k = 1/A is the wave number, I;,, is the uniform inten-
sity of the incident wave, r = (x, y, z) is a Cartesian coordinate
system in 3D space and z is the direction of the optic axis. The
interaction of the incident wave with the imaged object is deter-
mined by the refractive index n(r). In the case of electron micros-
copy, we have n(r) =1+ V(r)/(2E), where V(r) >0 is the
electrostatic potential, E is the relativistically corrected accelerat-
ing voltage, with a = max |V (r)/(2E)| typically being much less
than unity (Sanchez & Ochando, 1985; Allen & Rossouw,
1990). The complex amplitude U(r) of the wave inside the object
satisfies the time-independent Schrédinger equation: V2U(r)+
472 n*(r)k*U(r) = 0. We consider the problem of reconstruction
of the 3D distribution of the electrostatic potential from the inten-
sity of transmitted waves measured at some distance from the
object along the optic axis (i.e., from defocused images), for a
number of different orientations of the object.

In the model used in DHT and CHR, the first Born approxi-
mation is applied for solution of the above Schrédinger equation.
The perturbation of the wave incident on a particular atom by
other atoms in the specimen is neglected. The free-space propaga-
tion (Fresnel diffraction) of the waves scattered from individual
atoms, as these scattered waves propagate through the object, is
taken into account. The intensity of the projection image collected
at a position, z, downstream from the object along the optic axis is
expressed as an incoherent sum of (i) the primary beam intensity
and (ii) the interference terms between the scattered wave from
each atom and the incident plane wave (Voortman et al., 2011;
Gureyev et al., 2020). The terms corresponding to the interference
of the waves scattered by different atoms are of the second order
(o) with respect to the small parameter « in the Born series and
are neglected.
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The 2D Fourier transform of the defocused images I(r, , z) =
|U(ry, z)|?, with r = (r;,2) and r, = (x, ¥), can be written as
(Gureyev et al., 2020)

(F2I)(q> 2)/Iin = 8(q) + [27/(AE)]

X jsin [7A(z — 2)q 1(F,V)(q,, 2)dZ,

where (Fyf)(q,) = J[exp (—i2mq, ry )f(ry)dr, is the 2D Fourier
transform  with respect to the transverse coordinates,
q=1(9,,9:), 9, = (qx»qy)> and g, = |q,|. Equation (1) has
the form of an incoherent sum of the well-known expressions
for the first Born approximation to the scattered intensities
(Cowley, 1995) corresponding to different transverse planes, 2/,
inside the imaged object.

The image intensities are assumed to have been measured in
defocused planes for different 3D rotational orientations of the
imaged object. An arbitrary illumination direction in 3D can be
represented, for example, as a result of a rotation of a wave, ini-
tially traveling along z, around the y-axis by an angle 6 € [0, x)
followed by a rotation around the x4 axis by an angle ¢ € [0, 27):

Xg,p = X9 = xsin 0+ z cos 6
Yoo = Y9 COS @ + zgsin ¢ — y cos ¢ — x cos Osin ¢ + zsin Osin @
Zgp = —YpSin @ + g cOs ¢ = —ysin ¢ — x cos 6 cos ¢ + zsin 6 cos .

()

Accordingly, we use the notation rg, = (X4, Yoo 26,0) =
(Yog,1»> Z00). In addition to arbitrary illumination directions,
which are defined by the two Euler angles 6 and ¢, the imaged
object can be rotated around the illumination axis ze, by
some angle y. Note that in the simulations included in the sec-
tion “Results” below a different set of Euler angles is used to
define the 3D orientations in accordance with the conventions
described in Heymann et al. (2005), but it does not change
the theory as described here. In DHT and CHR, all available
images corresponding to a particular illumination direction
Zg,, are pre-processed numerically, rotating these images around
the axis zy, toward some fixed angle y, such as y=0.
Subsequently, the algorithm is applied to the intensity distribu-
tions Ig4(Yoe, 1> 26,6) = logu=0(T6,e,.1> Z6,e). Therefore, the input
data in DHT and CHR are considered as consisting of a set of
2D distributions I 4(rgge 1, D), corresponding to defocus
planes zg, =Dy, at different illumination directions indexed
by the angles 6 and ¢ and at different defocus distances indexed
by I=1,2, ..., Ly, The most practically important case consid-
ered below corresponds to a single defocused image per illumi-
nation direction, that is, to the case Ly, =1 at all 8 and ¢.

A suitable phase-retrieval procedure can produce a phase distri-
bution ®g,(ree 1, Dge) from a single measured intensity
Ino(roe 1, Do) at each defocus plane zy, =Dy, (or, optionally,
from multiple images collected at a given illumination direction).
Relevant details of the single-image phase-retrieval process are dis-
cussed in Appendix A. In DHT the resultant 2D complex ampli-
tude Upgo(rog 1, Doy) = ng,(l‘equl, Dy,) exp [iDg4(ro 1, Do)l
is numerically backpropagated into the 3D volume containing
the imaged object by calculating the corresponding Fresnel inte-
grals and producing the complex amplitudes U(rgg, 1, zg,e) at dif-
ferent transverse planes with z=z,, inside the object. We
introduce the backpropagated contrast function, K(rgg, 1, z6,,) =
1 — I(ro1, Z0,6)/Iin» Where I(rge 1, z0e) = [U(toge1, zog)l* is
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the intensity of the numerically backpropagated beam. The DHT
reconstruction formula for the electrostatic potential can then be
written as (Gureyev et al., 2021)

E 27T T
V(r) = S v J j Koo(Yoe 1> 2o + d)| sin @|dbd e,
0 -
3

where w is a constant “atom width” parameter (which is usually
taken to be 1 A for low-Z atoms), d is a specially introduced offset
parameter, and V™2 is the inverse Laplacian operator, such that
(V72h)(x) = —(F3’1 |q|_2F3f)(r). As this operator has a singularity
at q = 0, it usually requires a regularization in a vicinity of the zero
frequency in practical applications, for example, by replacing |q| >
with (|q*> + a2)™!, where a is a small constant. Note that the inte-
gration over 6 in equation (3) is performed over the interval ( -z,
), rather than (0, 7), as is usually done in parallel-beam CT
(Natterer, 2001). This is a consequence of the fact that the DHT
reconstruction, equation (3), relies on pair-wise combinations of
the backpropagated contrast functions corresponding to opposed
illumination directions (Gureyev et al, 2021). The fact that the
unit sphere is then covered twice in the integration in equation
(3) leads to the normalization factor 87 in the denominator, that
is, twice the area of the unit sphere in 3D. The inverse Laplace
operator in equation (3) accounts for the local “offset contrast”
which appears in the vicinity of individual atoms after addition
of pairs of contrast functions backpropagated from the opposed
directions. This contrast has a similar physical nature to the
propagation-induced phase contrast in the near-Fresnel region
which is described by the Transport of Intensity equation
(Teague, 1983; Paganin, 2006).

The inverse Laplacian is omitted from the DHT reconstruction
formula when phase conjugation is applied to the measurement-
plane complex amplitude prior to backpropagation in the CHR
method, as explained in Appendix A. In the case of the backpro-
pagated wave with the conjugated phase, we denote the
backpropagated intensity distribution as I (To,,15 Z6,0)> With
K(r(,q,l,zw) =1- I(r(,(,,l,z(,q,)/lm being the corresponding
contrast function. The CHR formula for the 3D potential then
takes the following form:

—EAy 2

V( 477_2 j j K9 (p(r0<pJ_> 20, + dmax)l sin €D|d9d¢> (4)

where y is a dimensionless constant that is equal to approximately
0.1 when imaging molecules consisting of light chemical elements
with high-energy electrons of energy E=200—300 keV (see
Appendix B for details) and d,;,,y is the distance between the max-
imum of the function K(rg, 1, zs,) along the optic axis Zg,, and
the atomic locations along that axis (see Fig. 2). It is shown in
Appendix B that, for a given imaging setup, the distance dy,,y is
the same for all atoms in the imaged molecule and can be esti-
mated numerically. Equation (4) is usually not very sensitive to
small errors in the estimation of dy,,y, because of the relatively
broad maxima of the LPSF curves at atomic resolutions, as can
be seen in Figure 2. The CHR method, as expressed by equation
(4), no longer relies on the pair-wise combinations of the
backpropagated contrast functions corresponding to opposed
illumination directions. Accordingly, the integration over 6 in
equation (4) is performed over the interval (0, ), with the corre-
sponding normalization factor 4 in the denominator. Note also
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that when the inverse Laplacian in equation (3) is strongly regu-
larized in order to optimally handle the division by zero in the
Fourier space, equation (3) effectively converges to equation (4).

In general, equations (3) and (4) represent a form of angular
averaging of the 3D backpropagated contrast distributions,
K(rge,1, 20+ d) or I~<g,¢,(r9,q,,l, Zg,p + dmax), over the illumina-
tion angles 8 and ¢. The factor |sing| accounts for the fact that
the area element on a unit sphere in 3D is equal to [sing|d0de.
In other words, a uniform sampling of the angle ¢ does not cor-
respond to uniform sampling of the illumination space (i.e., the
unit sphere in 3D) and, hence, requires the “correction” factor |
sing|. In practice, if the input data already corresponds to uniform
sampling of the unit sphere (which means, in particular, that the
sampling of the angle ¢ is not uniform), this correction factor is
omitted, with the reconstruction obtained simply by angular aver-
aging of the (rescaled) backpropagated contrast distributions
Koo(Yoe 1, 290 +d). A schematic representation of the CHR
method is shown in Figure 1. Note that, unlike conventional
CT, equations (3) and (4) do not contain any radial filtering.
As explained in the Introduction, this happens because the
LPSF of CHR has a high degree of localization along the backpro-
pagation directions zg.

The mathematical details of the CHR algorithm are given in
the Appendices, together with the relevant physical and optical
considerations. A reader not interested in these details can simply
note the main formula describing the algorithm, that is, equation
(4) above, and proceed to examples of the application of this
method in the section “Results.”

Results

Here, we present the results of numerical tests of the CHR algo-
rithm based on equation (4). Related simulation results based on
the DHT algorithm, equation (3), can be found in our earlier pub-
lications (Gureyev et al., 2020, 2021). Here, we use the conditions,
such as the electron beam energy, defocus distances, and micro-
scope aberrations, similar to those found in high-resolution
TEM experiments. In the definition of the main parameters
used in the simulations below, we adhere to the conventions
outlined in Heymann et al. (2005).

Apoferritin Molecule (7KOD)

Our first example of CHR application uses a molecular structure
based on the heavy chain mouse apoferritin molecule 7KOD (Sun
et al, 2020, 2021) downloaded from the Protein Data Bank.
Apoferritin is a protein for storing iron in the liver. It has become
a favorite for pushing the boundaries of cryo-EM due to the fact
that it is a very rigid molecule that does not vibrate much under
the beam (Nakane et al., 2020). The molecular structure used in
this simulation contained 66,459 atoms in total (S;950¢430N5028
Ca1216H32643), including 33,816 non-hydrogen atoms. At each ori-
entation, we also added a 166 A thick layer of pseudo-randomly
distributed water molecules simulating amorphous ice, using the
code adopted from Kirkland (2021). The combined structures
containing the apoferritin molecule and the random ice layer con-
tained more than 320,000 atoms at each orientation. We assumed
that the structure was illuminated by a plane monochromatic elec-
tron wave with E =300 keV. The “forward” simulations com-
prised of 1,000 defocused images of these structures, each image
containing 512 x 512 of ~0.27 x 0.27 A? pixels, obtained at differ-
ent defocus distances of around 1.3 um, with a fixed spherical
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aberration C; =2.7 mm, simulated random astigmatism and ran-
dom transverse (x-y) shifts of the order of 10 A. The images were
created at random 3D orientations of the molecular structure,
defined by the three Euler angles (Heymann et al., 2005). The ori-
entation and defocus data for these simulations were imported
from RELION software (Scheres, 2012; Zivanov et al., 2018)
where it was generated in the course of analysis of a real
cryo-EM experimental dataset. We also incorporated the effect
of thermal motion of atoms via a Debye-Waller factor (Cowley,
1995) corresponding to a root-mean-square displacement of
0.1 A at 300 K, scaled down according to the assumed tempera-
ture of 77 K (—196°C). We did not include any electron shot
noise in the simulated images in this example, as, with the current
parameters, it would have required many more images for a high-
quality 3D reconstruction, leading to a prohibitively long compu-
tation time in the forward simulation step. The forward
multislice-based simulations using our optimized C++ code
(Gureyev, 2021) took approximately 24h on a PC with dual
Xeon Gold 6149 processors, running 64 parallel threads at close
to 100% CPU load at all times to calculate the 1,000 defocused
images. An example in the section “RNA polymerase molecule
(7AAP)” below, which involves a smaller molecule, demonstrates
the effect of realistic amounts of electron shot noise on the CHR
result obtained from 10,000 defocused images. Note however that
the simulated random layer of ice already has effectively intro-
duced large amounts of image “noise” in the present example.
A typical defocused image is shown in Figure 4a. Figure 4b con-
tains a low-pass filtered copy of an experimental cryo-EM image
of apoferritin for comparison.

We applied the CHR algorithm based on equation (4) with w
=1A and d,,, =10 A to the 1,000 simulated defocused images.
The reconstruction cube had a side of 138 A, as needed to enclose
the 7KOD structure. The whole reconstruction using our software
(Gureyev, 2021) took less than 1 h on the same computer hard-
ware as described above. A typical cross-section through the 3D
potential obtained with CHR is shown in Figure 4c. Many atomic
positions can be easily identified in this reconstructed image.
After that, we high-pass filtered the reconstructed 3D potential
by subtracting a 10-pixel-wide Gaussian-averaged copy from it.
The filtered potential was then thresholded from below with the
minimum cut-off level of 0.3 V. An image of the same slice of
the filtered and thresholded 3D potential is shown in Figure 4d.
Finally, we applied a simple peak-localization algorithm [as
implemented in our software (Gureyev, 2021)] to the filtered
potential distribution, which resulted in 34,924 identified peaks
(reconstructed atomic positions).

Having reconstructed the atomic positions in the imaged mole-
cule, we then matched the located atomic positions with the orig-
inal ones in the initial structure file used for the forward
simulations (with the hydrogen atoms removed). The matching
was based on pair-wise distance minimization, that is, for each
atom in the original structure, we identified one atomic location
in the reconstructed set that had a minimal distance from the
given original atom. If that minimal distance was larger or equal
to a set limit (in this case, 1.0 A), then the match was discarded,
resulting in what we termed a “false negative” (missed atom)
instance. We repeated this procedure for each atom in the original
structure. At the end of this procedure, some atomic locations in
the reconstructed set had not been matched with any atoms in
the original structure. These remaining reconstructed locations
were called “false positives,” referring to the localized “atoms” in
places where the original structure actually had none. The whole


https://doi.org/10.1017/S1431927622000630

1556

Timur E. Gureyev et al.

Fig. 4. (a) Simulated defocused image of apoferritin structure embedded in amorphous ice. (b) A low-pass filtered experimental cryo-EM image of an apoferritin
molecule. (c) A typical cross-section through the 3D potential distribution obtained using CHR. (d) A filtered and thresholded version of the same slice as in (c).

matching procedure was performed using the routine “pdb-
compare” from our software package (Gureyev, 2021). As a result,
33,540 out of a total of 33,816 atoms (99.18%) were uniquely
matched, with the average distance between the matched recon-
structed and original atomic positions equal to 0.14 A and a max-
imum distance of 0.996 A. There were 276 “false negative” results,
that is, 0.82% of the total number of original atoms, and 1,384
“false positive” results (localized “atoms” in places where the orig-
inal structure had none), that is, 3.96% of the total.

RNA Polymerase Molecule (7AAP)

Our second simulation test included the SARS-CoV-2 RNA-
dependent RNA polymerase molecule in the presence of
favipiravir-RTP, represented by the structure 7AAP from
Protein Data Bank (Naydenova et al.,, 2020, 2021). This structure
contained 9,446 non-hydrogen atoms (Z,Fe;SssP2sMg301348
N551Cs019). We also added a simulated layer of amorphous ice
with 140 A thickness at each orientation. The addition of ice
resulted in over 250,000 extra atoms in each input structure,
and the actual RNA polymerase molecule constituted only
about 4% of atoms in the total simulated structures.

The “forward” simulations in this case contained 10,000 defo-
cused images of the 7AAP structure with added ice, obtained with
a plane electron wave illumination at E = 300 keV, with 256 x 256
of ~0.453 x 0.453 A” pixels in each image. The images were calcu-
lated under conditions similar to those described in the section
“Apoferritin molecule (7KOD)” above, including the same fixed
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C; aberration, “random” astigmatism and thermal motion of
atoms. However, in the present case, we also simulated the
Poisson shot noise statistics in the detector at the level of 10 elec-
trons per A% which resulted in a mean signal-to-noise ratio of
approximately 1.4 in each simulated defocused image. Typical
simulated defocused images before and after the addition of the
shot noise are shown in Figures 5a and 5b, respectively. We
used many more simulated images in this example, compared
to the previous example (10,000 versus 1,000), because the high
level of image noise used in the present example dictated the
need to have more input images in order to achieve a successful
CHR result. Note, however, that the 10,000 input images used
in the current example are still at least an order of magnitude
less than the number of input images in a typical high-resolution
cryo-EM single-particle analysis experiment. We also reduced the
number of image pixels by a factor of four in the present example
compared to the previous example. This was done primarily in
order to keep the computational time down in the forward simu-
lations. This would have been difficult to replicate in the previous
example, because of the larger number of atoms in the molecule
analyzed in the section “Apoferritin molecule (7KOD),” com-
pared to the molecule used in the present example. Even with
the images having 256 x 256 pixels, it took approximately 28 h
to simulate the 10,000 defocused images using the same software
and the same computer hardware as described in the section
“Apoferritin molecule (7KOD)”. In contrast, the subsequent
application of CHR algorithm to the 10,000 simulated frames
took only around 30 min to complete.
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Fig. 5. (a) A typical simulated defocused image of 7AAP structure embedded in amorphous ice, before the addition of the shot noise. (b) Same as (a), but after the
addition of the simulated shot noise at the level of 10 electrons per A? in each image. (c) A typical cross-section through the 3D potential distribution obtained
using CHR. (d) A high-pass filtered version of the CHR reconstruction of the same slice obtained from 1,001 simulated defocused images with 1,024 x 1,024 pixels
and 10 electrons per A% (e) Same as (d), but obtained using RELION 3.1 software with the Ewald sphere curvature correction option. (f) Same as (e), but without

the Ewald sphere curvature correction.

We then applied the CHR algorithm based on equation (4) with
w=1A and d,,=10 A to the 10,000 simulated noisy defocused
images. A typical cross-section through the 3D potential obtained
using CHR is shown in Figure 5c. As in the previous case, many
atomic positions could be identified by eye in this “raw” recon-
structed image. We subsequently high-pass filtered this 3D poten-
tial distribution by subtracting its copy convolved with a
10-pixel-wide Gaussian. The application of the peak localization
algorithm to this filtered 3D potential distribution resulted in
9,444 atom localizations. A subsequent comparison of the
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reconstructed atom locations with the original atom positions in
the 7AAP structure produced the following outcome: 9,184 atoms
out of a total of 9,446 atoms in the 7APP structure (i.e., 97.23%)
were uniquely matched. This result contained 262 false negatives
(2.77%) and 309 false positives (3.26%). The average distance
between the original and the reconstructed atomic positions was
0.35 A, with a maximum distance of 0.997 A and a standard devi-
ation of 0.18 A. All sulfur atoms and all but one of the phosphorus
atoms present in the 7AAP structure were correctly located. There
was no clear spatial pattern for the false negative results, that is, for
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the position of atoms in the original 7AAP structure that could not
be located in the present CHR result.

We also compared the above CHR results for the 7AAP mol-
ecule with the corresponding results obtained using RELION 3.1
software (Scheres, 2012; Zivanov et al., 2018). In the first such
attempt, we loaded the 10,000 simulated defocused images
(described above), together with the information about their ori-
entations, defocus distances, and other relevant parameters, into
RELION and performed the reconstruction of the 3D electro-
static potential. In doing so, we applied the Ewald sphere curva-
ture correction option in RELION, in particular Russo &
Henderson (2018) and Zivanov et al. (2018). The resultant
reconstructed potential had a significantly lower spatial resolu-
tion compared to the CHR result described above and shown
in Figure 5c. Fourier shell correlation-based spatial resolution
of this RELION reconstruction was 2.8 A. We believe that the
reason for this low resolution was that the present 10,000 simu-
lated images had only 256 x 256 pixels each with the image size
of 116 x 116 A>. While the spatial resolution in the near-Fresnel
region (where the inverse Fresnel number is small,
N;!' = (Az)/h* << 1, with h being the pixel size) is determined
predominantly by the pixel size, in the far-Fresnel region (where
Ni! = (Az)/h* >> 1), the spatial resolution can be limited by
either the pixel size or the image aperture (side length), A,
with the required optimal relationship between the two being
Ah=Jz, or A= Ny'h. In the current case, we had h=
0453 A, 220.02 A, z210*A, N;! =975, and so the latter
requirement translated into the aperture size of approximately
442 A, which is significantly larger than the above image aper-
ture of 116 A. We hypothesize that the apparent high spatial res-
olution in the CHR result presented earlier in this section (e.g.,
Fig. 5¢) was possible because of the intrinsic periodicity of the
numerical Fast Fourier Transform (FFT) used in our simula-
tions, both in the forward image calculation and in the CHR.
As a result of this periodicity, the high-order diffraction fringes
were “folded” back into the image across the opposite boundar-
ies in the forward simulations, and the corresponding image
contrast was implicitly utilized at the CHR stage. The same
behavior could not be expected from the RELION reconstruc-
tion, which suffered from the lack of high-resolution informa-
tion as a result.

In order to rectify this problem, we carried out additional sim-
ulations using defocused images with the aperture of 464 A and
1,024 x 1,024 pixels. We simulated 1,001 of these larger defocused
images of the 7AAP structure using the first 1,001 entries from
the same orientation parameter file as before. We then added
pseudo-random Poisson noise corresponding to 10 electrons per
A? to the simulated images. Finally, we performed the retrieval
of the 3D electrostatic potential distribution from these noisy
images in the CHR software and in the RELION 3.1 software
with and without the Ewald sphere curvature correction option.
In this case, the reconstruction result from RELION with the
Ewald sphere curvature correction was somewhat better than
that obtained using CHR (see Figs. 5d, 5e). A comparison of
the peak locations in the two reconstructions with the original
XYZ file for the 7AAP structure led to sub-A localization of
84.61% of atoms from the CHR potential and 85.94% for the
RELION reconstruction. The same reconstruction in RELION
without the Ewald sphere curvature correction resulted in sub-A
localization of 81.66% of atoms in the original 7AAP structure.
It was apparent in these reconstructions that the RELION soft-
ware managed image noise more effectively than our current
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implementation of the CHR algorithm which does not yet have
any sophisticated tools for this purpose. We did apply both a
high-pass Gaussian filter with 3.5 A width (to remove the slowly
varying background) and a low-pass Gaussian filter with 1A
width (to filter out some noise) in the CHR reconstruction in
this case, but this was certainly a much cruder tool compared
to the Fourier shell correlation (FSC) curve-based spatial filtering
used in cryo-EM. These results indicate that the CHR method
provided an improvement in the accuracy of the 3D reconstruc-
tion compared to the RELION reconstruction without the
Ewald sphere curvature correction, while the effect of the Ewald
sphere curvature correction was moderate both in RELION and
in CHR. The latter outcome can be explained by the fact that
the spatial resolution in this simulated example was negatively
affected by the relatively low number of input images and the
high level of noise in them. The FSC-based estimation of the spa-
tial resolution of the RELION reconstruction was 1.9 A without
the Ewald sphere curvature correction, and it improved only to
1.8 A after the application of the Ewald sphere curvature correc-
tion option.

Overall, the present comparison tests between CHR and
RELION should be considered preliminary and they may not
yet correctly reflect the true performance potential of the two
methods for Ewald sphere curvature correction. We plan to
carry out further such tests using experimental cryo-EM datasets
in the future. We will also make our test image sets of the 7AAP
structure available to anyone on request (by sending an email to
the first author), so that the interested reader could potentially
perform their own comparison using RELION or other software
for 3D reconstruction of the electrostatic potential.

Fe-Pt Nanoparticle

Our final simulation used a Fe-Pt nanoparticle with 5,107 Pt
atoms and 5,356 Fe atoms (10,463 atoms in total). This particle
can be fully enclosed in a cubic 3D volume with 70 A sides. We
also added a simulated amorphous carbon substrate in the form
of a cube with 100 A sides located just “under” the nanoparticle.
The simulated substrate contained 90,253 C atoms, so the whole
test structure consisting of the nanoparticle and the substrate con-
tained 100,716 atoms. The structure was centered within a cubic
volume with the linear dimension of 200 A. This volume was suf-
ficient to contain the whole test structure during arbitrary 3D
rotations around the central point. Figure 6a presents a 3D ren-
dering of the simulated test structure, produced using the Vesta
software (Momma & Izumi, 2006) from the input XYZ file with
atom positions.

The “forward” simulations in this case contained just 360 defo-
cused images with 512 x 512 of 0.390625 x 0.390625 A® pixels
each. The images were obtained with a plane monochromatic
electron wave illumination with E =200 keV. An objective aper-
ture of 40 mrad and no spherical aberrations were imposed,
approximating an aberration-corrected TEM. The effect of ther-
mal motion of atoms was included in the simulations via a
Debye-Waller factor with the root-mean-square displacement of
0.085 A at 300 K. The images corresponded to 360 different illu-
mination directions uniformly randomly distributed on the unit
sphere in 3D, with one defocused image per orientation and
with all defocus distances uniformly randomly distributed
between 100 and 150 A. We then added simulated Poisson shot
noise with a mean of 9 electrons per pixel, which, given the
pixel dimensions, corresponded to approximately 59 electrons
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Fig. 6. (a) 3D rendering of the Fe-Pt nanoparticle on the carbon substrate. (b) A typical simulated defocused image of the Fe-Pt nanoparticle on the carbon sub-
strate with simulated shot noise at the level of 9 electrons per pixel. (c) A typical cross-section through the 3D potential distribution obtained using CHR in the part
of the imaged volume containing the nanoparticle. (d) The result of peak localization in the slice shown in (c). (e) The original nanoparticle with the atoms not
located by the CHR algorithm shown as larger green balls. (f) The same cross-section through the 3D potential as in (c), but reconstructed using the orientation

and defocus parameters containing random errors.

per A% in each image. The latter number was equivalent to a total
dose of 21,240 electrons per A® over the whole scan. A typical
defocused image is shown in Figure 6b.

A CHR algorithm based on equation (4) with w=1 A and
dimax =30 A was applied to the 360 simulated noisy defocused
images. Here, the offset distance o =30 A was selected on
the basis of numerical simulations, similar to those used for
Figure B.2a in Appendix B, but for a single Fe atom imaged
under the same conditions as for the simulated defocused images
of the Fe-Pt nanoparticle in the current section. We used the Fe
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atom to determine the optimal value of d,,,, here because the Fe
atoms are lighter and more difficult to locate in CHR than the Pt
atoms. A typical cross-section through the “raw” 3D potential
obtained by CHR in the area containing the nanoparticle is
shown in Figure 6c. We subsequently filtered this 3D potential
distribution by subtracting its copy convolved with a 5-pixel-wide
Gaussian. The application of the peak localization algorithm to
the reconstructed volume containing the nanoparticle resulted
in 10,482 peaks within the volume containing the reconstructed
nanoparticle (excluding the sub-volume occupied by the carbon
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substrate). One slice through the 3D volume with the recon-
structed atomic peaks in shown in Figure 6d. A subsequent com-
parison of the reconstructed atom locations with the original
atom positions in the Fe-Pt nanoparticle produced the following
outcome: 10,425 atoms out of a total of 10,463 atoms in the nano-
particle (i.e., 99.64%) were uniquely matched. This result con-
tained 38 false negatives (0.36%) and 57 false positives (0.54%).
The average distance between the original and the reconstructed
atomic positions was 0.22 A, with a maximum distance of
1.11 A, and a standard deviation of 0.09 A. All 5,107 Pt atoms
were correctly located, while 38 out of 5,356 Fe atoms (0.7%)
were missed. The first 5,107 highest reconstructed voltage peaks
were correctly matched with 5,098 locations of Pt atoms, and
only 9 of these peaks (0.2%) were erroneously matched with loca-
tions of Fe atoms in the nanoparticle. None of these peaks corre-
sponded to false positives. The Fe atoms in the original
nanoparticle that could not be located in this CHR result were
predominantly located on the surface of the nanoparticle
(Fig. 6e). This may warrant a further investigation at a later time.

We also checked the tolerance of the CHR algorithm to errors
in the rotational positions of the nanoparticle and in the defocus
distances corresponding to the input images. For this test, we
introduced independent random angular errors uniformly distrib-
uted within the interval (—1.0° 1.0°) into each of the three Euler
angles describing the orientation of the nanoparticle for each of
the 360 input images. We also introduced random errors uni-
formly distributed within the interval (=5 A, 5 A) into the corre-
sponding defocus distances, with the error magnitude of 10 A
constituting about 8% of the mean defocus distance. We then
applied the CHR algorithm with the same parameters as
described above, but using the input orientations and defocus dis-
tances with the introduced errors. Figure 6f shows the same cross-
section through the 3D potential as in Figure 6c, but recon-
structed using the orientation and defocused parameters with
the errors. One can see that, in the present reconstruction, the
peaks of the potential in the vicinity of atomic locations were
not defined as cleanly as in the previous reconstruction using
the exact orientation and defocused data. Subsequently, in the
present case, 9,451 out of a total of 10,463 atoms in the nanopar-
ticle (i.e., 90.33%) were uniquely matched. This result contained
1,012 false negatives (9.67%) and 1,030 false positives (9.83%).
The average distance between the original and the reconstructed
atomic positions was 0.66 A, with a maximum distance of 2.0 A
and a standard deviation of 0.42 A. Only 61 out of 5,107 Pt
atoms (1.2%) were missed in the presence of these orientation
and defocus errors, the other 951 false negative results corre-
sponded to missed Fe atoms (17.8%).

Note that, according to the linear (“additive”) structure of the
CHR algorithm [see Fig. 1 and equation (4)], any errors in the
input orientation and defocus data will lead to deterioration of
the spatial resolution and contrast-to-noise in the reconstructed
3D potential. However, due to the deterministic and non-iterative
nature of the CHR algorithm, such deterioration is always going
to be gradual and generally predictable. In particular, the deteri-
oration of the spatial resolution of the reconstruction will be pro-
portional to the errors in the input orientations and defocus data.

Discussion and Summary

In the previous sections, we have described an effective 3D recon-
struction technique, called CHR, which utilizes a conjugated
reconstructed phase distribution at each defocus plane. The
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proposed method allows one to obtain a complex wave amplitude
from a single intensity distribution registered at each illumination
direction (or, equivalently, at each rotational position of the
imaged sample). This complex wave amplitude can then be
numerically backpropagated into the volume containing the
imaged sample. We have shown that, by averaging the intensities
of the backpropagated waves over the illumination directions, it is
possible to reconstruct the 3D spatial distribution of the refractive
index in the sample. In the case of electron imaging, this produces
an approximation to the 3D distribution of the electrostatic
potential in the sample. By finding the local maxima (peaks) of
this potential, one can determine the 3D spatial location and
the species of individual scattering centers, such as atoms in the
case of high-resolution imaging of biological molecules or
nanoparticles.

The key feature of the proposed method is its significantly
improved longitudinal spatial resolution, compared to methods
based on conventional CTF-corrected CT reconstruction
(Cowley, 1995; Born & Wolf, 1999; Natterer, 2001; Glaeser,
2019). Effectively, CHR allows one to find the location of each
atom in the imaged sample along the illumination direction
and, in principle, fully reconstruct the 3D sample from a single
defocused image in a direct non-iterative way, provided that the
atoms do not shadow each other in the image (Gureyev et al.,
2021). Similar results have been previously successfully demon-
strated using the Big Bang Tomography method (Van Dyck
et al.,, 2012; Chen et al.,, 2016, 2017) which is based on similar
general ideas but is quite different in its implementation from
the CHR and DHT techniques. In reality, various detrimental fac-
tors like multiple scattering and limited signal-to-noise ratio
require one to collect multiple defocused images at different illu-
mination directions in order to reconstruct the 3D structure
unambiguously and with a sufficiently high spatial resolution.
However, the CHR method still provides an advantage in this
imaging scenario in terms of reduced sampling requirements in
the rotational space, that is, the CHR method can reconstruct a
sample from fewer views than conventional CT techniques.

Our current simple software implementation of the CHR
method assumes that the orientation and defocus parameters
for the input images are known precisely. However, the CHR
algorithm can potentially be incorporated into established soft-
ware packages for single-particle analysis, such as, for example,
RELION (Scheres, 2012) or FREALIGN (Grigorieff, 2016),
which can perform 3D reconstruction in the absence of precise
information about the experimental orientation and defocus dis-
tance parameters by iteratively refining these parameters during
the reconstruction. In this case, the CHR method would be
used as just one step in the overall reconstruction scheme, replac-
ing the conventional CTF correction step. The CHR would allow
one to account for different effective propagation distances for
different atoms in the particle. In other words, it would provide
a method for correcting the Ewald sphere curvature in a different
way from the currently available methods (Russo & Henderson,
2018; Zivanov et al., 2018). The relative performance of the
CHR method in comparison with the existing methods for
Ewald sphere curvature correction in such an iterative implemen-
tation will best be investigated within the context of established
software packages.

The problem of radiation damage currently presents the key
limitation to further improving the quality of 3D reconstruction
in high-resolution TEM imaging (Glaeser, 2016, 2019). In the
case of nanoparticle imaging, the maximum radiation dose is
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estimated for a single instance of a particle, but in cryo-EM, mul-
tiple near-identical copies of the same molecule are imaged in sin-
gle experiment, thus effectively splitting the dose between many
particles. Even in the latter case, radiation damage remains a
major issue and is the subject of active research. In particular, it
has been suggested recently (Naydenova et al, 2019;
Latychevskaia, 2020) that high-resolution imaging using lower-
energy electrons may be advantageous, compared to the 200-
300 keV electrons used in most modern high-resolution TEM
instruments. We believe that the CHR method proposed in the
present paper can be later adapted to the conditions relevant
for lower-energy electron imaging, where it could provide even
larger benefits due to the further reduced depth of field and
improved longitudinal resolution.

In summary, in the present paper, we have developed a theo-
retical model for the CHR method which represents a variant of
3D DT reconstruction with phase conjugation. We also included
several examples of numerical simulations and reconstructions
using the proposed CHR algorithm. These examples show that
the method is potentially capable of high-quality reconstruction
of complex objects, such as protein molecules or nanoparticles,
under realistic conditions that can be achieved in high-resolution
TEM experiments.
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interest.

References

Allen L], McBride W, O’Leary NL & Oxley MP (2004). Exit wave reconstruc-
tion at atomic resolution. Ultramicroscopy 100, 91-104.

Allen L} & Rossouw CJ (1990). Absorptive potentials due to ionization and
thermal diffuse scattering by fast electrons in crystals. Phys Rev B 42,
11644-11654.

Born M & Wolf E (1999). Principles of Optics, 7th ed. Cambridge, UK:
Cambridge University Press.

Brown HG, Chen Z, Weyland M, Ophus C, Ciston J, Allen L] & Findlay SD
(2018). Structure retrieval at atomic resolution in the presence of multiple
scattering of the electron probe. Phys Rev Lett 121, 266102.

Chen FR, Van Dyck D & Kisielowski C (2016). In-line three-dimensional
holography of nanocrystalline objects at atomic resolution. Nat Commun
7, 10603.

Chen JPJ, Schmidt KE, Spence JCH & Kirian RA (2021). A new solution to
the curved ewald sphere problem for 3D image reconstruction in electron
microscopy. Ultramicroscopy 224, 113234.

Chen L-G, Warner J, Kirkland AI, Chen F-R & Van Dyck D (2017).
Snapshot 3D electron imaging of structural dynamics. Sci Rep 7, 10839.
Ciston J, Deng B, Marks LD, Own CS & Sinkler W (2007). A quantitative
analysis of the cone-angle dependence in precession electron diffraction.

Ultramicroscopy 108, 514-522.

Cowley JM (1995). Diffraction Physics, 3rd ed. Amsterdam, Netherlands:
Elsevier.

Cowley JM, Spence JCH & Smirnov VV (1997). The enhancement of electron
microscope resolution by use of atomic focusers. Ultramicroscopy 68, 135—
148.

Crowther RA, DeRosier DJ & Klug A (1970). The reconstruction of a three-
dimensional structure from projections and its application to electron
microscopy. Proc R Soc A 317, 319-340.

DeRosier DJ (2000). Correction of high-resolution data for curvature of the
Ewald sphere. Ultramicroscopy 81, 83-98.

Devaney AJ (1982). A filtered backpropagation algorithm for diffraction
tomography. Ultrason Imag 4, 336-350.

Donatelli JJ & Spence JCH (2020). Inversion of many-beam bragg intensities
for phasing by iterated projections: Removal of multiple scattering artifacts
from diffraction data. Phys Rev Lett 125, 065502.

https://doi.org/10.1017/51431927622000630 Published online by Cambridge University Press

1561

Du M, Kandel S, Deng J, Huang X, Demortiere A, Nguyen TT, Tucoulou R,
De Andrade V, Jin Q & Jacobsen C (2021). Adorym: A multi-platform
generic X-ray image reconstruction framework based on automatic differen-
tiation. Opt Expr 29, 10000-10035.

Dunin-Borkowski RE & Cowley JM (1999). Simulations for imaging with
atomic focusers. Acta Crystallogr A 55, 119-126.

Erni R (2015). Aberration-Corrected Imaging in Transmission Electron
Microscopy: An Introduction, 2nd ed. London, UK: Imperial College Press.

Gbur G & Wolf E (2002). Diffraction tomography without phase information.
Opt Lett 27, 1890-1892.

Glaeser RM (2016). How good can cryo-EM become? Nat Meth 13, 28-32.

Glaeser RM (2019). How good can single-particle cryo-EM become? What
remains before it approaches its physical limits? Ann Rev Biophys 48, 45-61.

Grigorieff N (2016). Chapter eight - Frealign: An exploratory tool for single-
particle cryo-EM. Meth Enzymol 579, 191-226.

Gureyev TE (2021). https:/github.com/timg021/SparseStructuresTEM2
(accessed 3 May 2021).

Gureyev TE, Quiney HM, Kozlov A & Allen LJ (2020). Relative roles of mul-
tiple scattering and Fresnel diffraction in the imaging of small molecules
using electrons. Ultramicroscopy 218, 113094.

Gureyev TE, Quiney HM, Kozlov A, Paganin DM, Schmalz G, Brown HG &
Allen LJ (2021). Relative roles of multiple scattering and fresnel diffraction
in the imaging of small molecules using electrons, part II: Differential holo-
graphic tomography. Ultramicroscopy 230, 113311.

Heymann JB, Chagoyen M & Belnap DM (2005). Common conventions for
interchange and archiving of three-dimensional electron microscopy infor-
mation in structural biology. J Struct Biol 151, 196-207.

Hovden R, Ercius P, Jiang Y, Wang D, Yu Y, Abruiia HD, Elser V & Muller
DA (2014). Breaking the Crowther limit: Combining depth-sectioning and
tilt tomography for high-resolution, wide-field 3D reconstructions.
Ultramicroscopy 140, 26-31.

Jia CL, Houben L, Thust A & Barthel J (2010). On the benefit of the
negative-spherical-aberration imaging technique for quantitative HRTEM.
Ultramicroscopy 110, 500-505.

Kirkland EJ (2010). Advanced Computing in Electron Microscopy, 2nd ed.
New York, USA: Springer.

Kirkland EJ (2021). https:/github.com/jhgorse/kirkland/tree/master/temsim
(accessed 15 August 2021). See also Kirkland EJ. https://sourceforge.net/
projects/computem/ (accessed 15 August 2021).

Latychevskaia T (2020). Holography and coherent diffraction imaging with
low-(30-250eV) and high-(80-300keV) energy electrons: History, princi-
ples, and recent trends. Materials 13, 3089.

Lentzen M (2008). Contrast transfer and resolution limits for sub-Angstrom
high-resolution transmission electron microscopy. Microsc Microanal 14,
16-26.

Lentzen M (2014). No surprise in the first born approximation for electron
scattering. Ultramicroscopy 136, 201-210.

Mandel L & Wolf E (1995). Optical Coherence and Quantum Optics.
Cambridge, UK: Cambridge University Press.

Momma K & Izumi F (2006). An integrated three-dimensional visualization
system VESTA using wxWidgets. Commission Crystallogr Comput IUCR
Newslett 7, 106-119.

Morgan AJ, Martin AV, D’Alfonso AJ, Putkunz CT & Allen LJ (2011).
Direct exit-wave reconstruction from a single defocused image.
Ultramicroscopy 111, 1455-1460.

Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S, Brown PMGE,
Grigoras IT, Malinauskaite L, Malinauskas T, Miehling J, Uchanski T,
Yu L, Karia D, Pechnikova EV, de Jong E, Keizer J, Bischoff M,
McCormack J, Tiemeijer P, Hardwick SW, Chirgadze DY, Murshudov
G, Aricescu AR & Scheres SHW (2020). Single-particle cryo-EM at atomic
resolution. Nature 587, 152-156.

Natterer F (2001). The Mathematics of Computerized Tomography.
Philadelphia, USA: SIAM.

Naydenova K, McMullan G, Peet MJ, Lee Y, Edwards PC, Chen S, Leahy E,
Scotcher S, Henderson R & Russo CJ (2019). CryoEM at 100keV: A dem-
onstration and prospects. IUCrJ 6, 1086-1098.

Naydenova K, Muir KW, Wu LF, Zhang Z, Coscia F, Peet M,
Castro-Hartman P, Qian P, Sader K, Dent K, Kimanius D, Sutherland


https://github.com/timg021/SparseStructuresTEM2
https://github.com/timg021/SparseStructuresTEM2
https://github.com/jhgorse/kirkland/tree/master/temsimhttps://sourceforge.net/projects/computem/
https://github.com/jhgorse/kirkland/tree/master/temsimhttps://sourceforge.net/projects/computem/
https://github.com/jhgorse/kirkland/tree/master/temsimhttps://sourceforge.net/projects/computem/
https://github.com/jhgorse/kirkland/tree/master/temsimhttps://sourceforge.net/projects/computem/
https://github.com/jhgorse/kirkland/tree/master/temsimhttps://sourceforge.net/projects/computem/
https://doi.org/10.1017/S1431927622000630

1562

JD, Loewe ], Barford D & Russo CJ (2020). https://www.rcsb.org/structure/
7AAP (deposited: 04 September 2020).

Naydenova K, Muir KW, Wu L-F, Zhang Z, Coscia F, Peet M],
Castro-Hartmann P, Qian P, Sader K, Dent K, Kimanius D,
Sutherland JD, Lowe J, Barford D & Russo CJ (2021). Structure of the
SARS-CoV-2 RNA-dependent RNA polymerase in the presence of
favipiravir-RTP. Proc Natl Acad Sci USA 118, €2021946118.

Nieto-Vesperinas M (2006). Scattering and Diffraction in Physical Optics, 2nd
ed. New Jersey, USA: World Scientific Publishing.

Paganin D, Barty A, McMahon PJ & Nugent KA (2004). Quantitative
phase-amplitude microscopy. III. The effects of noise. ] Microsc 214, 51-61.

Paganin DM (2006). Coherent X-ray Optics. Oxford, UK: Clarendon Press.

Ren D, Ophus C, Chen M & Waller L (2020). A multiple scattering algorithm
for three dimensional phase contrast atomic electron tomography.
Ultramicroscopy 208, 112860.

Russo C] & Henderson R (2018). Ewald sphere correction using a single side-
band image processing algorithm. Ultramicroscopy 187, 26-33.

Sanchez A & Ochando MA (1985). Calculation of the mean inner potential. J
Phys C: Solid State Phys 18, 33-41.

Scheres SHW (2012). RELION: Implementation of a Bayesian approach to
cryo-EM structure determination. J Struct Biol 180, 519-530.

Sun M, Azumaya C, Tse E, Frost A, Southworth D, Verba KA, Cheng Y &
Agard DA (2020). https://www.rcsb.org/structure/7ZKOD (deposited: 08
November 2020).

Sun M, Azumaya CM, Tse E, Bulkley DP, Harrington MB, Gilbert G, Frost
A, Southworth D, Verba KA, Cheng Y & Agard DA (2021). ] Struct Biol
213, 107745-107745.

Teague MR (1983). Deterministic phase retrieval: A green’s function solution.
] Opt Soc Am 73, 1434-1441.

Van den Broek W & Koch CT (2012). Method for retrieval of the three-
dimensional object potential by inversion of dynamical electron scattering.
Phys Rev Lett 109, 245502.

Van Dyck D, Jinschek JR & Chen F-R (2012). ‘Big bang’ tomography as a
new route to atomic-resolution electron tomography. Nature 486, 243-246.

Voortman LM, Stallinga S, Schoenmakers RHM, van Vliet L] & Rieger B
(2011). A fast algorithm for computing and correcting the CTF for tilted,
thick specimens in TEM. Ultramicroscopy 111, 1029-1036.

Wolf E (1969). Three-dimensional structure determination of semi-
transparent objects from holographic data. Opt Commun 1, 153-156.

Wolf M, DeRosier DJ & Grigorieff N (2006). Ewald sphere correction for
single-particle electron microscopy. Ultramicroscopy 106, 376-382.

Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJH, Lindahl E &
Scheres SHW (2018). New tools for automated high-resolution cryo-EM
structure determination in RELION-3. eLife 7, e42166.

Appendix A: Theory of the CHR method

Consider a model where the distribution of the electrostatic potential of a sin-
gle atom located at r = 0 is approximated by a Gaussian distribution

V(r) = 2EaG, (r,)G(2), (A.1)
with G, (r1) = G(x)G(y), G(z)=exp[ —2*/(26%)], and « = max |V (r)/(2E)|
~ 107* for light atoms and electron energies E of 200-300 keV, as the maxi-
mum value of a Gaussian potential is expected to be around 40 V in this case
(Sanchez & Ochando, 1985).

If the atom is illuminated by a high-energy plane monochromatic electron
wave with the complex amplitude Up(r, z) = I/? exp (i27kz), the complex
amplitude in the plane z>0 can be expressed as a 2D Fresnel integral with
the transmission function T(r;) = exp [i¢(r,)], where ¢(r,) = [7/(AE)]
[ V(ry, 2')dz is the phase shift corresponding to the projected electrostatic
potential of the atom (Cowley, 1995; Lentzen, 2014). Note that, while a projec-
tion approximation for the phase is being made here at the level of each indi-
vidual atom, such an approximation is consistent with our formalism’s ability
to take Ewald sphere curvature into account at a whole-of-molecule level. If
the phase shift due to each individual atom is small, we can use the first
Born approximation and equation (A.1) to write T(r.) — 1 = [imr/(AE)]
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fV(r 1, 2)dz = ieG (r1), where € =2maw/A and w is the previously intro-
duced “atom width” parameter which, in the case of a Gaussian potential, is
equal to w = emYe = fG(z)dz. Note that £ is likely to be small compared
to unity. Indeed, for typical cryo-EM parameters, we have o= (2/3)x 107*
(Sanchez & Ochando, 1985), w=~1A and A=~2x10> A, and hence =
0.02. Therefore, the Fresnel integral for the complex wave amplitude down-
stream from the atom can be written as

Uin > i —r P . J /
U(ry, z) = %‘U exp(%)[l +ieGL(¥')]dY'.  (A2)

From a physical perspective, equation (A.2) corresponds to a coherent
superposition of a z-directed plane wave and a weak Gaussian beam.

Using the well-known analytical formula for the free-space propagation of
a Gaussian beam (see, e.g., Mandel & Wolf, 1995, Section 5.6.2), we can explic-
itly evaluate the Fresnel integral in equation (A.2):

ie
U(ry, 2) = Un(ry, Z)il + 7

=2
(+N;z2) a3

e, |? ime |? . _
exp [— 20_% exp m — jarctan (NF,Z) s

where N, = 276%/(1z) is the Fresnel number associated with the width of the
atomic potential, 02 = 0?(1 + N;2) and arctan (N};}) is a Gouy phase shift
(phase anomaly at focus) (Born & Wolf, 1999).

The Gouy phase is crucial to appreciating an important consequence of
equation (A.3). This is related to the fact that an atom may be viewed as a
crude focusing lens for electrons (Cowley et al., 1997; Dunin-Borkowski &
Cowley, 1999), as sketched in Figure A.la. We briefly explain this point,
here, since it is key to a clear understanding of CHR from a physical perspec-
tive. The incident plane waves that strike the atom are, under the approxima-
tion adopted here, converted to weakly converging waves upon passing
through the atomic potential. This leads to a weak local intensity maximum
at the point marked f in Figure A.la, after which the wave subsequently
expands as it travels to the detection plane P. At the whole-of-field level, the
electron wavefunction downstream of the atom weakly converges upon the
point f, but when decomposed into a superposition of a Gaussian and a
plane wave according to equation (A.3), the Gaussian beam has its waist at
the atom location, not at f. There is no contradiction here, it is merely a ques-
tion of whether one chooses to decompose the wavefield downstream of the
atom as a sum of two fields (unscattered and scattered fields) or to write it
as a single field.

In a vicinity of the optic axis, where |r| |*/[Az(1 + N;Z)] <<'1, we can
approximate exp {im|ry |2/[Az(1 +N§)Z)]} =1 in equation (A.3). Note also
that the exponent of the Gouy phase term in equation (A.3) is equal to
exp [ — iarctan (N;})]= cos [arctan (N5 })] — isin [arctan (N;})] = (1 — iNg})/
(1+ Ng, 2)!/2, Therefore, the whole diffracted complex amplitude in equation
(A.3) can be approximated in a vicinity of the optic axis as

Ulry, 2) = I exp (i2mk2)[1 + Nple.G 1o (r)) +ie.Go.(r)], (A4
where G ;(r1) = exp [ — [r.|*/(202)] and &, = &/(1 + N2). We see, in par-
ticular, that when z — + 0 and correspondingly N5} — 0, the defocused com-
plex amplitude U(ry;,z) in equation (A4) transforms into
U(ry,+0) == Iiln/z[l +ieG) (r)] = Iiln/2 exp [ieG(r.)], as expected from a
plane incident wave undergoing a weak phase shift at the position of the
atom. Upon propagation from 0 to z, this complex amplitude gains the
usual plane-wave phase shift, 27kz, the Gaussian increases its variance (broad-
ens) from ¢” to 02 = ¢*(1 + N;2) and decreases its amplitude from € to
g, =g/(1+ N, 2), and, importantly, the real part of the complex amplitude
gains an extra term NF_Z1 £,G.(r1).

The intensity in plane z can be obtained from equation (A.4), neglecting
the terms of the order of €*:

I(ry, 2) 2 Iin[1 4 2N5 .G o(x )] (A5)


https://www.rcsb.org/structure/7AAP
https://www.rcsb.org/structure/7AAP
https://www.rcsb.org/structure/7AAP
https://www.rcsb.org/structure/7KOD
https://www.rcsb.org/structure/7KOD
https://doi.org/10.1017/S1431927622000630

Microscopy and Microanalysis

(a)
P
|~
P
[+ =]
=)
atom ™~
0 Z
b
(b) P
0 V4

Fig. A.1. (a) Atom as a focusing lens. In the forward problem, illumination of the
atom leads to an intensity maximum at the focal point f downstream of the atom.
In the inverse problem, when backpropagating the wavefield from plane p in vacuum,
the Gouy phase leads to contrast reversal at the position of the atom. This contrast
reversal implies a minimum of contrast in the vicinity of the atom. (b) The effect of
phase conjugation on the backpropagating beam from plane P, in the CHR approach
to the inverse problem: the phase conjugation at p effectively counteracts the effect
of the Gouy phase, leading to a maximum contrast in the vicinity of the atom.

When the propagation distance z tends to zero, we get Ny} — O and &, —
£, making the image contrast near the atom very weak, in agreement with the
fact that atoms act as pure phase objects in this model. On the other hand,
when z increases, the first-order term in brackets in equation (A.5) creates
an image contrast which initially increases with z, resulting in the increased
intensity at the central spot. The intensity reaches its maximum at a point
z=f and then gradually diminishes, because [Ny 1o, Gl (r1)| <
&/(Np, + Np}) < e2m0?/(Az) — 0 at large z. This is precisely the “atomic
focuser” behavior that was to be expected, from our preceding remarks in
the context of Figures A.la and A.1b.

Let us now turn to the problem of phase retrieval. Consider the case when
the second and third terms inside the brackets in equation (A.4) are much
smaller than unity, as happens, for example, when N! >> 1. Then, the
phase of U(r,, z) can be approximated by 27kz + ®(r, z), where

D(ry, 2) = &,G1 ,(r1). (A.6)

Solving equation (A.5) for G, ,(r;) and substituting the result in equation
(A.6), we obtain a simple phase-retrieval formula:

D(ry, 2) = 0.5Np,[I(r1, 2)/In — 1] = 0.5Np, In[I(r1, 2)/In]. (A7)

We emphasize the remarkable simplicity of equation (A.7), since it is
extremely unusual for a deterministic phase-retrieval formula to express a
wavefield’s phase as a simple explicit function of a single measured intensity.
This turns out to be possible in the case of equation (A.7) because of the
simple structure of our model of the atomic potential and the fact that the
interference pattern between the scattered waves from different atoms can be
ignored within the present model which is based on the first Born
approximation.

Our more general multislice-based numerical simulations for a single
atom, with an electrostatic potential modeled as in Kirkland (2010, 2021), illu-
minated by a high-energy plane monochromatic electron wave have confirmed
that the phase function described by equation (A.7) represents a reasonable

https://doi.org/10.1017/51431927622000630 Published online by Cambridge University Press

1563

approximation to the phase distribution near the optic axis in a defocused
complex amplitude under the conditions considered in this section.

If we exactly reconstruct the phase in the defocus plane and backpropagate
the reconstructed complex amplitude, the corresponding contrast near the
atomic location can be weak and rapidly changing (including the change of
sign and zero contrast at the atom location, due to the Gouy phase). We
would like to show that conjugating and rescaling the phase in the following
way:

D(ry,2) = —Nple,GL (1)) = 051 — I(ry, 2)/Iy1]

=~ —0.5In[I(ry, 2)/Iin], (A.8)
and backpropagating the corresponding phase-conjugated complex amplitude,
U(r,, z) = Iiln/2 exp (2mkz)[1 + (1 — i)NF”leZGLZ(rL)], produces a peak in
the contrast function near the atom location (z = 0), regardless of the position
of the defocus (image) plane.

It is important to realize that the true wavefunction in the measurement
plane will not necessarily give the strongest signal when backpropagated to
the atom. Since our purpose is to determine atom locations, rather than to
accurately recover the phase in the measurement plane, the logical possibility
exists that an “incorrect” wavefunction in the measurement plane may give a
superior LPSF compared to the true wavefunction. In some sense, we are delib-
erately introducing “computational imaging-system aberrations” to increase
the contrast in the CHR method; this has an analogue with the deliberate
introduction of optical-hardware aberrations, for aberration-corrected TEMs,
to improve contrast (Jia et al., 2010). Two further points are worth bearing
in mind, in the context of backpropagating the phase-conjugated complex
amplitude. (i) The reciprocity theorem for Fresnel diffraction (Nieto-
Vesperinas, 2006) implies that backpropagating the complex-conjugated field
will give a field whose intensity is the mirror image of the intensity of the for-
ward propagated field, with the mirror plane given by the measurement plane.
(ii) The Gouy phase anomaly, which was responsible for the contrast reversal
in the vicinity of the atom when backpropagating the correctly phased beam
from the plane P, is absent when backpropagating the conjugated beam.
This is because the Gaussian beam component, in Figure A.1b, now has its
curvature reversed by the phase conjugation, hence it is no longer backpropa-
gated to a focus centered on the atom, which removes the Gouy-induced con-
trast reversal.

It is shown in Appendix B [see equation (B.5)] that the transverse intensity
distribution of the backpropagated complex amplitude with the conjugated
phase, I(r., z) = |U(ry, 2)|%, can be approximated near the point z=d,;.x
of the maximum contrast by the intensity of the original diffracted beam
given by equation (A.5) at the same location, that is, I(ry, 2z) =
Iin[1 4 2Ng, Zl £,G 1 .(r1)]. Consequently, near the point of maximum, where
Npg,.. =1, €4, =¢&/2and G4, (r;) =exp[— Iry |/(40%)], we obtain:

f((l]_, dmax) =1- j(rJ.: dmax)/Iin = _SGL(rL/\/E)) (A9)
with G, (r, /+/2) being effectively a “blurred” version of the original transverse
component of the Gaussian potential. On the other hand, the projected atomic
potential is equal to

IV(n, 2)dz = (Exs/mG1(r1) = —(EA/MR(V2r 1, dus), (A.10)

where K (ﬁ r, dmax) is a “de-blurred” version of the contrast function at the
point z = dp,,. Both the position of the maximum contrast, z = dy,.x, and the
degree of blurring of the contrast function at that point depend on the func-
tional form of the atomic potential. Equations (A.9) and (A.10) have been
derived using the Gaussian model potential. It is shown at the end of
Appendix B that, when realistic atomic potentials (Kirkland, 2010, 2021;
Gureyev, 2021) are used instead of the Gaussian potential considered above,
the distance dy,,, becomes smaller and the contrast values become larger com-
pared to the Gaussian case. In line with the reduced distance d,;,,y, the blurring
of the potential at the maximum point becomes negligible. As a consequence,
one has to use a rescaled original backpropagated contrast function
YR(r1, dmay) in equation (A.10) instead of the deblurred function
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K (r 1, ﬁdmax), with the scaling coefficient y = 0.1 when imaging molecules
consisting of light chemical elements with high-energy electrons of energy
E=200-300 keV.

As the 3D distribution of the atomic potential is spherically symmetric, we
can now use the approximation to the Abel transform introduced in Gureyev
et al. (2021) in order to reconstruct V(r) from its projection given by equation
(A.10) with the function yK(r., dmax) in the right-hand side. The resultant
spherically symmetric 3D atomic potential is equal to V(r)= —
[EAy/(7w)]K(|x], 0, dinay), Where w= (2m)"%c is the same “atom width”
parameter as in equation (3) in the main text of the paper. Using this expres-
sion for the reconstruction of the electrostatic potential in a vicinity of each
atom, a derivation based on the independent-atom model, similar to that
used in Gureyev et al. (2021), leads to the reconstruction formula equation
(4) of the main text for the whole 3D potential. Crucially, as established in
Appendix B, the shift, d,.x, of the position of the maximum intensity of the
backpropagated phase-conjugated wave, relative to the corresponding atomic
location, is to a good approximation the same for all atoms in the imaged mol-
ecule. The approximate value of dy,,x for a given experimental setup can be
estimated numerically as shown in Appendix B. The reconstruction process
defined by equation (4) involves a uniform rotational averaging of the 3D dis-
tribution of the backpropagated contrast function K 0,006, 1> 26,0 + Amax)
obtained using the numerically conjugated phase. The rotationally averaged
distribution is multiplied by the factor —EAy/(zw), while the remaining factor
1/(4r) corresponds simply to the area of the unit sphere in 3D over which the
averaging is performed. Accordingly, when the averaging is carried out in prac-
tice over a discrete set of n, different rotational positions (illumination direc-
tions) uniformly distributed on a sphere in 3D, the factor 1/(47) in equation
(4) is replaced by 1/n,.

Appendix B: Details of phase retrieval and phase
conjugation in CHR

The complex amplitude U(r,, 2) == I, exp (i27k2)[1 + (1 — )Ny L, G o(r1)]
of the “phase-conjugated” beam [introduced after equation (A.8)] can be repre-
sented as a sum of the complex amplitude of the original beam [given by equation
(A3)] and the corresponding difference term, that is, Ur,z) = Ulr,, 2)+
AU(r, 2), with AU(r, 2) = —i(1 + Ny )L exp (i27k2)e, G .(r ). During
the backpropagation from a defocus plane z=D to another plane z, such that
0<z<D, the defocused complex amplitude U(r,, z) of the original beam will
develop according to equation (A.3). The backpropagation of the beam
AU(x ., z) from D to z can be evaluated with the help of the formula for free-space
propagation of Gaussian beams as in Appendix A, with the result:

1/2

AU(ry, 2) = —(1 4+ N )L/ exp (i27kz) [N }_pep.GLp.(rL)

+iep:Gip(r1)l, (B.1)

where ep; = &/[(1 + Ngp)(1 + N2 p)), Gip(r1) = exp[ — [r.[*/(20% )]
and 03,, = 0*(1 4+ Ny3)(1 + N52_p,). Equation (B.1) is analogous to equation
(A4) without the plane-wave part and with the multiplicative factor
—(1+ Ng}) in front. The total backpropagated complex amplitude with the con-
jugated phase, that is, Ur,,z) = U(ry, 2) + AU(x 1, 2), will be equal to

UrL, 2) =1/ exp (2mkz)[1 + Ny te.GLo(r1) + (1 + Ny p)Npp_.£p:GLpe(ry)

+ig, Gy (r1) —i(1+ NEZ))SD,ZGL,D,Z(H)L
(B.2)

where we have used a trivial identity N;!_, = —Nj},_,. When &, << 1, the cor-
responding intensity can be accurately approximated by neglecting the terms of the
order of &2:

I(ry, z) =L {1+ 2Njte;Gu(ry) +2(1 + N pNph_.ep.G1p.(r1)}.
(B.3)

In order to find the z-position of the maximum contrast corresponding to intensity
given by equation (B.3), we need to find the point of maximum of the “contrast”
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function fpe(t) = 1(0, £)/I;n — 1,

st 28(1 4 tp)(tp — t)
T+ A4+t -1

Se(t) (B4)

in the interval t € [ — tp, tp], where we have introduced dimensionless var-
iables t = Az/(2m0?) = N} and tp = AD/(2m0?) = Nj},. The atom location
in these coordinates corresponds to t = 0. The point t,, where fp .(t) reaches its
maximum, corresponds to the location of the maximum intensity of the
backpropagated beam with the conjugated phase, that is, (0, z,) =
max{1(0, z): — D < z < D} at z,, = 270°t,,/A. The algebraic equation for t,,
is difficult to solve exactly in general. However, when t, = N, >> 1, all
terms in equation (B.4) containing tp in the denominator can be neglected,
and the ensuing equation can be solved approximately, with the result ¢,, =
1, that is, N, = 1.

Sample graphs of the function fp.(tf) with £=0.02 are shown in
Figure B.la. The plots in this figure correspond, for example, to an “atom”
with a Gaussian electrostatic potential that is approximately 1 A wide, illumi-
nated by a plane electron wave with E =300 keV, and with the image plane
located at D = 50 A (tp=1), D = 100A (tp=2), or D = 250 A (tp=5).
It turns out that for larger defocus distances, D> 500 A (¢;, > 10), plots of
the contrast function fp£(t) become virtually indistinguishable from the true
phase case [which formally corresponds to tp=—1 in equation (B.4)],
shown in Figure B.la in black. In other words, at large defocus distances, tp
>10, the effect of phase conjugation effectively disappears. This happens
because, at large values of tp, all the terms on the right-hand side of equation
(B.4) containing fp become very small and hence inconsequential. Note, how-
ever, that the phase conjugation performed according to equation (A.8) is still
very beneficial at lower values of the inverse Fresnel number, 0 < tj, < 10, where
it results in LPSFs with pronounced peaks (maximums) near the atomic posi-
tion. As can be seen in the simulations below, this effect appears to be much
more pronounced for more realistic (non-Gaussian) atomic potentials. This is
likely related to the fact that the real electrostatic potentials have longer effec-
tive range (decrease slower) compared to the model Gaussian potential which
decays exponentially with the distance from the atom. Note, also, that the black
curve in Figure B.1a clearly demonstrates the signature of contrast reversal that
was indicated in our previous discussions regarding the role of the Gouy
anomaly (cf. Fig. A.1). Similarly, the excising of the Gouy anomaly via the
phase-conjugation process serves to replace the contrast reversal with a peak
in the vicinity of the atomic position.

Figure B.1b contains a plot of the position, t,,,,, of the maximum of fp, .(¢),
as a function of the location of the image plane, fp. As can be seen from this
figure, for all values of tp > 2, the location of the maximum remains approx-
imately constant, t,, = 1. This can also be seen for three out of four curves in
Figure B.1a. This is precisely the effect that we hypothesized above, and which
allows one, in principle, to locate the longitudinal positions of different atoms
in a molecule from a single defocused image, regardless of the distance of the
atoms from the image plane.

We have also performed full multislice-based simulations of defocused
images of a single C atom using our software (Gureyev, 2021). The atom
was located at the center of coordinates and was illuminated by a plane mono-
chromatic electron wave with E =300 keV propagating along z, with the defo-
cused images registered at D =20 A, 100 A, and 1,000 A. The thermal motion
of the atom at the temperature of 93 K (—180°C) was incorporated into the
simulation via the Debye-Waller factor. The phase retrieval was performed
according to equation (A.8). The resultant complex amplitude Ulr,, z), as
defined above, was backpropagated into the volume containing the C atom
by calculating the corresponding Fresnel integrals, and the backpropagated
intensity I(r1, z) = |U(xryL, 2)* was evaluated in multiple transverse planes
inside this volume. The resultant values of the contrast function
1(0, z) /I, — 1 at the central point of these transverse planes are shown in
Figure B.2a as a function of z inside the volume for the three different posi-
tions of the image plane. We have also calculated a similar result under con-
ditions more directly relevant to a typical cryo-EM experiment, with D =
10,000 A and spherical aberration C;=2.7 mm. The defocused image of the
atom and the backpropagated images looked very different in this case, com-
pared to the cases with no aberrations considered above. However, the
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Fig. B.1. (a) Plots of the function f (t) with £=0.02 and t, =1 (blue curve), tp =2 (orange curve), and t, =5 (green curve). The black curve shows the corresponding
contrast function for the true phase. Similar plots for f, .(t) with any value of t; > 10 are indistinguishable from the true phase plot. (b) Plot of the position, t = t,, of
the maximum of fy.(t), as a function of the location of the defocus (image) plane, tp.
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Fig. B.2. (a) Plots of the LPSF functions 1(0, z)/li» — 1 for a single C atom located at z=0 obtained numerically using full multislice-based calculations (Gureyev,
2021). The atom was illuminated by a plane monochromatic electron wave with £=300 keV propagating along z, with a defocused image registered at D =20 A
(blue curve), D =100 A (green curve) and D =1,000 A (red curve), followed by the phase retrieval according to equation (A.8), backpropagation of the phase-
conjugated complex amplitude into the volume containing the C atom and evaluation of the backpropagated intensity 7(0, z). The Debye-Waller factor at the tem-
perature of 93 K (—180°C) was taken into account. The black curve shows the corresponding function /(0, z)/l;» — 1 obtained by the backpropagation of the true
complex defocused amplitude (starting from any defocus plane). (b) Plots of the two-view LPSF functions [70,4,(0, Zg,¢ + dmax) +7()+m¢
(0, Zosme + dmax)]/(2hin) — 1, with dmax = 1.9A, equal to the position of the maximum of the single-view LPSF [see (a)], for a single C atom located at z=0,
when illuminated by a plane monochromatic electron wave with E=300 keV propagating along z. Defocused images were registered at D =20 A (blue curve),
D =100 A (green curve), and D =1,000 A (red curve), followed by the phase retrieval according to equation (A.8), backpropagation into the volume containing
the C atom of the complex defocused amplitude with the conjugated phase and evaluation of the backpropagated intensity I(r,, 0). The black curve shows
the corresponding two-view LPSF obtained by backpropagating the true complex defocused amplitude. Finally, the black dotted curve was obtained with the

true complex amplitude and with a small offset parameter d=1 A instead of dpay.

resultant LPSF still lies between the green and red curves for all z in
Figure B.2a, that is, between the results obtained with D=100 A and D =
1,000 A, with no aberrations. Also shown in Figure B.2a is the similar function
1(0, 2)/I;, — 1 obtained by backpropagating the complex defocused amplitude
with a true phase distribution, which was also simulated using our software
(Gureyev, 2021). The plots in Figure B.2a qualitatively resemble the
corresponding theoretical profiles in Figure B.1a, but are much flatter, which i-
s likely due to the non-Gaussian nature of the more realistic atomic
potentials introduced in Kirkland (2010, 2021) and used in Gureyev (2021).
However, most importantly, the location of the maximums of the simulated
LPSFs in Figure B.2a are obviously independent of the positions of the defocus
planes.

As shown in Gureyev et al. (2021), the LPSF of DHT becomes significantly
better localized around the z-positions of individual atoms after two single-
view LPSFs corresponding to the views from the opposed directions are aver-
aged. This effect is easy to envisage in Figure B.2a, by first shifting each of the
curves to the left by distance d,,.x equal to the distance between the position of
the atom and the location of the maximum of the LPSFs, and then adding the
result to a copy of itself flipped (mirror-reflected) with respect to the point z =
0. The resultant curves, which we call “two-view LPSFs,” [I 6,0(0, Zg,p + dmax)+
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jg_'_ﬂ-,‘P(O, Zg+me + dmax)]/(2Li) — 1, are shown in Figure B.2b. One can see
that the two-view LPSFs are indeed well localized around the z-position of
the atom. We also calculated the two-view LPSF under cryo-EM like condi-
tions, with D = 10,000 A and spherical aberration C; = 2.7 mm, which looked
very similar to the red curve in Figure B.2b. For comparison, we have also
included in Figure B.2b an analogue of the two-view LPSF used in the DHT
reconstruction formula, equation (3), [I54(0,204+ d) + Ip1 7,60, Zoine+d)]l/
(2I,) — 1, which was obtained without the phase conjugation and with a
small offset parameter d = 1 A. It can be seen that the latter curve has an oscil-
latory behavior in the vicinity of z= 0, which corresponds to the 3D Laplacian
of the local potential (Gureyev et al., 2021) and is “compensated” by the
inverse 3D Laplacian in equation (3).

The results presented above suggest that, when the conjugated phase is used
instead of the true phase during the numerical backpropagation, as proposed
above, the need for an inverse Laplacian in the DHT reconstruction formula
equation (3) disappears, provided that the corresponding LPSFs are shifted
along the optic axis z by the distance d,,, as in Figure B.2b. Indeed, when
Ng}) >> 1, we have NE}),ZSD,zGL,D,z(O) = eN; /(1 + NF’J%)2 << g in the
vicinity of the maximum of the LPSE. It then follows from equation (B.3)
that in such cases the backpropagated intensity distribution near the maximum
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of the LPSF can be approximated by that of the original diffracted beam at the
same location as in equation (A.5):
I(ry, 2) = In[1 4 2N} }£.G 1 o(r1)]. (B.5)
Note also that the position of the point of maximum contrast, as well as the
blurring of the backpropagated contrast at the point of maximum, depend on
the chosen model of the atomic potential. When realistic atomic potentials
(Kirkland, 2010, 2021) are considered instead of the Gaussian potential used
above, the distance d,,, becomes much smaller compared to the Gaussian
case, as is evident from comparison of Figures B.1 and B.2. Indeed, the condi-
tion t,,21 in Figure B.1 corresponds to the distance dp,, = 276%/A which is
equal to approximately 50 A for electrons with E = 300 keV. The latter distance
is much larger than the corresponding distances dp.x 2 1.9 A for the realistic
potentials in Figure B.2. As expected in this situation, our numerical simula-
tions have shown that the transverse spreading of the realistic atomic potentials
at such short distances d,y is negligible (at least, for light atoms), compared to
the true width of these atomic potentials. The realistic potentials have also pro-
duced much stronger contrast. As can be seen by comparing the maximum
contrast values at the point of maximum in Figures B.1 and B.2, the scaling
parameter ¥ required in order to bring the maximum contrast for the realistic
potentials to the theoretical Gaussian case in Figure B.1, is equal to approxi-
mately 0.1. This value of the scaling parameter corresponds to the outcomes
of two different models of the electrostatic potential, that is, the simple
Gaussian model used above for the derivation of analytical results and the
more realistic model for atomic potentials from Kirkland (2010, 2021)
used in our multislice-based numerical simulations. It is possible, that a
more accurate value of the scaling parameter can be obtained in the future

https://doi.org/10.1017/51431927622000630 Published online by Cambridge University Press

Timur E. Gureyev et al.

by analyzing the reconstruction results obtained using the Gaussian model
from experimental data. However, as far as the determination of atomic
positions and types in CHR is concerned, the absolute value of y is largely
unimportant.

Some approximations used in the derivation of equation (4) were apparently
rather crude, which could potentially affect the accuracy of the reconstruction of
the atomic potentials. Let us show, however, that the normalization factor in
equation (4) is qualitatively correct, as far as the height of the reconstructed
atomic potentials is concerned. As can be seen in Figure B.2a, in the case of
large defocus distances, the maximum of the function IK(r L, dmax)| is approx-
imately equal to 0.23 in the case of the realistic potentials (Kirkland, 2010, 2021).
The normalization factor EAy/(zw) in this case (for E =300 keV) is approxi-
mately 188V, so the maximum of the reconstructed potential V(r) =
—[EXy/(mw)]K(r1, dinax) will be approximately 188 Vx 02343 V. As the
atomic potential is spherically symmetric, the angular averaging in equation
(4) does not change this maximum value. The reconstructed maximum value
of 43V is very close to the maximum value of 40 V (Sanchez & Ochando,
1985) used for our model Gaussian potential, as well as to the peak value of
approximately 46 V obtained for the realistic atomic potentials (Kirkland,
2010, 2021) under the conditions of Figure B.2. Regarding the accuracy of find-
ing the atomic positions, the examples given in Gureyev et al. (2021) and in the
section “Results” of this paper demonstrate that equation (4) allows the position
of the atoms in a molecule to be consistently retrieved with high precision from
defocused images simulated under realistic experimental conditions. The latter
remains true even in the presence of large amounts of image noise (at low irra-
diation doses) and other detrimental factors, such as, for example, the presence
of amorphous ice around the molecules or a carbon substrate supporting the
imaged nanoparticle.
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