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The dynamics of fluid–fluid interfaces are important in diverse problems that span
many disciplines in science and engineering. A series of snapshots is used to illustrate
the breadth of applications that can occur in viscous low-Reynolds-number flows
and I highlight theoretical and modelling ideas that are broadly useful for these,
as well as other, problems. By way of illustration of unifying quantitative ideas we
discuss briefly (i) the use of the Reciprocal Theorem in low-Reynolds-number flows,
(ii) the use of the lubrication approximation for characterizing thin-film coating flows
sometimes referred to as Landau–Levich–Derjaguin–Bretherton problems and (iii)
nearly two-dimensional viscously dominated flows.

1. Introduction
When asked to summarize a subset of research contributions, it is common to

struggle with the format. For this paper I chose the theme of ‘interfaces’, in large
part because the dynamics of fluid–fluid interfaces are rich with basic questions
and phenomena. In addition, the theme of interfaces emphasizes the idea that the
concepts and principles of fluid dynamics frequently occur across the traditional
science and engineering disciplines. Thus, in this paper various concepts are discussed
and illustrated with the hope that they provide a way to link ideas and questions,
both qualitative and quantitative, in a manner that emphasizes the bigger picture of
fluid dynamics as a framework for unifying some physical phenomena. The selection
is oriented towards viscously dominated flows.

Since the earliest days of fluid dynamics, the basic concepts have been used to bring
insight to scientific questions in different disciplines. The better established ideas have
helped to inform medical practice, e.g. understanding blood flow and circulation,
and industrial practice and innovation, e.g. design of airplanes, coating flows and
all manners of materials processing. These applications often raised new kinds of
fluid dynamical questions. In many cases it was the first time fluid dynamicists were
exposed to the existing practice that the research side of the questions were addressed,
often building on empirical ideas derived from experience. For several views of this
exchange between fundamental fluid dynamics research and applications see special
papers written by J. C. R. Hunt and J. R. A. Pearson in volume 106 of JFM as
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2 H. A. Stone

part of the 25th anniversary of the Journal (Hunt 1981; Pearson 1981). Not counting
self-citations, these papers have only been cited four and two times, respectively,
which bode poorly for the future readership of this paper.

1.1. A fascination with fluid dynamics

Fluid dynamics has an intrinsic beauty that even non-scientists identify. For example,
as several of my non-technical colleagues remind me when they learn that some
of my research involves bubbles and drops, television commercials frequently show
splashing drops or jets of liquid rising from a fluid bath following impact of an
object on the surface. We all enjoy looking at phenomena that are essentially fluid
dynamical, whether they are cascading sheets of water in parks and public buildings,
birds hovering in the breeze, airplanes at take-off and landing, tears or legs in a
glass of wine or strong liquor, the wake structure that trails ducks swimming in
a lake, etc. Of course, the scientist may observe these same phenomena and think
about the underlying physics and mathematics: what is the shape of the fluid stream
or flow? How does the shape change in time? Is surface tension important? Is the
response self-similar? Or a travelling wave? etc. We celebrate this visual beauty with
the Gallery of Fluid Motion at the annual meeting of the Division of Fluid Dynamics
of the American Physical Society (see e.g. van Dyke 1982; Samimy et al. 2004). So, it
is easy to find inspiration and I am continually amazed by new research I see when
visiting other labs, in talks at conferences, and that are shared with me by my group
and collaborators.

The average reader of JFM certainly has a fascination with fluid dynamics. Perhaps
the most important element of this fascination is that the basic principles we introduce
have an enormous variety of applications, surprises and fascinating phenomena, and
are relevant to many societally important issues (see e.g. Peregrine 1981; Biesheuvel &
van Heijst 1998). Nevertheless, although we introduce fluid dynamics to students by
way of a core course in a traditional discipline (engineering, mathematics, physics and
earth and planetary sciences), we generally do not communicate well its intellectual
beauty to the students or to our colleagues in other disciplines. The latter may be
only dimly aware of the subject of fluid dynamics. Even when they are, their view
may be of a mathematically oriented subject, which was well established hundreds
of years ago (see e.g. some of the commentary in the 25th anniversary issue of JFM,
volume 106). Thus, we can seek to identify opportunities to share the fascination
and understanding of our fields with others, both in research collaborations and in
educational forums.

1.2. Intersections of fluid dynamics and other themes

The basic principles in fluid dynamics, and many other classical science and
engineering disciplines, are viewed as mature. On the other hand, when fluid dynamics
intersects with other fields, some traditional and some evolving rapidly, then we dis-
cover new challenges and new research directions that may require new developments
including analytical, numerical and experimental tools. I believe it is this kind of syn-
ergy that is the greatest source of new challenges not only for our field, but in science
and engineering more generally, and that when solved can be of service to society.

The relevance of fluid dynamics to other fields has been recognized since the earliest
days, e.g. Poiseuille was motivated by physiological questions. Early applications
generated important research areas that are now considered subfields of fluid
dynamics: e.g. acoustics (see Crighton 1981), water waves and wave phenomena
more generally. Today we recognize, to name just a few, biofluid dynamics,
compressible flows and gasdynamics, colloidal hydrodynamics, electrohydrodynamics,
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Fluid dynamics at interfaces 3

(a)

(b)

Bouncing

Crossing

Figure 1. Examples of interfaces in dictating dynamics of fluid motions. (a) Interaction of
two bubbles rising in a viscous fluid (Manga & Stone 1993). (b) (top) Impact of droplets on
a soap film including bouncing and (bottom) passing through the film without rupture of the
film (Courbin & Stone 2006).

environmental fluid dynamics, free-surface flows, geophysical fluid dynamics, . . . . Not
surprisingly, readers will recognize subthemes that interrelate some of these topics!
George Batchelor coined the term microhydrodynamics to highlight general themes
and principles applicable to low-Reynolds-number hydrodynamics (Batchelor 1977).
Although it is easy to proliferate these intersections, the main point is to recognize
that they exist and common ideas can be used as building blocks when working
between areas.

1.3. Some examples of the impact of interfaces on fluid flows

In this paper, I chose to focus on flow problems where fluid–fluid interfaces are
important. For reasons of space, however, most topics are only sketched. There are an
enormous variety of such problems and we discuss only low-Reynolds-number flows.
Hopefully, some of the breadth and richness of fluid dynamics will be evident from
the examples chosen.

To begin with, I highlight examples that show the variety of flows impacted by
dynamics associated with fluid–fluid interfaces.

Consider a gas bubble or buoyant droplet rising through an immiscible fluid. At
low Reynolds numbers, a spherical shape (radius a) is stable and the rise speed varies
with the square of the particle radius. When two bubbles rise through the liquid their
separation distance remains constant provided the bubbles are spherical, though there
is a horizontal component to the rise velocity as a result of hydrodynamic interactions.
As illustrated in figure 1(a) the hydrodynamic interactions also produce shape changes
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4 H. A. Stone

(a)

(b)

Drying
direction

(c)

Square arrays

10 μm

–2 cm

50 μm 1.00 kV×500

Hexagonal array

Figure 2. Examples of interfaces impacting dynamics on substrates. (a) Polygonal spreading
of partially wetting liquids on microtextured surfaces (Courbin et al. 2007); scale bar is 1 mm.
(b) Organization of 500 nm diameter particles at a contact line during evaporation processes
(Abkarian, Nunes & Stone 2004). (c) A 2 cm diameter droplet of wet granular material on
a vertically vibrating plate (vibration frequency equals 40 Hz) exhibits a crown-like series of
oscillons (Schleier-Smith & Stone 2001).

whose magnitude depends on the Bond number, B =�ρga2/γ , where �ρ is the density
difference, g is the gravitational acceleration and γ is the interfacial tension. The shape
changes are responsible for a significant contribution to the rise velocities of the two
bubbles (or drops) that produces contact and coalescence. Figure 1(a) displays a
dramatic example of the shape-induced interactions that occur even after the more
buoyant large gas bubble passes by the vicinity of a small bubble (Manga & Stone
1993): coalescence can occur even when the two bubbles are initially well separated.

A second example involving interfaces concerns soap films, which are familiar
to everyone. One aspect of these interfaces that is less well studied concerns their
response to impacts such as can occur when a liquid drop is dropped on the film (see
figure 1b): at low speeds the drop can bounce, and the subsequent dynamics can be
chaotic (Gilet & Bush 2009), while at higher speeds the drop can pass through the
film without breaking it. High-speed imaging illustrates that this latter feature occurs
without a hole ever forming; rather the interface wraps around the drop and coalesces
at the back to maintain a closed film (Courbin & Stone 2006; Le Goff et al. 2008).

Another example of interface dynamics is the wetting of liquids on substrates. We
are all familiar with this kind of flow from pouring syrup over pancakes at breakfast.
However, when the substrate contains a homogeneous microtexture, such as a square
array of posts, with diameters and heights that are tens of microns, and spaced apart
a comparable distance, the footprint for a partially wetting liquid can be polygonal,
as exhibited in figure 2(a) (Courbin et al. 2007). In these cases, and unlike the kind
of chemical patterning that can produce similar shapes due to pinned contact lines,
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Fluid dynamics at interfaces 5

the polygonal drop shapes on microtextured surfaces are independent of the volume
of liquid deposited, as shown in figure 2(a).

A fourth example involves fluids containing suspended particles. When a solvent
evaporates the particles are concentrated. Often this increase in concentration is most
evident at contact lines, and gives rise to the familiar coffee stain effect (Deegan et al.
1997). In fact, in many cases the geometric constraint provided by the wedge-shaped
contact line region, along with the evaporating flow that continually supplies particles
to the region of the contact line, leads to near perfect ordering of the solid phase (see
figure 2b). In this way we can arrange nanometre-sized particles into regular patterns
covering hundreds of microns if not more (Abkarian, Nunes & Stone 2004).

Other examples are not so easily characterized. For example, when a slightly wet
mass of granular material is vibrated on a flat plate, the dynamics are somewhat
between those for a dry granular bed, which exhibits isolated periodic eruptions or
oscillons (Clément et al. 1996; Umbanhowar, Melo & Swinney 1996), and those of
a liquid drop, where interfacial tension limits the degree of surface deformations.
Figure 2(c) illustrates a snapshot of a phenomenon occurring at 40 Hz on a vertically
vibrated plate, whereby a crown of eruptions occurs around the rim of a paste-like
droplet of wet granular material (Schleier-Smith & Stone 2001). I am not aware of
any explanation or calculation for the ‘ring of oscillons’ shown in the figure.

In recent years the subject of microfluidics has revealed many opportunities to
science and engineering, by bringing new tools, allowing new ways to manipulate
materials and by raising new research questions. One such avenue focuses on
controlling multiphase flows. For example, a ‘flow-focusing’ geometry can be used for
liquid–liquid (figure 3a) and gas–liquid (figure 3b) systems. Alternative geometries,
such as T-junctions (figure 3c), have been studied. In each case, it is of interest
to understand how the geometry and flow conditions set the droplet size. In these
situations, numerical solutions, such as the three-dimensional simulation shown in
figure 3(d ), can be helpful for understanding the dynamics that lead to drop breakup
in the confined space of the microchannel.

A further illustration of the applications of fluid mechanics is in biology. I have
been fortunate to have had the opportunity to work on different problems of this type
and it is an area that seems to be continually expanding. For example, in my group
we have studied the deformation of individual cells in microfluidic constrictions with
size comparable to that of the cell (figure 4a) and introduced a method to determine
the change of pressure that accompanies these flows even for a single cell (Abkarian,
Faivre & Stone 2006). The deformability of the cell plays an important role in
haemodynamics, e.g. the Fahraeus–Lindqvist effect. We have studied one aspect of
these dynamics where the drift of cells across streamlines is increasing with the shear
rate, which can be used as a passive route to separate blood cells from the plasma,
as shown via the contraction flow in figure 4(b). Throughout biology the theme
of mechanotransduction is present, and mechanical stresses can produce chemical
responses. Using the geometry of figure 4(b) we have studied the release of ATP from
red blood cells (Wan, Ristenpart & Stone 2008).

As a final example, many readers will have seen movies of swimming micro-
organisms, either sperm cells that propel themselves by propagating a wave along
a flexible flagella, or bacterial cells, such as E. coli, that propel themselves using
rotation of a rigid helical flagella. Most commonly the propulsion occurs in a straight
line. However, when E. coli swims near a rigid boundary, such as a microscope slide,
they have circular trajectories as a result of hydrodynamic interactions with the wall,
as illustrated in figure 4(c, d ) (Berg & Turner 1990; Lauga et al. 2005).
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6 H. A. Stone

(a) (c)

(d)

–100 μm

(b)
Vc

μd
μc

Vd

L

Figure 3. Multiphase flows in microfluidic devices. (a) Flow-focusing of a water-in-oil system
to produce a jet that breaks into monodisperse drops. The width of the narrow orifice is 43.5
microns (Anna, Bontoux & Stone 2003). (b) Gas bubbles formed in water in a flow-focusing
arrangement. The width of the outlet channel is 750 μm. (c) Nitrogen bubbles formed in
surfactant-free water at a T-junction whose width is 100 microns (Garstecki et al. 2006).
(d ) Three-dimensional numerical simulation of drop breakup at a T-junction with square
cross-section. The viscosity of the droplet phase is equal to viscosity of the continuous phase
(De Menech et al. 2007).

A glance at the recent literature will provide many examples of how ideas generated
from other areas of science and engineering continue to invigorate fluid mechanics
with new directions for theory, modelling and experiments. In parallel, the principles
familiar from fluid dynamics help to advance those areas. It is exciting to be able to
share in these activities with colleagues around the world.

1.4. Lessons learned: the Reciprocal Theorem, thin-film flows and nearly
two-dimensional Stokes flows

All of us develop strategies for problem solving. Over the years I have found several
theoretical approaches have recurred so often in my own work that I invariably think
about these ideas first when exposed to a new problem. The ideas have in common
that they yield quantitative estimates and tend to bypass many details of the actual
flows. In each case I think the ideas should be more widely appreciated than I sense
they are. Hence, in the rest of this paper I briefly discuss, usually with an example or
two, three ideas:

(i) the Reciprocal Theorem, as it is used in low-Reynolds-number hydrodynamics;
this often yields answers for integrated quantities such as forces and torques without
requiring the calculation of detailed velocity fields,

(ii) lubrication approaches to thin-film flows; these are useful for identifying scaling
arguments for the film thickness as a function of the physical variables and
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Fluid dynamics at interfaces 7

(a)

(b)

(c)
(d)

20 μm

Figure 4. Some examples of fluid dynamics and cellular-scale biology. (a) Time lapse image
of a red blood cell flowing through a microchannel of comparable dimensions (e.g. Abkarian,
Faivre & Stone 2006). (b) When a suspension of cells flows through a constrictions, the cells
tend to drift across streamlines and away from the wall, thus concentrating towards the centre
of the channel (Faivre et al. 2006). (c) Schematic of swimming cells that turn to the right when
swimming nearly parallel to a plane (viewed from the cell looking towards the plane). (d ) Time
lapse image showing the trajectories of cells that swim in circles (Lauga et al. 2005).

(iii) nearly two-dimensional Stokes flows; these frequently yield answers whose
important characteristic is the appearance of a logarithmic term that involves the
ratio of a geometric length scale to a distinct, problem-specific length scale, beyond
which the flow is effectively three-dimensional (or at least a new physical effect enters).

Perhaps the reader will find the short summaries below helpful or a spring board
for further reading. Throughout I have tried to emphasize the interplay of physical
and mathematical arguments. In this spirit I am often reminded of a short story
involving George Keith Batchelor (GKB) which is given in the postscript of a paper,
in volume 212 of JFM, that is dedicated to Professor Batchelor on the occasion of his
70th birthday (Acrivos, Jeffrey & Saville 1990): ‘. . . the interplay between physical
and mathematical arguments discussed in this paper brings to the mind of one of us
(D. J. Jeffrey) an exchange that took place during a seminar in Cambridge in the mid
1970s.

Speaker (justifying elaborate mathematical argument): The trouble with a physical
argument is that you may not get all the terms.
GKB: No, that is the trouble with a bad physical argument.
Several voices: How do you tell a good physical argument from a bad one?
GKB: That’s easy: you think.’
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8 H. A. Stone

2. The Reciprocal Theorem: getting something for nothing
One generally little known, or little appreciated, but useful tool in low-Reynolds-

number hydrodynamics is the Reciprocal Theorem (e.g. Happel & Brenner 1983; Leal
2007). For a given geometry, this theoretical idea relates integrals involving stresses
and velocities of one unknown flow field to the stresses and velocities of a known
flow field. When only one quantity involving integral information is desired, e.g. force,
torque, flow rate, etc., the ‘reciprocal’ approach often allows a solution to be obtained
without determining the detailed velocity and stress fields of the actual problem under
consideration. It is as if you are getting something for nothing. (I recall a visit to
Howard Brenner in his MIT office and he had an old folder containing a seminar
with this title.) As with many ideas, I was exposed to this idea in graduate and
postdoctoral studies, but only began to appreciate it during the formative years of
independent research while a young faculty member.

In low-Reynolds-number hydrodynamics these reciprocal ideas have been exploited
for many years. Perhaps the first application was by Lorentz (1896). (For a collection of
papers recognizing the centenary of this publication, as well as an English translation
of Lorentz’s paper, see Kuiken 1996.) The idea is central to the development of the
boundary integral numerical method for viscous flows (e.g. Youngren & Acrivos 1975;
Pozrikidis 1992). The mathematical steps are similar to Green’s Theorems familiar
from vector calculus, and related reciprocal identities are found in elasticity and
electromagnetism. In the typical fluid mechanics problem involving the motion of
particles or channel flows, the conjugate variables being related are force and particle
velocity, torque and particle rotation rate, or flow rate and pressure drop. For an
illustration of how the reciprocal approach is applied to prove symmetry properties
of flow tensors relevant to low-Reynolds-number motions (see Hinch 1972).

The continuity and Stokes equations are ∇ · u = 0 and ∇ ·σσσ = 0, where u and σσσ are,
respectively, the velocity and stress fields. For a given geometry, i.e. the same domain
with the same bounding surfaces S and unit normal n directed into the fluid, and
considering a Newtonian fluid, it follows that the velocity and stress distributions, û
and σ̂σσ , for a second viscous flow are related to u and σσσ by∫

S

n ·σσσ · û dS =

∫
S

n · σ̂σσ · u dS. (2.1)

The quantity n ·σσσ represents the force per unit area that the fluid exerts on the surface.
Equation (2.1) is the starting point for applications of the Reciprocal Theorem to
problems in low-Reynolds-number hydrodynamics; extensions are possible for the
incorporation of inertial effects, viscoelastic features, etc.

2.1. An application to a problem with a slip boundary condition

As an illustration of the reciprocal approach to problems of recent interest in small-
scale flows, we consider the influence of slip on the translation of a sphere of radius a

in an unbounded fluid. In this problem there is a natural dimensionless parameter, λ/a,
that enters the problem, where λ is the slip length; for a unidirectional flow adjacent
to a stationary surface, λ is defined through the boundary condition u = λ(∂u/∂n).
The subject of slip has generated a large recent literature (e.g. Lauga, Brenner &
Stone 2007), though the earliest theoretical ideas can be traced to Navier in 1823
(hence the terminology ‘Navier slip length’). Although there is significant variation
in experimental reports of slip, there appears to be a consensus emerging that
indicate a slip length, even on solvophilic (solvent loving) surfaces, of the order of
10–30 nm. Note that for micron-sized objects, the slip effect is expected to be small,
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Fluid dynamics at interfaces 9

λ/a � 1. Nevertheless, there are situations where the slip effect can be magnified by
electric fields (e.g. Ajdari & Bocquet 2006). Here we investigate one consequence of
hydrodynamic slip using the reciprocal approach; for examples of the electrokinetic
enhancement investigated using the Reciprocal Theorem see Squires (2008).

To apply the Reciprocal Theorem, we consider as a ‘test’ problem (û, σ̂σσ ) the
translation of a sphere of radius a with a no-slip boundary condition, i.e. û = Û on
the sphere surface Sp , while the velocity decays at large distances. Stokes law give the

hydrodynamic force F̂
H

= −6πμaÛ of the fluid on the sphere. It is a (very useful)
fact of this classical solution that on the sphere’s surface, the surface stress vector is
n · σ̂σσ = −(3μ/2a)Û , which is a constant.

Here we are interested in the force on the sphere with slip, FH =
∫

Sp
n ·σσσ dS. Using

the above results in (2.1), and recognizing that Û is an arbitrary vector yields

FH = −3μ

2a

∫
Sp

u dS, (2.2)

which only requires knowledge of the velocity distribution on the surface of the
sphere. Also, the velocity decays at large distances, but on the surface of the sphere
we must satisfy (i) the kinematic condition, n · u = n · U and (ii) a slip condition, which
is conveniently written in terms of the slip length λ and the surface stress. The two
conditions may be written together using the surface projection operator I − nn:

u = U +
λ

μ
(I − nn) · (n ·σσσ ) on r = a. (2.3)

The limit λ=0 provides the no-slip condition and the limit λ → ∞ is the case of a
perfect slip surface, which is then supplemented with the kinematic condition.

Substituting (2.3) into (2.2) yields

FH = −6πμaU +
3λ

2a

∫
Sp

(I − nn) · (n ·σσσ ) dS. (2.4)

For λ/a � 1, it is natural to seek a perturbation expansion for the first effects of
slip on the velocity and stress fields:

u
(

r,
λ

a

)
= u0 (r) +

λ

a
u1 (r) + · · · and σσσ

(
r,

λ

a

)
= σσσ 0 (r) +

λ

a
σσσ 1 (r) + · · ·. (2.5)

From the standpoint of the Reciprocal Theorem we note that the textbook, no-slip
solution is simply the test case, u0 = û and σσσ 0 = σ̂σσ .

In the limit λ/a � 1 we then approximate the integral in (2.4) using the stress fields
based on the no-slip flow response, i.e. n ·σσσ ≈ n · σ̂σσ is approximately a constant vector
as explained above. Hence, noting that

∫
Sp

(I − nn) dS = (8π/3)a2 I we have directly

from (2.4) that

FH ≈ −6πμa

(
1 +

λ

a

)−1

U ≈ −6πμa

(
1 − λ

a

)
U . (2.6)

As expected physically, some slip on the sphere reduces the force. Most significantly,
the result has been obtained without the need to calculate the detailed velocity
distribution accurate to O (λ/a).

For the more general case that the slip coefficient is piecewise constant on the
surface of the sphere, there is the possibility of hydrodynamic coupling of rotation
and translation, as described by Ramachandran & Khair (2009). This problem is
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10 H. A. Stone

one of many variations of our basic example where we can take advantage of the
Reciprocal Theorem (e.g. Leal 1980).

3. Free-surface thin-film flows: Landau–Levich–Derjaguin–Bretherton problems
Lubrication theory is commonly discussed in many textbooks though most do

not hint at the great usefulness and applicability of the ideas. Traditionally, the topic
concerns boundary-driven or pressure-driven flows of thin fluid films. Here ‘thin’ refers
to the geometric characterization that the typical gap dimension h perpendicular to
the flow direction is much smaller than the distance � along which the flow occurs,
i.e. h/� � 1. More precisely, the local slope cannot change too rapidly. Although most
easily discussed for flows between rigid surfaces, which is the usual application of
‘lubrication’, the ideas find many research applications in flows involving free-surface
thin-film flows (e.g. Oron, Davis & Bankoff 1997). Thus, ‘lubrication’ ideas apply to
coating processes, film levelling, liquid spreading, etc. One large class of problems
concerns driven coating flows of perfectly wetting liquids that have in common the
influence of surface tension on the formation of a thin film of uniform thickness (often
only a few microns) from a meniscus region of much larger length scale (generally
millimetres to centimetres). For a brief overview of the kinds of problems impacted
by capillary phenomena (see Pomeau & Villermaux 2006).

3.1. A large class of common coating flows

Five traditional problems of this thin-film type are shown in figure 5(a–e). Figure 6
shows two that are less familiar, having a similar structure, that will be discussed in
§ 3.4. We exhibit in figure 5(a) the coating of a plate as it is drawn vertically with
speed U from a fluid of viscosity μ and density ρ, where γ is the surface tension
and g denotes the acceleration of gravity. Gravitational effects try to maintain a flat
interface while viscous effects cause withdrawal of a film of liquid. Our goal is to
determine the thickness of the film h∞ as a function of the physical parameters ρ, g,
γ , μ and U . Figure 5(b) illustrates the similar problem for coating a fibre of radius b.
These coating-flow problems, which are the two classical problems of coating theory,
were first analysed by Landau and Levich (1942) for withdrawal of a plate and by
Derjaguin (1943) for a fibre.

In addition, figure 5(c) shows a rotating horizontal cylinder partially immersed in
a bath of liquid where the rotation generates a thin film along the top of the surface
of the rotating cylinder (Tharmalingam & Wilkinson 1978). This configuration is
encountered in fibre coating processes where, for example, a fibre can be drawn
through the thin film. Figure 5(d ) illustrates the next of the traditional problems,
namely a long gas bubble propagating through a circular tube where it is separated
from the boundary by a thin film; this configuration was first analysed by Bretherton
(1961) (see also Ratulowski & Chang 1990). In one version of the problem there is
a pressure-driven flow in the tube and we are interested in the speed of the bubble
relative to the liquid. It turns out that the speed is related to the thickness of the thin
film, and so makes a close connection to the other problems shown in figure 5.

A final problem of this thin-film type concerns coating the inside of a horizontal
rotating cylinder (figure 5e) that contains a pool of liquid at its bottom (Ashmore et al.
2003; Tirumkudulu & Acrivos 2001). In all of the five cases sketched in figure 5(a–e),
so long as both an effective Reynolds number and an effective capillary number
(which compares viscous stresses to surface tension stresses) are small, there is a
nearly static meniscus of constant curvature that is connected to a thin film whose
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(a) (c)

(b) (d)

2b

( f )

(e)
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h
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h
Flat part of film

Rotating cylinder

Liquid film

Static meniscus

Liquid

Dynamic meniscus

U
γ

ρ, μ
ρ, μ

R
�

g

g

Liquid,

Liquid

Liquid

Air

R

γ

n

t

h (Ω )

Ω

Ω

Figure 5. The Landau–Levich–Derjaguin–Bretherton class of coating flows. (a) Coating a
plate by vertical withdrawal from a bath of liquid. (b) Coating a fibre of radius b by
withdrawal from a bath of liquid. (c) Roll coating of a horizontal rotating cylinder partially
immersed in a bath of liquid. (d ) Motion of a bubble in a liquid-filled tube of radius R
(Bretherton 1961). (e) Coating the inside of a hollow horizontal rotating cylinder partially
filled with liquid (Ashmore, Hosoi & Stone 2003). (f ) Schematic indicating the approach
towards thinking about thin-film free-surface flows involving moving substrates (after Fanton,
Cazabat & Quéré 1996).

Cold

Cold
Hot

Hot

Gas

Gas

R
Ub

Liquid

Liquid

γ

γ

Figure 6. Thermocapillary-driven coating flows. (a) Coating a plate by application of a
vertical temperature gradient along the plate. (b) Translation of a bubble in a tube driven by
a temperature gradient along the tube.

thickness is established by dynamical effects. The goal is to calculate the shape of the
film and the constant film thickness far from the meniscus.

We shall see that these distinct thin-film flow problems are, in fact, basically the
same from a fluid dynamical perspective – in recognition of this similarity, we refer
to these as LLDB problems (e.g. see de Gennes, Brochard-Wyart & Quéré 2003). It
is important to realize that the film thickness is not known a priori, but rather it is a
quantity that must be determined as part of the solution to the problem. Below we
also show how an understanding of the structure of the LLBD problems makes it
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12 H. A. Stone

possible to identify the basic scaling results in similar geometrical problems generated
by thermocapillary flows.

The remarkable fact is that all five problems (figure 5a–e) share a common solution
for the thickness h∞ of the uniform film region of the form:

h∞

�m

= c1

(
μU

γ

)2/3

= c1C2/3, (3.1)

where �m denotes the radius of curvature of the meniscus from which the film is
withdrawn. Here C = μU/γ is the capillary number, which must be small (typically
less than 10−2) for the analytical solution to be a good approximation. The O(1)
prefactor is known from solving an ordinary differential equation: c1 = 1.337. For
example, the length scale �m = �cap/

√
2, where the capillary length �cap =

√
γ /ρg is the

relevant length scale for plate coating, �m = b for coating of a fibre of radius b and
�m = R for the movement of a bubble in a tube of radius R. For the case of coating
the horizontal cylinder of radius R, we have that �m is proportional to the smaller
of �cap and R (Tharmalingam & Wilkinson 1978), while for coating the inside of the
cylinder, �m depends on the amount of fluid in the bottom (Ashmore et al. 2003).
This brief summary makes clear that the nontrivial scaling with capillary number in
(3.1) makes many appearances in the coating flows literature!

I still recall the first time that I studied this result in the classical book
Physicochemical Hydrodynamics by Levich (1962), though I no longer remember
what sent me looking there; the reader may also wish to consult the text of the same
title by Probstein (1994). The elegance of the solution made a particularly strong
impression on me since in the case of a plate withdrawn from a liquid bath we expect
the film thickness h∞ = f (U, ρ, μ, g, μ, γ ), which is a relationship among six variables.
Dimensional analysis lets us conclude that the film thickness is characterized by three
dimensionless parameters. However, for small Reynolds and Bond numbers, we can
deduce that the film thickness, relative to a characteristic length, is a function of the
capillary number. In the case of plate withdrawal, the meniscus is characterized by a
radius of curvature given by the capillary length, �m =(γ /(2ρg))1/2, so that with the
assumptions mentioned above, (3.1) yields

h∞ = 0.946
(μU )2/3

(ρg)1/2 γ 1/6
. (3.2)

This result involves three distinct power laws! This nontrivial result, first derived
by Landau and Levich, grabs your attention! For a summary of other coating flow
problems, see the review paper by Quéré (1999). In addition, there are cases where
films can be thicker than the prediction of (3.1) as discussed by Snoeijer et al. (2008).

From the historical perspective of problem solving in fluid dynamics and applied
mathematics, I also find it interesting that the solution procedure utilized by Landau
and Levich was essentially a boundary-layer calculation, or what we would more
formally call a solution using singular perturbation theory. The solution requires
matching of an inner region – the dynamical thin film – to an outer region – the static
meniscus (Wilson 1981). This solution is completed by demanding that the curvatures
match in an overlap region. Of course, at the time of the original publication there was
no systematic procedure for treating such problems so Landau and Levich proceeded,
absolutely correctly, on physical grounds.
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Fluid dynamics at interfaces 13

3.2. The origin of the LLDB scaling

As with any specialized topic, (3.1) is ‘well known to those that know it well’. Although
this paper is not the place to give a detailed derivation, it is useful to indicate, via
order-of-magnitude arguments, the origin of this scaling result for h∞. We will see in
§ 3.4 that the ideas then allow us to understand other related thermocapillary flow
problems. There are three steps that build on the idea that the flow can be considered
to have both a dynamical thin-film region of unknown length scale � along the flow
direction, where the lubrication approximation describes the viscous flow, and a static
regime, where the curvature of the meniscus region is established. At several steps the
approximation h∞/� � 1 is used.

The basic ideas are:
(i) In the thin film region the interface is curved, with a typical curvature, O

(
h∞/�2

)
,

so that the capillary pressure in the liquid is p ≈ − γ h∞/�2 (relative to the ambient
pressure).

(ii) A lubrication analysis of the thin-film flow gives a fluid velocity u along the
film that satisfies (ignoring signs)

μu

h2
∞

≈ �p

�
≈ γ h∞

�3
. (3.3)

This result expresses a balance between a boundary-driven viscous flow and a pressure-
driven suction flow generated by the curved meniscus. The basic momentum balance
is quite general, e.g. in lubrication flows it is always true that the pressure drop �p

and the velocity along the flow direction are related by �p ≈ μu�/h2
∞. Therefore with

u = O(U ) for the viscous withdrawal problem (figure 5a), or u =Ub for the speed
of the bubble (figure 5d ), then according to (3.3) we have the order-of-magnitude
estimate (

h∞

�

)3

≈ C, (3.4)

where C = μU/γ (replace U by Ub for the case of a bubble). This result supports the
self-consistency of the lubrication approximation for the flow since h∞/� � 1 provided
C � 1; a detailed study makes clear that the solution is an expansion in the capillary
number.
Those readers familiar with the dynamical contact angle for wetting liquids will
recognize the relationship in (3.4) of the capillary number to the cube of the ratio
of length scales. For example, Tanner’s law for the dynamical contact angle θd of
a perfectly wetting liquid is θ3

d ∝ C (de Gennes 1985); see also a discussion of the
logarithmic correction to (3.4) by Eggers & Stone (2004).

(iii) The shape of the thin film must evolve to have a curvature comparable to
the static meniscus, h∞/�2 ≈ 1/�m. We thus identify � =O (h∞�m)1/2, which, when
substituted into (3.4), yields the form of (3.1).

In this way, for standard coating flow problems, we can always understand the
thickness of the thin film as a function of the speed and material parameters. We
also take the opportunity to indicate other connections that follow naturally once
this point is appreciated. For example, for a drop spreading by capillary forces on
a plane where the drop has typical time-dependent height h(t) and breadth R(t),
h/R ≈ tan θd . Hence, using θ3

d ∝ C, then for the two-dimensional problem, where
hR =constant, we take � = R and since u ≈ R/t we obtain the well-known scaling
dynamics R ∝ t1/8. Similarly, for the axisymmetric spreading of a drop hR2 = constant
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14 H. A. Stone

and we find R ∝ t1/10 (Tanner’s law). Note that there are important details and ideas
that this heuristic overlooks.

3.3. Completing the bubble problem: the relative speed of the bubble to the fluid

We noted with respect to figure 5(d ) that, when a bubble moves in a liquid-filled tube,
the relative speed of the bubble is linked to the film thickness. Here we consider a
bubble moving due to a pressure-driven parabolic flow in a circular tube of radius R.
We consider a mass balance in the frame of reference fixed to the bubble. Now, let
Ub denote the bubble speed and 〈U〉 denote the average speed of the liquid. Then,
within the thin-film approximation,

(〈U〉 − Ub)πR2 = −2πRh∞Ub or
Ub − 〈U〉

Ub

=
2h∞

R
∝

(
μUb

γ

)2/3

. (3.5)

When the capillary number is small, the bubble moves a little faster than the mean
speed of the liquid. This result is in excellent agreement with numerical simulations
and experiments on clean systems. Surfactant effects typically modify the prefactor
(e.g. Ratulowski & Chang 1990; Quéré 1999).

As a final remark on the problem of a translating bubble, we note that these results
have been generalized to the case of bubbles in polygonal capillaries (Wong, Radke &
Morris 1995a,b) where liquid flow in the corners needs to be considered. For these
systems, experiments show that surfactants modify the results significantly, so that
the bubbles may move more slowly than the mean liquid flow because of a substantial
corner effect (Fuerstman et al. 2007).

There is a small but important feature that leads to improved agreement with
experiments when the capillary number is increased. Accounting for the film thickness,
the radius of curvature of the end of the bubble is changed to O(R − h∞). It is
straightforward to modify step (iii) above so that � ≈ (h∞R)1/2 (1 − h∞/R)1/2, which
yields a modified approximation for the Bretherton problem commonly expressed as
h∞/R = c1C2/3(1 − 2.5c1C2/3)−1, as was first given by (Aussillous & Quéré 2000). In
this case, the film thickness is reduced relative to the LLDB prediction.

3.4. Thermally driven thin films

In recent years there has been substantial interest in driving fluid motions using surface
tension gradients. We generally speak of such flows as driven by Marangoni stresses
(Scriven & Sternling 1960). For example, it is well known that the interfacial tension
can be generally decreased with increasing temperature or by adding surfactants.
Such gradients produces tangential stresses along a fluid–fluid interface that always
lead to fluid motion. The thermocapillary effect γ (T ) with dγ /dT < 0 in most cases,
has been used to control fluid motions.

We give two examples that will remind us of the thin-film flows in figure 5. First,
figure 6(a) shows a schematic where a linear temperature gradient along a plate
drives a thin fluid film towards the lower temperatures or higher surface tensions
(e.g. Fanton, Cazabat & Quéré 1996; Kataoka & Troian 1999). This example is
representative in that the temperature gradient applied along a substrate is essentially
imprinted on the interface since the liquid film is thin. The question to be answered
what relates the film thickness to the driving force, which is the temperature gradient,
and to the material properties. In addition, figure 6(b) illustrates the same idea for
driving a gas bubble along a liquid-filled channel (Mazouchi & Homsy 2000).

Obviously, there are similarities of these problems to other surface-tension-driven
flows. For example, the thin-film flow along a plate brings to mind wine tears, which
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Fluid dynamics at interfaces 15

are driven by a chemical Marangoni effect (e.g. Hosoi & Bush 2001). The first steady
thermocapillary flow of this type was the movement of a bubble in a prescribed
temperature gradient in an unbounded bath of fluid, which was analysed by Young,
Block & Goldstein (1959). In this case, the liquid is dragged towards the higher
tension regions and thus the bubble ‘swims’ towards higher temperatures.

We now proceed to give the main scaling results for the problems in figure 6, building
on the basic results we learned from the LLDB scaling. If the temperature distribution
along the surface (e.g. T (s)) is assumed to be linear, with gradient dT /ds = G > 0, then
the gradient of surface tension G|dγ /dT | = τ yields a constant applied surface stress.
We shall treat τ as given. These stresses act to pull liquid towards regions of higher
surface tension (figure 6a), while we assume the usual capillary effects associated with
pressure-driven suction flow towards the meniscus can still be approximated using an
average value of the surface tension γ0. At the interface, the thermocapillary stresses
τ balance the viscous stresses O(μUT /h∞), where UT is the thermocapillary speed
along the surface of a film of thickness h∞. Hence, the corresponding velocity of the
fluid relative to the stationary substrate is UT ≈ h∞τ/μ. The basic ideas behind the
classical Landau–Levich–Derjaguin–Bretherton result (see (3.1)) then apply and so
we expect a film thickness in thermocapillary flows, due to the applied stress τ , with
order of magnitude

h∞ ≈ �m

(
μUT

γ0

)2/3

≈ �m

(
h∞τ

γ0

)2/3

⇒ h∞ ≈ �3
mτ 2

γ 2
0

. (3.6)

We thus observe that the film thickness h∞ is a strongly increasing function of the
applied surface shear stress τ . This result was first obtained by Fanton, Cazabat &
Quéré (1996), who also confirmed it experimentally.

The scaling result (3.6) is also exactly what is obtained when considering the
thermocapillary motion of a bubble through a tube of radius R (Mazouchi & Homsy
2000), as displayed in figure 6(b). When the bubble translates, there is a thin film
separating the gas–liquid interface from the boundary and this film has a thickness
given by (3.6). As in § 3.3, a mass balance yields UbπR2 = UT 2πRh∞, so that we obtain
(take �m = R)

Ub ≈ 2UT h∞

R
∝ τh2

∞
μR

∝ τ 5R5

μγ 4
0

. (3.7)

This result was obtained originally from a detailed calculation by Mazouchi & Homsy
(2000). We observe that the bubble speed is a particularly strong function of τ, R and
γ0. The relation of these two thermocapillary flow problems to each other, and more
generally to the basic LLDB flow problems, illustrates the unifying features that tie
together many forced coating flows.

4. Nearly two-dimensional viscous flows
If the Reynolds number is small, there is a conundrum when solving the Navier–

Stokes equations for steady, unbounded two-dimensional motions; this fact is known
as the Stokes paradox (e.g. Leal 2007). In particular, if the inertia terms in the
Navier–Stokes equations are neglected entirely, then there is no solution to the
two-dimensional velocity field representative of a cylinder of radius a translating
perpendicular to its long axis with velocity U (figure 7a). One hint that the problem,
as posed, is unusual can be obtained from dimensional analysis for the force per unit
length, f , on the cylinder: in the low-Reynolds-number limit f should depend on
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16 H. A. Stone

(a)

L

L

h

Hμs/μ

h

HZ

(b)

(c) (d)

WaterWater

a / R

a
a

√

Figure 7. Nearly two-dimensional flows. (a) Translation of a slender particle transverse to its
long axis. (b) Schematic indicating the distance a/R < L at which inertial effects enter when
the Reynolds number is small. (c) Translation of an object in a bilayer or along a thin sheet
of viscous liquid. An indication is given of the length scale μs/μ at which the flow outside
the membrane impacts the motion, where μs is the surface viscosity and μ the viscosity of the
surrounding liquid. (d ) The motion in a bilayer can be influenced by flow in the surrounding
subphase when the depth H < μs/μ.

μ, U and a, and so we reach the conclusion that f ∝ μU , and is independent of the
cylinder radius, which seems physically unrealistic. It turns out that this basic problem
of the drag on a translating cylinder in a low-Reynolds-number flow captures ideas
that occur in other viscous flow problems that are nearly two-dimensional. Sketches
of such problems are given in figure 7 and are further discussed below; similar
mathematical ideas occur in a variety of problems in potential theory.

For a terse, insightful discussion of the resolution of the Stokes paradox, including
the first effects of inertia on the flow due to a translating cylinder (see Batchelor
1967). In the Stokes limit, an analysis of the two-dimensional flow past a cylinder
shows that the velocity varies logarithmically with distance r from the cylinder,
u(r) ≈ U (1 + c ln (r/a)), where c is a constant. This logarithmic response plagues
many two-dimensional problems in fluid dynamics, elasticity and electromagnetism.

Although many of the details of these problems are complicated there is a very
useful order-of-magnitude estimate that is worth remembering and which follows
from the logarithmic variation of the velocity distribution. In most cases we expect
that the velocity variations about an object occur on a geometric length scale, such
as the radius of the cylinder. Hence, for an object of radius a, we are typically taught
to estimate the velocity gradient as |∇u| =O (U/a). However, now we observe that in
nearly two-dimensional viscous flows, because of the appearance of the logarithmic
factor, the velocity variations occur over a length scale longer than the radius. When
a viscous fluid motion is nearly two-dimensional so that a logarithmically varying
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Flow problem Force/length

Cylinder translating parallel to its axis, R = 0
2πμU

ln(0.3L/a)

Cylinder translating perpendicular to its axis, R = 0
4πμU

ln(0.82L/a)

Cylinder translating perpendicular to its axis, R < 1
4πμU

ln(3.7/R)

Drag on a cylinder in a square array, array fraction φ � 1
4πμU

ln(0.48/φ1/2)

Disk translating in a membrane, infinite surroundings on both sides
4πμsU

ln(0.56μs/(μR))

Disk translating in a membrane near a rigid boundary H away
4πμsU

ln(1.1(μsH/(μR2))1/2)

Table 1. A summary of the force per unit length on cylindrical-like bodies in various nearly
two-dimensional flows. Here L is the end-to-end length of a cylinder of radius a, which is
translating at speed U . The Reynolds number is here defined in terms of the translation speed
U as R = ρUa/μ. The first entry is given by Batchelor (1967, p. 246). The second and third
entries are given by Lighthill (1975, p. 62). The fourth entry concerns the drag on a cylinder
in a fixed array, where φ represents the area fraction of the cylinders (e.g. Sangani & Acrivos
1982; Koch & Ladd 1997). The final two entries concern the force objects (radius R) translating
in viscous membranes (surface viscosity μs) in the limit μs � μR and the last entry further
assumes that the drag is dominated by the nearby boundary a distance H away.

velocity is expected, the velocity gradients occur on a length a ln (�/a), where � > a is
a length at which the two-dimensional character of the flow is changed. The length
� effectively distinguishes between solutions of different problems such as those
shown in figure 7. In these cases, it is convenient to work with the approximation
|∇u| = O (U/(a ln (�/a))).

For a cylinder of length L and radius a, with L � a, translating perpendicular (or
parallel) to its axis (figure 7a), the flow is three-dimensional at the scale of L, so
� ∝ L (Lighthill 1975). We then estimate the force per length, f on the translating
cylinder as the product of the shear stress and the perimeter, or

f ≈ O

(
μU

a ln (�/a)
2πa

)
≈ O

(
2πμU

ln (c2L/a)

)
, (4.1)

for some constant c2.
Similarly, when we consider the influence of inertial effects on the motion of a

cylinder of length L and radius a translating at speed U , we first define a Reynolds
number R = ρUa/μ. We consider R � 1. Then, the distance � at which a viscously
dominated flow decays sufficiently for inertial effects to be significant is � ∝ aR−1; this
length scale is most commonly referred to as the Oseen length. Hence, the force/length
for a translating cylinder is proportional to μU/ln (c3/R), for some constant c3.

These ideas for the drag on objects are important when we consider below (briefly)
the movement of objects in cell membranes and other viscous films (figure 7c, d ). A
summary of results applicable to nearly two-dimensional viscous flows, given in terms
of the force/length on an object, are given in table 1. A further example, which John
Brady pointed out to me, is low-Reynolds-number flow through arrays of cylinders;
here the cutoff length is � ∝ φ−1/2 where φ is the (small) area fraction of cylinders.
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18 H. A. Stone

The two facts to take away from the above discussion are that the force/length is
proportional to μU (dimensional analysis) and varies inversely with ln (�/a), where �

is a problem-dependent length scale.

5. The viscosity of thin films and interfaces
Complex fluids refer to the area of fluid dynamics research where suspended objects

in the fluid, e.g. rigid particles, bubbles and drops, cells, vesicles, micelles, polymers,
etc., or interfaces, e.g. surfactant covered surfaces, thin liquid films, membranes of
some type, etc., make a substantial impact on, or even control, the fluid motion.
The subject appears in many guises and crosses traditional scientific boundaries. In
my research group we have studied a number of questions from which emerged
common themes associated with the importance of such interfaces. As is often the
case, hindsight has made it easier to see the connections.

5.1. Diffusion in biological membranes

In the early 1970s biologists discovered that the bilayer membrane of a cell, which is
often visually depicted with the phospholipid molecules in a nice orderly packing, is in
fact much more fluid-like. The lipids, and objects such as integral membrane proteins,
diffuse relatively freely (Singer & Nicholson 1972); a more up-to-date understanding
of the fluid mosaic model is by Jacobsen, Sheets & Simson (1995). A natural fluid
mechanics question to ask is ‘what is the diffusivity of an object in a fluid membrane?’
Following the traditional description of Brownian motion given by Einstein in 1905,
we expect that the diffusion coefficient is D = kBT /(F/U ), where F is the force
needed to translate the object at speed U . Therefore, the basic question arises as to
the force–velocity relation for an object in a fluid membrane.

At these scales the dynamics are those of low Reynolds numbers. Moreover, a
common way of thinking about the dynamics is to consider the membrane as a
viscous fluid layer of viscosity μm and thickness h as in figure 7(c); physical chemists
commonly refer to the surface viscosity μs = μmh. Let μ denote the viscosity of
the fluid surrounding the membrane. Because the objects are generally depicted as
cylinders translating in a plane, the answer to this question is complicated by the
well-known Stokes paradox, as discussed in § 4, which tells us that there is no solution
to the steady translation of a cylinder. Nevertheless, Saffman and Delbrück effectively
answered the question of how to calculate the diffusivity of an object in a fluid
membrane (Saffman & Delbrück 1975). A complete fluid mechanical description,
resolving the paradox by accounting for the fluid surrounding the membrane, was
given in a classic paper by Saffman (1976).

As a personal note, at Philip Saffman’s retirement party, which was held at his
home in Pasadena, I asked him during a quiet moment when he was alone in his front
yard, if he had worked with Delbrück because Caltech was such a small, collegial
place. As I recall he simply turned and pointed to the house next door, and said
something like, ‘Well, the real reason was that Max Delbrück . . . lived next door. We
used to mow the lawn together, rake the leaves together . . . ’.

Saffman considered the translation of a membrane-bound object, radius R, which
spans the thickness h of the membrane, as sketched in figure 7(c). To evaluate the
force on the object, consider the drag from the fluid flow around it; the drag has
magnitude O (μmUh). In addition, there is drag from the subphase that lies either
on one or both sides of the membrane; this contribution to the drag has magnitude
O (μUR). Therefore, a dimensionless parameter, often referred to as the Boussinesq
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number, for the description of the motion is

B =
μmh

μR
=

μs

μR
. (5.1)

Note that we have used the surface viscosity μs = μmh, which characterizes the
viscosity of a two-dimensional sheet. The ratio μs/μ is a length scale and effectively
represents the distances in the membrane over which the flow is approximately
the two-dimensional flow about a cylinder and beyond which the drag from the
surrounding fluid causes a rapid decay of the velocity disturbance. Thus, for lipid
molecules μs/μ > h, which was the limit of interest to Saffman and Delbrück, we
expect a force/length ratio on the cylinder comparable to the case of cylinder in a
viscous fluid (see table 1), where now the logarithmic correction is cutoff on the length
scale � =μs/μ. Thus, the drag force on a membrane-spanning object is

F = − 4πμsU
ln (2μs/μR) − γE

= − 4πμsU
ln (0.56μs/μR)

, (5.2)

where γE = 0.5772 . . . is Euler’s constant.
For much larger objects such as phase-separated lipid domains of radius R in

the membrane (such domains can be tens to hundreds of microns in size), we
have μs/μ < R. I first learned about these systems via a collaboration with Harden
McConnell of Stanford University who introduced me to these kinds of questions
concerning the fluid mechanics of membranes. In particular, McConnell encouraged
me to think about the influence of nearby substrates simply because so many
experiments involve microscope slides. (I worked closely with McConnell for a few
years, and it was a great experience. He is one of the leading chemists and scientists of
his generation and is an inspiring collaborator. One day one of his graduate students
sent me an email saying that they had just completed a group meeting during which
McConnell said ‘Physical chemistry was invented by nice people, biology was invented
by God, and fluid mechanics was invented by the devil.’) Hence, we considered the
translation of a domain of radius R in a membrane with a rigid substrate a distance
H away, as sketched in figure 7(d ) (Stone & Ajdari 1998). For example, for the
case where μs/μ > R, but for which the boundary effects are significant, implying
μs/μ > R >H , we found that the flow should be nearly two-dimensional, with a
cutoff distance set by the length � =

√
(μsH/μ). Hence, in this limit we obtain the

drag force

F = − 4πμsU
ln

(
1.1(μsH/μR2)1/2

) , (5.3)

where the constant in the logarithm is modified by a factor 2 since in this limit, only
the drag from the thin film on one side of the object effectively matters.

Surfactant-covered interfaces also offer an added resistance to fluid motion (e.g.
Scriven 1960; Edwards, Brenner & Wasan 1991). One method for probing the rheology
of such interfaces is to use the above results, or closely related extensions, but
applied to particles purposely added to the interface (see Cheung et al. 1996; Sickert,
Rondelez & Stone 2007). Measuring the Brownian movement of individual particles
allows the surface viscosity to be estimated.

As this section should make clear, this class of fluid dynamics problems concerning
the flow within interfaces is a nice example of how hydrodynamic ideas are useful for
providing quantitative estimates to biological and rheological questions. It is a case
involving an interface at the interface of disciplines.
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(a) (c)

(d)

T1

(b)

a

Channels

nodes
120°

Figure 8. Dynamics associated with interfaces impact flows and rearrangements in foams.
(a) In a foam with low liquid fractions, the liquid resides in a channel-like network, where
(b) four channel channels meet in junctions. (c) In a two-dimensional foam trapped between
glass plates, rearrangements of the bubbles typically occur by (d ) shortening of individual
sides that then lengthen in such a way that bubbles switch neighbours, which is known as the
T1 process.

5.2. Surfactant-stabilized thin films

We close with two examples highlighting the importance of properties of the interface
for dictating dynamics of fluid flows. As is familiar to all of us, shaking a bottle of
soapy water produces a foam. There are many fluid mechanical questions that arise
when thinking about foams and soap films (see Mysels, Shinoda & Frankel 1959;
Weaire & Hutzler 1999). For example, over time the structure of the foam changes:
(i) liquid drains from the foam due to gravity (surface tension effects tend to resist
the drainage); and (ii) the typical bubble size increases as either gas diffuses from
small to large bubbles or the films between the bubbles ruptures following a gradual
thinning process (coarsening).

What factors influence the drainage rate? For the limit that the liquid volume
fraction is small, most of the liquid resides in a channel-like network (Plateau
borders), and the liquid flow is modelled as in a network of channels (figure 8a, b).
Consequently the drainage rate of liquid from the foam is established both by
the structure of the foam (bubble size, liquid fraction), which sets the geometric
dimensions of the channels, as well as the type of surfactants, which establishes
boundary conditions for the flow in the channel-like network. Resistance is associated
with flow along the long sections of the Plateau border (figure 8a) when the interfaces
are nearly rigid (Weaire & Hutzler 1999) and the nodes or junctions (figure 8b)
where velocity gradients remain significant even when the interfaces are mobile
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(Koehler, Hilgenfeldt & Stone 1999). In fact, most experimental data lie between
these two limits. Accounting for the effects of surface viscosity along the surfaces
of the Plateau borders (first described by Leonard & Lemlich (1965)) provides a
systematic means, dependent on the type of surfactant, for interpolating between the
two limit cases (Koehler, Hilgenfeldt & Stone 2004; Koehler et al. 2004). Thus, the
interfacial properties dictate the drainage rate.

Our final example concerns the time needed for spontaneous rearrangements in
a foam. The simplest case is a dry foam trapped between two transparent plates,
where the bubbles span the gap (figure 8c). This example is frequently on display in
museums. In such a two-dimensional setting the minimum energy configuration is a
perfect hexagonal tiling of equal size bubbles. Consequently, any initial state that is
different is constantly evolving to lower energy configurations and it does so by films
shortening, then switching neighbours and suddenly rearranging, which is called the
T1 process (see figure 8d ). What is the typical time of such a rearrangement?

We investigated this question using controlled experiments to trigger the instability
(Durand & Stone 2006). By changing the bulk viscosity of the solution μ and the
type of surfactant we showed that the dynamics were independent of μ but depended
strongly on the surfactant type, i.e. on the surface viscosity μs . On dimensional
grounds then there is a time scale related to the driving force for area minimization,
i.e. the surface tension (γ ), and the interfacial resistance (μs), which suggests the
rearrangement time scale is proportional to μs/γ . In our experiments, μs ≈ 30 ×
10−3 N s m−1 and γ ≈ 30 × 10−3 N m−1, so there is a time scale about 1 s, which is the
order of magnitude that was observed experimentally.

6. Closing remarks
Fluid dynamics is a subject that is inspiring in its breadth of applicability. Here we

have described a set of problems that occur when fluid–fluid interfaces participate
actively in the dynamics. That the topics occur also at the interface of disciplines is
especially educational and where these topics can lend insight into problems of some
practical importance is particularly gratifying.

In closing, I think it is important that as a community we do more to participate
in educational initiatives, since fluid mechanics can help inspire many learning
experiences, and to identify and work on technical problems of value to industry
and society, especially since fluid mechanics, in many guises, appears abundantly in
ways that matter. The new topics that arise also refresh our discipline. On a more
personal note, our studies allow us to interact internationally and that is a facet of
my work that I continually treasure.

I earned an undergraduate degree in Chemical Engineering at UC Davis, where
the educational environment was outstanding, and where I was first exposed to fluid
mechanics and transport processes. Gary Leal at Caltech, and Caltech itself, provided
a great environment to undertake basic research in fluid mechanics. I was given
wonderful opportunities to learn and meet first hand many ideas and people: Philip
Saffman was active in the Applied Mathematics program and Julio Ottino, in the
middle of formulating his thinking about mixing, visited Caltech for an extended
time during my final year. I then had an opportunity to work with John Hinch
at DAMTP, and benefitted greatly from the fabulous environment and colleagues
in Cambridge (including George Batchelor, Herbert Huppert, Keith Moffatt, Tim
Pedley, John Rallison, Grae Worster, John Sherwood, Oliver Harlen, Oliver Jensen
and later John Lister to name just a few) who gave me more exposure to the breadth
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of theoretical approaches to fluid mechanics problems than I had imagined possible.
When I began at Harvard the mechanics group – Fred Abernathy, Bernie Budiansky,
John Hutchinson, Richard Kronauer, Tom McMahon, Jim Rice and Lyle Sanders,
along with two emeritus professors who represented the best of fluid mechanics,
George Carrier and Howard Emmons – exposed me to many ideas in solid mechanics,
material science and applied mathematics; I will always remember the formative years
I spent with such a great group of colleagues and mentors. I have been very fortunate
to have had many wonderful Harvard colleagues who have broadened my views and
understanding, including Mike Aziz, Michael Brenner, David Nelson, Dave Weitz
and George Whitesides. Of course, without my students and postdocs, none of this
would have been possible. I have been lucky in this regard and I have long felt that I
have the most wonderful research group, full of energy, ideas and initiative that has
continually taught me new topics and exposed me to new ideas.

I thank my students Jacqueline Ashmore, John Bush (joint with Jeremy Bloxham),
Magalie Faivre, Samuel Gaudet (joint with Gareth McKinley), Eric Lauga (joint
with Michael Brenner), Michael Manga (joint with Rick O’Connell), Marcus Roper
(joint with Michael Brenner), Kiril Selverov, John Tanzosh, Andre Valente (joint with
David Edwards) and Wendy Zhang, and my postdocs Manouk Abkarian, Shelley
Anna, Martin Bazant, Catherine Best, Laurent Courbin, Richard Day, Marc Durand,
Cyprien Gay, Anthony Harkin, Sascha Hilgenfeldt, Stephan Koehler, Phil Lovalenti,
Stephen Lucas, Sameer Madanshetty, Tom Powers, Bill Ristenpart, Amy Shen,
Matt Sullivan, Thomas Ward and Dengfu Zhang. My current group of students –
Anand Bala Subramaniam, Jacy Bird, Emilie Dressaire, Alison Forsyth, Renita
Horton, Ann Lai, Rachel Pepper, Scott Tsai and Ernst van Nierop – and postdocs –
Laura Guglielmini, Jinkee Lee, Sigolene Lecuyer, Mathilde Reyssat, Laurence Rongy,
Roberto Rusconi, Benoit Scheid and Jiandi Wan – continue to inspire me with their
creativity and hard work. I have also benefitted enormously from many opportunities
to visit labs in France, and I recognize Armand Ajdari, Christophe Clanet, Laurent
Limat, Jacques Magnaudet, David Quéré and Emmanuel Villermaux for hosting many
such visits and for many inspiring questions and conversations over the years. Also,
Jens Eggers has been a continual, very supportive and positive intellectual influence
since my early years at Harvard. In recent years I have received generous financial
support for my research from Unilever, Schlumberger, and Saint-Gobain, as well as
from the Harvard MRSEC and NSEC centres sponsored by NSF; for all of this
support I am very thankful. I thank John Brady for the remark about the drag on
cylinder arrays as a further example of a two-dimensional viscous flow problem with a
logarithmic correction. Jens Eggers, Emmanuel Villermaux and Grae Worster kindly
provided helpful feedback on a draft of the paper. Finally, although I did not know
George Batchelor well, I recognize and value the manifold contributions that he made
to our field and this journal through his writings and leadership. Hopefully some of
that impact is evident in the work described in this paper. Most of all, I recognize
the value of family: from my parents who met after emmigrating to the United States
from pre-World War II Germany, to my wife Valerie and our two children Taylor
and Blaise. I dedicate this paper to them.
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