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Abstract. Let (X, 2F, v) be a finite measure space and let T:X-»X be a measurable
transformation. In this paper we prove that the averages Anf(x) =
(n + l)~'Y.osi^nf(T'x) converge a.e. for every / in Lp(dv), \<p<<x>, if and only
if there exists a measure y equivalent to v such that the averages apply uniformly
Lp(dv) into weak-Lp(dy). As a corollary, we get that uniform boundedness of the
averages in V(dv) implies a.e. convergence of the averages (a result recently
obtained by Assani). In order to do this, we first study measures v equivalent to a
finite invariant measure fj. and we prove that supns0 An(dv/ dfi)"1/<p"u<oo a.e. is
a necessary and sufficient condition for the averages to converge a.e. for every / in
Lp{dv).

1. Introduction
Let (X, 3F, v) be a finite measure space and let T:X->X be a null-preserving
transformation. We consider the operator T, acting on measurable functions and
denoted by the same letter,

Tf(x)=f(Tx).

Associated with T we have the averages

r I rf
i = 0

and the maximal operator

Mf=supAn\f\.
Assani has proved [1] that if the averages are uniformly bounded in Lp{dv),

Kp <co, then the sequence {Anf} converges a.e. for every/ in Lp(dv). We prove
in this paper that a.e. convergence of the averages follows from a condition weaker
than uniform boundedness of the averages. In fact, we have the following characteriz-
ation (Theorem 3.1): The averages Anf converge a.e. for every/ in Lp{dv), Kp <co,
if and only if there exists a measure y equivalent to v such that

\f\"dv
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for every A > 0 and any function in Lp(dv). Of course, Assani's result is then a
consequence of ours.

In § 2, we study the problem for measures v equivalent to an invariant measure
fi and we give a characterization (Theorem 2.9), in terms of the Radon-Nikodym
derivative dp/dp, of the measure v for which the a.e. convergence of the averages
holds for a n y / in Lp{dv) (the problem for p= 1 was studied in [7]; see also [5]
and [11] for Hopf's averages). Finally, in § 3 we get the theorem for general
measures P.

Throughout this paper, C will be a positive constant not necessarily the same at
each occurrence, and p and q will denote numbers bigger than 1 such that p + q= pq.
N will stand for the set of natural numbers and, if 5 and k are natural numbers,
[5, k] will be the set {i e N: s < i" s k}. Finally, XA will be the characteristic function
of the set A and we will consider two sets as 'equal' if they agree up to a set of
measure zero.

2. The measure-preserving case
Let (X, f , / i ) b e a finite measure space and let T: X ^ X b e a measure preserving
transformation. In order to state and prove the first result we will need some
definitions and previous results.

Definition 2.1. Let k be a natural number. The measurable subset B is the base of
a rectangle of length k +1 if T~ 'B n T~'B = 0 , i* j , 0 < i, j < k.

LEMMA 2.2. Let kbea natural number. Then, there exists a countable family {B,: i e N}
of sets such that

(ii) B, nBj = 0 if i ¥• j
(iii) For every i, B, is the base of a rectangle of length l + s(i) with 0 < s(i)<k, and

such that if s(i)<k then T~l~sU)A = A for every measurable subset A of B{.
Consequently, for every measurable subset A of B,

I XT"A s C(i) l ' XT"A = C(i)Xu;»&T->A^2 I XT-A (2-3)
j ~ 0 j = 0 j — 0

where C(i) is the least integer bigger than or equal to (k+ 1)(1 + s(/))~'.

The proof of this lemma is the same as the proof of Lemma 2.10 in [5] but
changing Th by T~h. Lemma 2.2 has already been used in [7].

Definition 2.4. Let a be a function on N. We define the maximal function M+a on
Nby

M+a(j) = sup (« + I)'1 I \a(i+j)\.
n>0 i=0

THEOREM 2.5. Let u and v be positive functions on N. There exists C>0 such that

J. u(j)<C\-p £ \a(j)\"v(j)
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for every A > 0 and any positive function a on N // and only if the pair of functions
(u, v) satisfies the following condition

Ap
+: There exists D>0 such that

s Ik \P"1

I «('+./)( I vl~"(i+j)) <D(k+l)p for all natural numbers i, sand k with s<k.

where C and D are functions of p and of each other alone.

THEOREM 2.6. Let u and v be positive functions on N. There exists C > 0 such that

I \M+a(j)\pu{j)^C I \aU)\"v(j)

for every positive function a on N if and only if the pair of functions (u, v) satisfies
the following condition

Spi There exists D>0 such that

k k

I \M+(vl~"xis,k])U)\Pu(J)^ D I v'~"(j) for all natural numbers s and k with s</c.
j = s ' j = s

where C and D are functions of p and of each other alone.

For the proofs of Theorems 2.5 and 2.6 just look at the proofs in [12] or in [6]
and write them in the set of the natural numbers.

LEMMA 2.7. Let {X, 3F, v) be a finite measure space and let {!?„} be a sequence of
a-algebras such that 9 = 3F0 => ^ , => ^ 2 3 • • • . Let 2FX = (~]n &„ and denote by En the
conditional expectation with respect to 2Fn. If {/„} is an a.e. convergent sequence of
functions such that | / n | s C a.e. and f is the a.e. limit of fn then Exf is the a.e. limit
ofEJn.

Proof. It follows from Theorem 7.6 in [4, p. 66], and the decreasing martingale
theorem (see for example [9]). •

Before stating and proving our main result in this section we still need some
notation.

Let/ be a measurable function on X. For every x e X we will consider the function
fx on N denned by fx(i) =f(T'x). Now, we are ready to state and prove our main
result in this section.

THEOREM 2.8. Let V be a positive measurable function on X. The following are
equivalent:
(a) The sequence {A^f} converges a.e. for all f in V( Vdfi).
(b) There exists a positive measurable function U such that

sup I [AJl'Udfi^ \

forallfinLp(Vd(M).
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(c) There exists a positive measurable function U such that

sup Ud(i<\-p \f\pVdn
»20 J{XEX:|A,,/(X)|>A} JX

for all\>0 and any fin Lp( Vd/j.).
(d) M/(x)<oo ax. for all f in L"(Vdfi).
(e) There exists a positive measurable function U such that

J {x£X:Mf(x)>\} Jx

for all A > 0 and any f in L"( Vd/x).
(f) There exists a positive measurable function U such that

\ \Mf\"Udn^ f \f\"Vdn
J x Jx

forallfinL"(Vdn).
(g) MVI-"(x)<ooa.e.
(h) There exists a positive measurable function U such that for almost all x in X the

pair (Ux, Vx) satisfies A\ with a constant independent of x.
(i) There exists a positive measurable function U such that for almost all x in X the

pair (Ux, Vx) satisfies S^ with a constant independent of x.

Proof. The following implications are clear: (a)=>(d), (e)=>(c), (f)=»(e), (f)=>(d),
(f)=>(b), (b)=»(c) and (i)=»(h). Then, it will suffice to prove (d)=»(a), (d)=>(e),
(c)=>(g), (g)=»(i), (i)=>(0 and (h)=»(e).

Statement (a) follows from (d) by Banach's Principle since Lp(Vd/x)n L'(d/i)
is dense in Lp(Vd/j.) and the averages Anf converge a.e. for all / in L'(dfj-).

On the other hand, (d) implies that M is a continuous sublinear operator from
Lp{ Vd/j.) to L°(dfi) where L°(dfjL) is the space of all measurable functions provided
with the topology of the convergence in measure (see [3, p. 10, Theorem 1.1.1]).
Then (e) follows from Nikishin's theorem [2, p. 536]. It is also easy to see that (g)
implies (i) if we take U = (MV1~q)~p V1"17. To prove the other implications we need
to work harder.

(c)=>(g). We may assume t / s 1. It follows from (c) that Kolmogorov's condition
holds [10, p. 190], i.e. there exists a constant C > 0 such that for any measurable
set F and any / in Lp{

( [ \Aj\p/2UdnY<C [ Udfi [ \f\pVdfi <CM(F) [ \f\"Vdn.
\JF I JF JX JX

sup([ \Aj\p/2UdnY<C [ Udfi [ \f\pVdfi <CM(F) [ \f\"Vdn. • (2.9)
«20 \JF I JF JX JX

Now, fix a natural number k and let {B,: ieN} be the sequence given by Lemma
2.2 for k (in the proof we will use the notation in the lemma). For fixed B, we take
any measurable set A contained in B,. Let Rt = Uos/^k T~'A and R2 = {Jksjs2k T'JA
(keep in mind that R, =Uo=>s.v<i) T~JA and R2

 = Uo<j<.(ii T~J~kA) and consider
for each natural N the function aN = min (a, N) where a = V1"'. Then if we apply
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(2.9) with F= R2,f= <TNXR, and n = 2k we have

(J \A2k(<rNXRl)\"
/2Ud^ <CM(/?2)J trNd^. (2.10)

On the other hand, (2.3) and the fact that T preserves ft give

1 \ \A2k(o-NxRl)\"
/2(T2k

j = k jT~2kA

s C ( / ) | \A2k(o-NXRl)\
p/2(x)U(x)dljL (2.11)

JR2

i) f

kA) (2.12)

C(i) f o-^d/1^2 1 I trN(TJx)dfJL. (2.13)

We have also

(2k+l)- ' I (rN(Tix)^A2k(<rNXRl)(t
2k-Jx), (xe T~2kA, k^js2k). D (2.14)

Then, (2.14), (2.13), (2.10), (2.12) and (2.11) give

f |(2fc+l)-' I aN(T'x)\"2 i U{Vx)dS

trN(TJx)dfi.
2k

Let En be the conditional expectation with respect to SFn{2Fn = T~n

ln^o &H)- Then the last inequality can be written in the following way

(I E2k(((2k+\)~l I r<rNy/2 i ru)d
\JT-2kA i = k , = 0

kA) f E2kl I
JT~2kA \j=

2k

= k

and therefore for any subset F e 3F2k we have

—-—- I fi dfj, I s—-—- I gj d/j, (2.15)
M ( - ^ ) JF I fJ-(F) JF

where

P/2 k
D"\\

and

2k \P/2 k \
1 ̂  TJo-NJ I VU}xT-2kB,

Observe that f( and g, are 2F2k-measurable functions. Then a standard argument
proves that

fi^Cg, a.e.
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(check it for characteristic functions / and gt, then for simple functions and finally
for positive functions). Summing over i in the last inequality we have

1 I TJ<rNY (fc+1)"1 | TJJj

y (2.16)

Since <rN and U are functions in L\d/j.) the averages AnaN and AnU converge a.e.
to invariant functions EcrN and EU respectively. Then Lemma 2.7 together with
2.16 give (E<TN)p-\EU)2<C a.e. Since C is independent of N and EU*0 a.e.
we get liirijv^cc EaN <oo a.e. Therefore, up to a set of measure zero, we have

f
= U Xs, Xs = \x: lim Ecr

5 = 1

f 1
\x: lim EcrN s s \

Of course, each Xs is invariant and thus

crdij.= lim EcrNd/j,= lim EaN d/j. ̂
J X, N^ooJx, Jxs N-.00

< oo

Hence <xe V(XS, d/j.) and since Xs is invariant we have Ma(x) <oo a.e. in Xs. This
proves the implication.

(i)=^(f). We consider the truncated maximal operator ML(L>1), MLf =
supn s L An\f\. Since T preserves the measure /u. we have

k f1 X \MLf(T'x)\pU(T'x) dfi.

;=o Jx

If Hx =fxX[o,L+k] then the right-hand side in (2.17) is smaller than or equal to

•I)"1 I \M+Hx(i)\"Vx(i)d^
i — — o c

By (2.6), the integrand is dominated by

[ \ \ n (2.17)
X i=0 J X

I

If we put these inequalities in (2.17) we get

| \MLf\"Udn<C{k + L+\){k + \)-' I
Jx J x

If we let /c and then L tend to infinity we obtain (f).
Finally, (e) follows from (h) by transference arguments in the same way that (f)

follows from (i) but using Theorem 2.5 instead of Theorem 2.6.

Remarks: 2.18. An easy way to get MV1 "q <ooa.e. is to take Vx~q in Ll(dfi), actually
it is the only way for ergodic T. But this means that Lp(VdiJi)<^ L\dfj.) and thus
the convergence follows from the individual ergodic theorem. We will now give an
example which shows that it is possible to get MV1 ~q <oo a.e. and V1""^ L\
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Let X = {(«, i)eZxZ: l^n, l < i < n } and let T be the transformation given by
T(n, i) = (n, i + l) if l < i < n and T(n, n) = (n, 1). Consider the measure /* deter-
mined by M{(", 0} = 2 " . Finally, let v = Vd/i where V(w, i) = 2 '. It is clear that /A
is a finite invariant measure, v is a finite measure equivalent to /x, MV*~q <oo and
V1"* is not in L\dfi).

2.19. The proofs of the implications (a)=>(d)=>(e)=»(c)=>(g) do not use Theorems
2.5 and 2.6. We will now give a proof of (g)=>(a) also without using 2.5 and 2.6.
In this way we prove the equivalence of (a), (c), (d), (e) and (g) without using
conditions A* and S*. Therefore, the importance of 2.6 in Theorem 2.8 is that it
allows to get a strong type inequality (and thus dominated convergence) and not
only a weak type inequality as Nikishin's Theorem ensures.

A direct proof of (g)=>(a). By (g) we have X = {Jksl Xk where Xk =
{x: lim supn-.cc AnV

i~q(x) < k}. Of course, Xk is invariant. On the other hand, using
Holder's inequality, a truncation argument and Birkhoff's ergodic theorem we have

Uq

Therefore L"(Xk, Vd/x)cz L\Xk, Vd/x). Then (a) follows from this inclusion and
the individual ergodic theorem.

3. The a.e. convergence in the general case
This section is devoted to establishing a characterization of the finite measures v
for which the individual ergodic theorem holds in Lp(dv), K p < o o .

THEOREM 3.1. Let (X, ?F, P) be a finite measure space and let T: X -* X be a null-
preserving transformation. The following are equivalent:
(a) There exists a (finite) measure y equivalent to v such that

supy({x:K/(x)|>A})<A-" [ \f\p dv

for all A > 0 and any f in lf(dv).
(b) There exists a measure y equivalent to v such that

[ I/I'
Jx

y({x:Mf(x)>\})s\~" | \f\"dv

for all A >0 and any f in Lp{dv).
(c) The sequence {Anf} converges a.e. for all fin Lp(dv).
(d) M/(x)<co a.e. for all fin L"(di>).

Proof The implications (b)=>(a) and (c)=»(d) are clear and (b) follows from (d)
by Nikishin's theorem (see the proof of (d)=»(e) in Theorem 2.8). Hence we have
only to prove (a)=>(c).
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). Since (a) holds and the averages An are uniformly bounded from
to V°{dy) we have by Marcinkiewicz's interpolation theorem

sup | |Ajfdy£C I \A2pdv
naO Jx JX

| I \A (3.2)
x JX

for every / in L2p(dv). Let L be a Banach's limit, i.e. a functional on the set of
bounded sequences such that if {sk} and {tk} are bounded sequences

lim inf sk s L({sk})<lim sup sk (3.3)
k-*cc fc-*oo

if sk = tk+l then L{{sk}) = L({tk}). (3.4)

For every measurable set E we consider the sequence {\x ^HXE dy} which is a
bounded sequence by (3.2). We then define

It is clear that /x is a finitely additive measure. On the other hand, by (3.3) and
(3.2) we have

/u(£)<C(y(X))1 /*'(j/(£))1 /2p<co where q' + 2p = 2pq'. (3.5)

Hence fj.{X)<<x> and it follows from (3.5) and the fact that v is a finite measure
that lim^^oo ix(Ek) = 0 for every sequence of measurable sets {Ek} with Ek => Ek+X

and P)k Ek = 0 . Thus /A is a (countably additive) measure. It is easy to see that p.
is invariant and absolutely continuous with respect to v. Let v be the Radon-Nikodym
derivative d^/dv and let D be the set {x: u(x)#0}. Observe that T~lD = X a.e.
(n) since /A is invariant and fi(X - D) = 0. Consider the set Y = (~}ns0 T"D. It is
clear that fx.(X - Y) = 0 and the restriction of T to Y, T\Y, applies Y in V.
Furthermore, fi\Y is invariant with respect to T\Y- Therefore we have that v\Y is
equivalent to the invariant measure n \ Y. From (a) in this theorem and the equivalence
of (c) and (a) in Theorem 2.8 it follows that An(fxY)(x) converges a.e. in Y for
every fe Lp{dv). Since An(fxx-v)(x) = 0 for every x in Y we have that for every
/ in Lp(dv) the averages Anf(x) converge a.e. in Y. To prove the convergence in
X - Y it suffices to establish the following property (the idea of this part of the
proof is in [1]):

3.6. For v-almost all x i n X there exists n such that T"xe Y.
We will now prove 3.6. If 3.6 does not hold then there exists B with i^(B)>0 such
that for every i, B<= T~'{X- Y). Then for every n

i y(T-'{X-Y))
;=o

and therefore

and this finishes the proof because y is equivalent to v. D
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Once Theorem 3.1 has been proved, the result of Assani mentioned in the
Introduction follows as a corollary.

COROLLARY 3.6. (See [1].) Let {X, &, fi) be a finite measure space and let T:X->X
be a null-preserving transformation. If supns0 ||'4n||p<00 then for every f in Lp(dv)
the sequence of the averages AJ' converges a.e.

Remark 3.7. Observe that uniform boundedness of the averages is certainly a stronger
condition than the conditions in Theorem 3.1. In order to see this, we consider the
example in Remark 2.18. We proved in that example that MVl~q < oo and therefore,
by Theorem 2.8, the averages converge a.e. However, V does not satisfy A+

p and
thus (see [8]) the averages are not uniformly bounded in Lp(dv).
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