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This note studies local integral gradient bounds for distributional solutions of a large
class of partial differential inequalities with diffusion in divergence form and
power-like first-order terms. The applications of these estimates are two-fold. First,
we show the (sharp) global Hölder regularity of distributional semi-solutions to this
class of diffusive PDEs with first-order terms having supernatural growth and
right-hand side in a suitable Morrey class posed on a bounded and regular open set
Ω. Second, we provide a new proof of entire Liouville properties for inequalities with
superlinear first-order terms without assuming any one-side bound on the solution
for the corresponding homogeneous partial differential inequalities. We also discuss
some extensions of the previous properties to problems arising in sub-Riemannian
geometry and also to partial differential inequalities posed on noncompact complete
Riemannian manifolds under appropriate area-growth conditions of the geodesic
spheres, providing new results in both these directions. The methods rely on integral
arguments and do not exploit maximum and comparison principles.
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1. Introduction

In this note we analyse some quantitative and qualitative results for the following
partial differential inequalities (PDI in the sequel)

− div(A(x, u,∇u)) + B1(x, u,∇u) � 0 in Ω, (1.1)

− div(A(x, u,∇u)) � B2(x, u,∇u) in Ω, (1.2)

where Ω will be either a bounded open set in R
N or the whole space itself, N > 1,

A : Ω × R × R
N → R

N is a Carathéodory function (namely measurable in x and
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continuous in the u, ∇u entries) such that

|A(x, s, ξ)| � ν|ξ|p−1, ν > 0, (A)

for every (s, ξ) ∈ R × R
N , a.e. x ∈ Ω, and

B1(x, s, ξ) � cH |ξ|γ + λs− f(x), (B1)

B2(x, s, ξ) � cH |ξ|γ . (B2)

Here B1 : Ω × R × R
N → R, B2 : Ω × R × R

N → R , λ � 0, cH > 0 and f is a mea-
surable source term belonging to L1, N

q (Ω), the Morrey space of parameters (1, N/q),
q � 1, γ > p− 1, p > 1. A prototype equation satisfying the previous assumptions
is the quasilinear Hamilton–Jacobi/Riccati equation driven by the p-Laplacian
[7, 14, 16, 30, 31]

−div(|∇u|p−2∇u) + λu+ |∇u|γ = g(x) .

Our main results are the following. The first is a quantitative result for semi-
solutions to PDIs, that is summarized in the next

Theorem 1.1. Let Ω be an open bounded and connected subset of R
N having Lip-

schitz boundary and satisfying the uniform interior sphere condition. Assume (A)
and (B1), γ > p, λ � 0 and f ∈ L1, N

q (Ω) for some q > N
γ . Let u ∈W 1,γ

loc (Ω) be such

that λu− ∈ L1, N
q (Ω) satisfying, in the sense of distributions, the inequality

−div(A(x, u,∇u)) + B1(x, u,∇u) � 0 in Ω.

Then u is Hölder continuous up to the boundary (namely in the whole Ω) and
satisfies

|u(x) − u(y)| � K|x− y|α ,∀x, y ∈ Ω,

where

α = min
{

1 − N

qγ
,

γ − p

γ − (p− 1)

}
,

and K depends on cH , p, q, γ, N, ν, Ω, ‖f + λu−‖
L1, N

q (Ω)
. In particular, the esti-

mate is satisfied when f, λu− ∈ Lq(Ω), q > N
γ .

The second is a Liouville/Bernstein-type result and states the nonexistence of
nontrivial solutions to (1.2) for the corresponding homogeneous PDE/PDI without
zero-th order terms on noncompact complete Riemannian manifolds M in terms of
the growth rate of the area of the geodesic spheres.
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Theorem 1.2. Let (M, g) be a noncompact complete Riemannian manifold. If p >
1, γ > p− 1 and ∫ +∞ 1

(area(∂Bt(o)))
γ−(p−1)

p−1

dt = +∞ (1.3)

for some origin o ∈M , then any distributional solution of

− div(A(x, u,∇u)) � B2(x, u,∇u) in M, (1.4)

where A satisfies (A), must be a.e. constant on M . In particular, if (1.3) holds, any
distributional solution to

− div(A(x, u,∇u)) + cH |∇u|γ = 0 in M (1.5)

with γ > p− 1 must be a.e. constant on M .

The previous result leads to the following property when specialized to the
Euclidean space M = R

N .

Corollary 1.3. Assume (A) and (B2). Any distributional solution to the
inequality

− div(A(x, u,∇u)) � B2(x, u,∇u) in R
N (1.6)

must be a.e. constant in R
N provided that

p− 1 < γ � N(p− 1)
N − 1

, 1 < p < N . (1.7)

Similarly, any distributional solution to

− div(A(x, u,∇u)) + cH |∇u|γ = 0 in R
N (1.8)

must be a.e. constant when γ, p vary in the range (1.7).

These results rely on interior integral gradient estimates of Morrey-type of the
form ∫

Br

|∇u|γ dx � CRα

for some α ∈ R, see lemma 2.3, remark 2.5 and lemma 4.4. Such bounds are obtained
either by simple integral arguments that exploit test function methods or combine
a weak version of the divergence theorem and the co-area formula.

Related properties to those in theorem 1.1 for problems with supernatural gra-
dient growth, i.e. γ > p, have been already analysed in the literature. The paper
by I. Capuzzo-Dolcetta, F. Leoni and A. Porretta [11] treated a large class of
diffusion operators in non-divergence form (that also includes fully nonlinear uni-
formly elliptic operators and the p-Laplacian) with bounded right-hand side f (with
estimates depending on ‖u‖∞) in the realm of viscosity solutions. This was revis-
ited with a shorter proof by G. Barles in [3], again in the framework of viscosity
(semi-)solutions. This regularity problem has been much less investigated for
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unbounded data, where mostly optimal regularity at the level of Lebesgue spaces
has been studied, see e.g. [24]. An analogue to our theorem 1.1 with unbounded
source terms f ∈ Lq was proved by A. Dall’Aglio and A. Porretta in the case p = 2,
and it has been the starting point of our work. At this stage, we stress that dis-
tributional solutions for these problems are not unique, cf § 3.2, and hence the
quantitative result in theorem 1.1 takes on a stronger meaning.

Recent advances on the Hölder regularity for problems driven by the Laplacian
with coercive gradient terms and space-time Lq right-hand side have been obtained
for parabolic equations in [14] through quite different integral/duality methods,
which, unfortunately, do not seem to extend to quasi-linear operators satisfying
(A). We further mention that the Hölder regularity for solutions to these equations
when p = 2 has been also the focus of the recent work [17], but for solutions solving
the PDE in strong sense, looking thus beyond the range of the Hölder bound stated
in theorem 1.1 for source terms with better summability. Indeed, we also show that,
as far as the Hölder regularity is concerned, the range found in theorem 1.1 is sharp
for our class of functions, cf § 3.2. It is well-known that these regularity properties
are the cornerstone for the analysis of many different problems ranging from those
arising in ergodic control and homogenization to problems with state constraints,
at least when p = 2, see [3, 9]. Nonetheless, the case of quasilinear equations with
terms having supernatural growth appears, to our knowledge, still an open line of
research, cf [9, 30, 34] for some recent contributions.

Instead, statements like theorem 1.2, and its byproduct corollary 1.3, have
been studied (almost) thoroughly and for many years through various different
approaches, see e.g. Remark 3.7, § 3.3.1 and the general reference [6]. Although the
latter is a widely studied problem, we decided to propose a new unifying proof of
the result, even in a more general context, due to its shortness, along with the treat-
ment of some new endpoint cases (e.g. the borderline case γ = N(p−1)

N−1 in corollary
1.3). Here, our approach to tackle the Liouville property has been inspired by the
works [31, 36, 40]. At this point it is remarkable to emphasize that when p = 2
the threshold γ = N

N−1 is critical for the solvability and the regularity of solutions
of the so-called viscous Hamilton–Jacobi equation, see e.g. [16, 27].

Notably, the results in theorems 1.1, 1.2 and corollary 1.3 highlight a striking
effect of the superlinear gradient term. Indeed, a simple zoom of the equation sug-
gests that such a term is the dominating one at small scales in the supernatural
regime γ > p (i.e. in the regime of theorem 1.1), and it turns out to be the sole
responsible of all the properties analysed throughout this manuscript, as one can
realise by a careful inspection of the proofs of theorems 1.1 and 1.2. The link between
the Liouville and the local regularity properties of nonlinear elliptic problems has
been sometimes pointed out throughout some works, see e.g. [4, 33] among others,
and our analysis underlines once more the bridge between nonexistence results and
the Hölder regularity for semi-solutions of PDEs through the Morrey-type bounds
in lemma 2.3 and remark 2.5.

Some comments on the aforementioned results are now in order. On one hand,
theorem 1.1 holds for merely distributional semi-solutions to PDEs with supernat-
ural gradient growth and unbounded right-hand side. This is unusual for diffusive
problems (e.g. of second order) with first-order terms above the natural growth
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imposed by the diffusion γ = p, since such estimates hold, in general, for solu-
tions of uniformly elliptic problems with subnatural gradient growth γ < p and,
usually, bounded data [5, 29]. Moreover, the estimate in theorem 1.1 holds up to
the boundary of the domain and it is a universal estimate for positive solutions.

On the other hand, the approach leading to theorem 1.2 does not require any
one-side bound on the solution, being thus consistent with the companion results
for solutions to the same kind of equations obtained through the Bernstein gra-
dient estimates by L. Peletier-J. Serrin [35] and P.-L. Lions [31], and later in [7]
(see also [9, theorem 2.4] and [22, theorem 1.1] for recent refinements). Notably,
in the context of Riemannian manifolds theorem 1.2 does not require curvature
conditions on the background geometry. As a matter of fact, we emphasize that
curvature bounds have been frequently imposed to derive the Liouville property for
solutions to −Δpu+ |∇u|γ = 0 when the first-order term has ‘superlinear’ growth
with respect to the diffusion (i.e. γ > p− 1) and the equation is posed on a non-
compact manifold, see e.g. [7, corollary 4.3]. This is a consequence of the use of
Bernstein-type methods through the Böchner’s identity. In this paper we adopt a
different viewpoint, as in [37, 40]. Indeed, theorem 1.2 shows, in the case of dis-
tributional supersolutions to these homogeneous quasi-linear equations, that the
Liouville property can be obtained under some area-growth conditions, at least for
slowly increasing gradient terms, see § 4.2. It seems an open problem whether the
Liouville result in [7] holds for less regular solutions and with less restrictive bounds
on the geometry in the general superlinear range γ > p− 1. We further remark that
the assumptions we impose in theorem 1.2 are closer to the ones used in [40, 43]
rather than in [7].

Our results apply to general diffusion operators in divergence form. For instance
−div(A(x, u, ∇u)) can be one of the following:

• the (negative) Laplacian −Δu = −div(∇u) or the mean-curvature operator
−div( ∇u√

1+|∇u|2 ) when p = 2;

• the p-Laplacian −Δpu = −div(|∇u|p−2∇u) for p > 1;

• the generalized mean-curvature operator −div(|∇u|k−2 ∇u√
1+|∇u|k ), k � 2, for

p = k
2 .

Moreover, the properties in theorem 1.1 also extend to the subelliptic framework
when the standard derivatives in the aforementioned operators are replaced with
derivatives along vector fields satisfying the Hörmander’s rank condition, i.e. for
the subelliptic inequality

−div(A(x, u,∇Xu)) + |∇Xu|γ � f(x),

where ∇X stands for the horizontal gradient built over the frame X , see e.g. theorem
4.2 in § 4.1 for more details. This is the case, for instance, of problems structured
over the fields generating a Carnot group of step 2, the main prototype being the
Heisenberg group. The interior Hölder regularity for such subelliptic problems with
power-like first-order terms on the horizontal gradient seems new to our knowledge.
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Moreover, the results in theorems 1.1 and 1.3 can be stated analogously for
distributional supersolutions and subsolutions respectively by reversing the signs in
the assumptions (B1) and (B2). For instance, the conclusions of theorem 1.1 hold
for distributional solutions to the model PDI

− div(A(x, u,∇u)) + λu− |∇u|γ � f(x) in Ω , (1.9)

under essentially the same regularity assumptions on the data, while the Liouville
property in theorem 1.3 holds for the weak PDI

−div(A(x, u,∇u)) + cH |∇u|γ � 0 in R
N

under the hypothesis (A). Indeed, the diffusion plays no role here, as in [11,
18], since the properties can be deduced from the sign of the gradient term in
the equation, see remark 2.5. To convince the reader that such properties can be
appropriately stated both for sub- and supersolutions to elliptic inequalities with
power-growth gradient terms and compare the results with most of the literature
on the subject, we decided to state theorem 1.1 for subsolutions and theorem 1.2
for supersolutions to elliptic inequalities.

We conclude by saying that our underlying aim here is also to lay the groundwork
to investigate the problem of the optimal gradient regularity in Lebesgue spaces for
equations with diffusion in divergence form as those modelled over the p-Laplacian,
as initiated in [14, 16] for the viscous Hamilton–Jacobi equation, through blow-up
arguments, see [4, 17].

Plan of the paper. Section 2 introduces some preliminary definitions and contains
the main integral bounds needed for the following sections. Section 3.1 studies the
interior and global Hölder regularity for semi-solutions, while § 3.3 the Liouville
property for homogeneous PDIs in the Euclidean space, that is corollary 1.3. Section
4.1 and 4.2 conclude the paper with the local Hölder regularity for solutions to quasi-
linear subelliptic inequalities and the Liouville properties for inequalities posed on
Riemannian manifolds.

2. Morrey-type inequalities

We begin with some preliminary definitions and notations. We set u+ = max{u, 0}
and u− = max{−u, 0}. If r ∈ (1, ∞), we denote by r′ = r

r−1 its Hölder conjugate
exponent.

Definition 2.1. Let Ω be either a bounded open set or the whole Euclidean space
R

N . We say that u ∈W 1,p
loc (Ω) is a distributional solution of (1.1) if A(·, u, ∇u) ∈

Lp′
loc(Ω), with B(·, u, ∇u) ∈ L1

loc(Ω) and∫
Ω

A(x, u,∇u) · ∇ϕdx+
∫

Ω

B(x, u,∇u)ϕdx � 0 , ϕ ∈ C1
0 (Ω), ϕ � 0.

Remark 2.2. When γ > p as in theorem 1.1, it will be enough to consider distribu-
tional subsolutions belonging to u ∈W 1,γ

loc (Ω) in view of the inclusions of Lebesgue
spaces.
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Recall that for s � 1 and θ ∈ (0, N ], the Morrey space Ls,θ(Ω) comprises those
functions h ∈ Ls(Ω) such that∫

Br(z)∩Ω

|h(x)|s � CrN−θ

for all z ∈ Ω, r ∈ (0, diam(Ω)] and C independent of z and r. This space is equipped
with the norm

‖h‖Ls,θ(Ω) := sup
z∈Ω;0<r�diam(Ω)

r
θ−N

s ‖h‖Ls(Br(z)∩Ω).

Clearly, if s = 1 and θ = N/q, q � 1, any function h ∈ Lq(Ω) satisfies the bound∫
Br(z)∩Ω

|h(x)| � CrN−N
q

by the Hölder’s inequality. For the properties that will be stated in the Euclidean
setting, HN−1 stands for the (N − 1)-Hausdorff measure, Br(x) is the Euclidean
ball with centre x and radius r, hence area(∂Br(x)) = NωNr

N−1 and Vol(Br(x)) =
ωNr

N , where ωN stands for the measure of the unit Euclidean ball.
The main result of this section is the following Morrey estimate.

Lemma 2.3. Let γ > p− 1, λ � 0, f ∈ L1, N
q (Ω), q � 1. Assume that (A) and (B1)

hold. Let u be a distributional solution of (1.1) such that λu− ∈ L1, N
q (Ω). Then, for

every pair of concentric balls Bt ⊂ BR ⊂ Ω we have∫
Bt

|∇u|γ dx+ λ

∫
Bt

u+ dx � K
RN

(R− t)s

where s = max
{

N
q ,

γ
γ−(p−1)

}
and K is a constant depending on ν, p, γ, q, N, cH

and on ‖f + λu−‖
L1, N

q (BR)
.

Proof. Let C be a generic constant depending on the data ν, p, γ, q, N, cH . Let
η be a C1 cut-off function such that 0 � η � 1, η ≡ 1 on Bt, η ≡ 0 outside BR,
|∇η| � C

R−t . We use ϕ = η
γ

γ−(p−1) as a test function in the distributional formulation
of the inequality (1.1), together with (B1), to obtain

cH

∫
Ω

|∇u|γη γ
γ−(p−1) dx+ λ

∫
Ω

u+η
γ

γ−(p−1) dx

� − γ

γ − (p− 1)

∫
Ω

(A(x, u,∇u) · ∇η)η p−1
γ−(p−1) dx+

∫
Ω

(f + λu−)η
γ

γ−(p−1) dx.

Observe that by (A) and the weighted Young’s inequality with exponents
( γ

γ−(p−1) ,
γ

p−1 ) we have

− γ

γ − (p − 1)

∫
Ω

(A(x, u,∇u) · ∇η)η
p−1

γ−(p−1) dx � γν

γ − (p − 1)

∫
Ω

|∇u|p−1|∇η|η
p−1

γ−(p−1) dx

� cH

2

∫
Ω

|∇u|γη
γ

γ−(p−1) dx + C(cH , γ, p, ν)

∫
Ω

|∇η|
γ

γ−(p−1) dx.
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We then get

cH
2

∫
Ω

|∇u|γη γ
γ−(p−1) dx+ λ

∫
Ω

u+η
γ

γ−(p−1) dx

�
∫

Ω

(f + λu−)η
γ

γ−(p−1) dx+ C(cH , γ, p, ν)
∫

Ω

|∇η| γ
γ−(p−1) dx

� ωN‖f+λu−‖
L1, N

q (BR)
RN−N

q + C(cH , γ, p, ν, ωN )
RN

(R−t) γ
γ−(p−1)

� K
RN

(R−t)s
,

where s = max
{

N
q ,

γ
γ−(p−1)

}
and K depends on N, cH , γ, ν, p, q and ‖f +

λu−‖
L1, N

q (BR)
. �

Remark 2.4. The estimate in lemma 2.3 holds for any γ > p− 1, p > 1, and hence
slightly improves the one obtained in [18] for the case p = 2, being new in the
regime 1 < γ � 2. This will be important to derive the Liouville theorems for PDIs
with nonlinearities having subnatural growth in the gradient in the next section.

Remark 2.5. As claimed in the introduction, the property in lemma 2.3 holds for
supersolutions to equations of the form (1.9) having opposite signs, but estimates
would now require λu+ ∈ L1, N

q (BR), while it holds for every pair of concentric balls
Bt ⊂ BR ⊂ Ω the estimate∫

Bt

|∇u|γ dx+ λ

∫
Bt

u− dx � K
RN

(R− t)s
,

where s = max
{

N
q ,

γ
γ−(p−1)

}
and K is a constant with the same dependence of

that in lemma 2.3.
An alternative proof of the previous Morrey estimate for supersolutions in the

simpler case f = λ = 0, i.e. for the inequality (1.2), can be performed using a dif-
ferent integral approach, inspired by [31, 40]. This will be crucial to derive the
Liouville results for supersolutions to homogeneous inequalities in the next section.

Suppose that u is a nonconstant distributional solution to (1.2). We proceed for-
mally integrating the PDI to highlight the main ingredients, although the argument
can be made rigorous reasoning as in remark 2.6. In this way, we get

−
∫

Br

div(A(x, u,∇u)) dx � cH

∫
Br

|∇u|γ dx, (2.1)

to conclude after applying the Hölder’s inequality

−
∫

Br

div(A(x, u,∇u)) dx � ν

∫
∂Br

|∇u|p−1 dHN−1 (2.2)

� ν

(∫
∂Br

|∇u|γ dHN−1

) p−1
γ

(area(∂Br))
γ−(p−1)

γ .

(2.3)
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We set σ(r) =
∫

Br
|∇u|γ . Note that since u is non-constant, there exists R such

that for r � R it results σ(r) > 0. Moreover, by the co-area formula it follows that

σ′(r) =
∫

∂Br

|∇u|γ dHN−1.

Combining (2.1) and (2.2) we conclude

ν[σ′(r)]
p−1

γ (area(∂Br))
γ−(p−1)

γ � cHσ(r)

and so

σ′(r) � C(ν,N, γ, p, cH)(σ(r))
γ

p−1 r−(N−1)
γ−(p−1)

p−1 , r � R.

We set

α := (N − 1)
γ − (p− 1)
p− 1

and integrate on [R, r], R � R. When α < 1, i.e. γ < N(p−1)
N−1 , we obtain that

p− 1
γ − (p− 1)

· 1

(σ(R))
γ−(p−1)

p−1

� p− 1
γ − (p− 1)

(
1

(σ(R))
γ−(p−1)

p−1

− 1

(σ(r))
γ−(p−1)

p−1

)
(2.4)

� C(ν,N, γ, p, cH)
∫ r

R

t−(N−1)
γ−(p−1)

p−1

= C(ν,N, γ, p, cH)
(p− 1)

N(p− 1) − (N − 1)γ
[r1−α −R1−α].

which is essentially the same bound found in lemma 2.3 with f = λ = 0. Remark-
ably, when α = 1, i.e. γ = N(p−1)

N−1 , we get the logarithmic bound

p− 1
γ − (p− 1)

1

(σ(R))
γ−(p−1)

p−1

� C(ν,N, γ, p, cH) log
( r
R

)
. (2.5)

This procedure will be further generalized in lemma 4.4 in the context of
Riemannian manifolds.

Remark 2.6. The computations in remark 2.5 can be made rigorous arguing as in
[13, 37, 39, 40]. We first recall that u is a distributional solution of (1.2) if∫

RN

A(x, u,∇u) · ∇ϕdx �
∫

RN

B2(x, u,∇u)ϕdx

for all Lipschitz continuous functions ϕ � 0 with compact support. As already
outlined in remark 2.5, the idea is to apply the divergence theorem to the vector
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field A. To this aim, we define the Lipschitz function ψε = ψr,ε

ψR,ε =

⎧⎪⎨⎪⎩
1 if |x| � r,
r+ε−|x|

ε if r < |x| < r + ε,

0 if |x| � r + ε.

We then take a Lipschitz continuous function ρ � 0 with compact support to be
defined later and use ϕ = ρψε as a test function, together with (A), to find∫

RN

A(x, u,∇u) · ψε∇ρdx =
∫

RN

A(x, u,∇u) · ∇(ψερ) dx

−
∫

RN

A(x, u,∇u) · ρ∇(ψε) dx

�
∫

RN

B2(x, u,∇u)ρψε dx− 1
ε

∫
Br+ε/Br

|A(x, u,∇u)|ρdx

� cH

∫
RN

|∇u|γρψε dx− ν

ε

∫
Br+ε/Br

|∇u|p−1ρdx.

We then choose ρ such that ρ = 1 on Br+ε and find∫
RN

A(x, u,∇u) · ψε∇ρdx � cH

∫
Br

|∇u|γ dx− ν

ε

∫
Br+ε/Br

|∇u|p−1 dx.

Therefore, the leftmost side integral of the above inequality vanishes, so that we
end up with the inequality

cH

∫
Br

|∇u|γ dx � ν

ε

∫
Br+ε/Br

|∇u|p−1 dx.

Then, owing to the co-area formula [20] we get

lim
ε→0+

ν

ε

∫
Br+ε/Br

|∇u|p−1 dx = lim
ε→0+

ν

ε

∫ ε

0

∫
∂Br

|∇u|p−1 dHN−1 dr

= ν

∫
∂Br

|∇u|p−1 dHN−1.

Letting ε→ 0+ we finally obtain

cH

∫
Br

|∇u|γ dx � ν

∫
∂Br

|∇u|p−1 dHN−1.

We can then proceed through the Hölder’s inequality on the boundary integral as
in remark 2.5 to conclude the statement.

Remark 2.7. One can also prove a similar property when the diffusion operator has
the opposite sign, i.e. it is of the form +div(A(x, u, ∇u)), and when |A(x, u, ∇u)| �
h(x) + ν|ξ|p−1 with h ∈ Lr(Ω) (or in a suitable Morrey class) for some r > 1 with
a (possibly) different Hölder exponent.
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Remark 2.8. A similar condition to (2.4) regarding the existence of solutions has
been already pointed out in [27, 34].

3. Some applications of the Morrey-type inequalities

3.1. Local and global Hölder regularity for semi-solutions

We now apply lemma 2.3 to prove the local Hölder continuity of semi-solutions
to non-homogeneous PDEs with power-growth nonlinearities and unbounded right-
hand side controlled in Morrey spaces. We will actually give a uniform estimate for
the Hölder semi-norm on any ball B ⊂ Ω.

Theorem 3.1. Assume (A)–(B1), γ > p, λ � 0, with f ∈ L1, N
q (Ω) for some q > N

γ .

Let u ∈W 1,γ
loc (Ω) such that λu− ∈ L1, N

q (Ω) which satisfies, in the sense of distri-
butions, the inequality (1.1). Then u is locally Hölder continuous and satisfies for
every ball B ⊂ Ω the interior bound

|u(x) − u(y)| � K|x− y|α ,∀x, y ∈ B ,

where

α = min
{

1 − N

qγ
,

γ − p

γ − (p− 1)

}
,

and K depends on p, q, γ, N, ν, Ω, ‖f‖
L1, N

q (Ω)
and λu− ∈ L1, N

q (Ω).

Proof. Step 1: Local Hölder regularity. Let x0 ∈ Ω and Br = Br(x0) be a ball such
that the twice bigger ball B2r(x0) ⊂ Ω. We apply lemma 2.3 and obtain the estimate∫

Br

|∇u|γ dx � KrN−s,

where s = max
{

N
q ,

γ
γ−(p−1)

}
and K depends on γ, p, N, ν, q, cH and ‖f +

λu−‖
L1, N

q (Ω)
. By the Hölder’s inequality we can write

∫
Br

|∇u|dx �
(∫

Br

|∇u|γ dx
) 1

γ

(Vol(Br))1−
1
γ ,

and hence deduce that for a possibly different constant K̃ we have∫
Br

|∇u|dx � K̃rN− s
γ .

If BR is any ball such that B2R ⊂ Ω, the same property continues to hold for any
smaller ball Br ⊂ BR. We apply [23, theorem 7.19] and conclude that u is Hölder
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continuous in BR with the following explicit Hölder exponent

α = 1 − s

γ
= min

{
1 − N

qγ
, 1 − 1

γ − (p− 1)

}
= min

{
1 − N

qγ
,

γ − p

γ − (p− 1)

}
and

|u(x) − u(y)| � K|x− y|α ,∀x, y ∈ BR .

In particular, the last estimate holds for any couple of points x, y belonging to some
ball BR such that B2R ⊂ Ω.

Step 2: Uniform Hölder estimates. It is enough to argue through the same path
outlined in step 2 of [18, theorem 3.1]. �

The previous result proves that u is uniformly locally Hölder continuous in
a domain Ω ⊂ R

N . To prove the global Hölder regularity one needs some extra
smoothness assumptions on the boundary of Ω. More precisely, we say that an
open bounded subset Ω ⊂ R

N has Lipschitz boundary if in a neighbourhood of
each x0 ∈ ∂Ω the domain Ω can be represented as the subgraph of a Lipschitz
function of (N − 1)-variables.

Still, we need that Ω satisfies the uniform interior sphere condition with radius
r > 0, i.e. for every x0 ∈ ∂Ω there exists a unit vector ζ(x0) such that Br(x0 +
rζ(x0)) ⊂ Ω. Under these extra coupled conditions on the boundary of the domain,
one has the following result taken from [11, lemma 2.6], which is recalled here below
for reader’s convenience.

Lemma 3.2. Let Ω ⊂ R
N be an open bounded domain with Lipschitz boundary and

satisfying the uniform interior sphere condition. Let now u : Ω → R be a continuous
function such that there exist K > 0 and α ∈ (0, 1) such that

|u(x) − u(y)| � K|x− y|α, ∀x, y ∈ B, B ⊂ Ω.

Then, u extends up to ∂Ω as a function verifying

|u(x) − u(y)| � M |x− y|α ,∀x, y ∈ Ω,

where M � K depends on α, K and on ∂Ω.

We can then conclude the section with the proof of theorem 1.3.

Proof of theorem 1.3. The result now follows from theorem 3.1 via lemma 3.2. �

Remark 3.3. Theorem 1.1 extends a result for semi-solutions to fully nonlinear
equations with bounded right-hand side in the viscosity framework obtained in [11,
theorem 2.11], together with the one for the case p = 2 obtained by A. Dall’Aglio
and A. Porretta in [18] for subsolutions to equations with coercive Hamiltonians
and Lq source terms. We emphasize that the Hölder regularity we obtain here goes
beyond the (continuous) viscosity solutions’ framework, and in particular we recover
the same (optimal) exponent found in [11] for f ∈ L∞.

Remark 3.4. The level of Hölder regularity obtained in theorem 1.1 is the starting
point to derive more general quantitative (local) Calderón–Zygmund estimates for
solutions to these classes of PDEs, as recently started in [17] for p = 2.
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3.2. Sharpness of the Hölder regularity and further comments

We first observe that the exponents found in the Hölder regularity proved
in theorem 1.1 are sharp. To do this, we first recall that if u is radial, i.e.
u(x) = V (|x|) ≡ V (r) for some smooth function V , if x is such that V ′(|x|) �= 0
we have

− Δpu(x) = −|V ′(r)|p−2

[
(p− 1)V ′′(r) +

N − 1
r

V ′(r)
]
. (3.1)

The result in theorem 1.1 shows that when q > N(γ−(p−1))
γ the subsolutions to the

PDI

−Δpu+ λu+ |∇u|γ � f(x)

belong to Cα with α = γ−p
γ−(p−1) . In this case, an example of the optimality con-

cerning the Hölder exponent α = γ−p
γ−(p−1) can be obtained even in the class of

(distributional) solutions to the equation

−Δpu+ |∇u|γ = 0 in Ω , u ∈W 1,γ
0 (Ω),

i.e. for the equation with vanishing source term f ≡ 0. It is sufficient
to take Ω = B1(0) and the function u(x) = c(|x| γ−p

γ−(p−1) − 1) for c = γ−(p−1)
γ−p

( (N−1)γ−N(p−1)
γ−(p−1) )

1
γ−(p−1) , γ > p and 1 < p < N .

We observe that, though the method does not require any restriction on the
order p > 1, the present analysis could have been restricted to the case 1 < p < N ,
since the weak solutions belonging to W 1,γ with γ > p and p > N would have
been automatically (locally) Hölder continuous by the Sobolev embeddings. This is
completely in line with the way of proving the local Hölder regularity in the case of
p-harmonic functions (i.e. for weak solutions to −Δpu = 0). Indeed, the case p > N
is in general simpler than the cases p = N and p < N , which in turn require finer
arguments based on the Widman filling-the-hole technique and the Moser iteration
respectively, cf [5]. We emphasize once more that in the case 1 < p � N , our result
covers the case of semi-solutions and not only of solutions to such quasi-linear
equations.

Moreover, even the order of the Hölder class α = 1 − N
qγ cannot be improved

when N
γ < q < N(γ−(p−1))

γ , as shown in e.g. [18, remark 3.2] for the case p = 2.
Finally, we stress again that when γ > p, the gradient term dominates the diffusion
at small scales, and hence the equation can be regarded as

|∇u|γ � Δpu− λu+ f

so that the diffusion plays no role in the derivation of the Hölder regularity, as it
can be seen by inspection throughout the proof of lemma 2.3. This result is thus
consistent with the Lipschitz regularity for subsolutions of the first-order equation

|∇u|γ � −λu+ f,

as widely discussed in [3]. We conclude by recalling that the above example shows
also that the uniqueness does not hold for these weak solutions, and hence this
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latter property really depends on the formulation of the problem, cf [18, remark
3.2].

3.3. Liouville theorems for homogeneous problems

A byproduct of the Morrey-type bounds obtained in remark 2.5 are the Liouville-
type theorems for supersolutions to nonlinear homogeneous PDIs. Although the
ideas behind the proofs contained in this section are not completely new, one
remarkable observation is that the derivation of the Liouville property for PDIs
with gradient terms does not need any a priori one-side bound on the solution, and
it holds for merely distributional supersolutions to general PDI with measurable
ingredients. This last feature is in line with the corresponding Liouville properties
for solutions to the model equation −Δpu+ |∇u|γ = 0 obtained via the Bernstein
method, cf [31, 35] for p = 2 and [7] for p > 1.

In addition, we wish to emphasize that in the derivation of this kind of Liouville
properties one usually needs to use different methods to handle the subcritical
case for γ (i.e. p− 1 < γ < N(p−1)

N−1 ) and the critical regime (γ = N(p−1)
N−1 ). Here, our

method of proof seems to unify the treatment of both regimes. To this aim, we
consider the (distributional) inequality

− div(A(x, u,∇u)) � B2(x, u,∇u) in R
N (3.2)

with B2 satisfying (B2). For ease of presentation we decided to reverse the order
of the proofs of theorem 1.2 and corollary 1.3. Thus, we first discuss how to derive
corollary 1.3 in the Euclidean setting, then state some comments on the result. This
will serve as a guideline to treat the more general case of Riemannian manifolds in
§ 4.2.

Proof of corollary 1.3. Suppose by contradiction that u were not constant on the
ball BR̃ for some R̃ > 0. The required contradiction can be obtained exploiting
(2.4) in remark 2.5 sending r → ∞ or lemma 2.3 applied with f = λ = 0 and t = 0,
after letting R→ ∞, using that γ < N(p−1)

N−1 . The Liouville property in the critical

case γ = N(p−1)
N−1 readily follows through the same path using (2.5) after sending

r → ∞. �

Remark 3.5. Specializing corollary 1.3 to some well-known operators, we conclude
that any distributional supersolution to

−Δpu � cH |∇u|γ in R
N

or

−div

(
|∇u|k−2 ∇u√

1 + |∇u|k

)
� cH |∇u|γ in R

N , k � 2, p =
k

2

must be constant provided that p− 1 < γ � N(p−1)
N−1 , while any distributional

supersolution to

−Δu � cH |∇u|γ in R
N
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or

−div

(
∇u√

1 + |∇u|2

)
� cH |∇u|γ in R

N

satisfies the Liouville property provided that 1 < γ � N
N−1 .

Remark 3.6. Throughout this section we restricted to consider the case 1 < p < N .
Indeed, if one considers the inequality −Δpu � |∇u|γ in R

N , we have that u solves
also −Δpu � 0 in R

N , and hence the Liouville property would have been trivial
when p � N through classical results, see e.g. [41] and the next § 3.3.1.

Remark 3.7. The results in corollary 1.3 have been deeply studied in the literature.
When the PDI is driven by the Laplacian the result has been proved in e.g. [12]
for classical solutions, i.e. when u ∈ C2(RN ), satisfying the inequality pointwisely,
exploiting that the spherical mean preserves the PDI, reducing then the analysis to
an ODE. Alternative test functions methods have been extensively used in various
papers. For instance, R. Filippucci proved in [21, corollary 1] the Liouville prop-
erty for nonnegative distributional solutions to −Δpu � um|∇u|γ in R

N under the
following assumptions

0 < m � N(p− 1)
N − p

− γ
N − 1
N − p

, 1 < p < N, m+ γ > p− 1,

and therefore the pure gradient nonlinearity casem = 0 is excluded from that result.
When p = 2 and (N − 1)γ � N(p− 1), γ > 0, the result was proved through a result
similar to lemma 2.3 in [19] for distributional supersolutions. Different (recent)
proofs have been obtained in [10, corollary 3] and [8, theorem 2.1]. We emphasize
once more that most of these proofs require to distinguish the treatment of the
subcritical case (e.g. when γ < N(p−1)

N−1 ) from the critical one (namely γ = N(p−1)
N−1 ).

More recent analyses for PDIs on noncompact complete manifolds, without curva-
ture conditions and assuming suitable volume growths, have been carried out in
[42, 43]. We remark in passing that our method differs from the ones proposed in
the literature.

3.3.1. Further remarks and alternative approaches. We conclude the section by
observing that a different proof of the Liouville property given in e.g. [21, corollary
1], [10, corollary 3] when a one-side bound on the solution is in force can be derived
as follows. This method has been inspired by earlier results on the subject appeared
in the context of Riemannian manifolds in [13] and [36, 40] (see also the lecture
notes [39]), although here we propose a variation of those schemes in view of the
(superlinear) character of the gradient term. The basic idea relies on multiplying
the inequality by e−u, use the chain rule and take the integration of the resulting
inequality through the divergence theorem.

To simplify the presentation, consider diffusions driven by the p-Laplacian. First,
assume by contradiction that u is not constant on the ball BR0 for some R0 > 1.
We proceed by considering the vector field X = e−u(−|∇u|p−2∇u) and integrating
its divergence. As before, the argument can be made more rigorous arguing as in
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remark 2.6 or [37] through a test function argument. On one hand, expanding the
divergence, after plugging back the equation −Δpu � cH |∇u|γ we deduce

∫
Br

div(−e−u|∇u|p−2∇u) dx =
∫

Br

e−u|∇u|p dx+
∫

Br

e−u(−Δpu) dx (3.3)

�
∫

Br

e−u(−Δpu) dx � cH

∫
Br

e−u|∇u|γ dx.

Applying the divergence theorem we get∫
Br

div(X) dx �
∫

∂Br

e−u|∇u|p−1 dHN−1

so that we end up with the inequality∫
∂Br

e−u|∇u|p−1 dHN−1 � cH

∫
Br

e−u|∇u|γ dx.

We then use the Hölder’s inequality with the conjugate pairs ( γ
p−1 ,

γ
γ−(p−1) ),

together with u � 0, to conclude

cH

∫
Br

e−u|∇u|γ dx �
∫

∂Br

e−u|∇u|p−1 dHN−1

�
(∫

∂Br

e−u|∇u|γ dHN−1

) p−1
γ
(∫

∂Br

e−u dHN−1

) γ−(p−1)
γ

�
(∫

∂Br

e−u|∇u|γ dHN−1

) p−1
γ
(∫

∂Br

dHN−1

) γ−(p−1)
γ

.

We set

μ(r) =
∫

Br

e−u|∇u|γ dx.

Applying the co-area formula [20] we deduce

μ′(r) =
∫

∂Br

e−u|∇u|γ dHN−1,

therefore concluding

μ′(r)[μ(r)]−
γ

p−1 � cH

(∫
∂Br

dHN−1

)− γ−(p−1)
p−1

.
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We then integrate on [R, r] and get

p− 1
γ − (p− 1)

[
1

(μ(R))
γ−(p−1)

p−1

− 1

(μ(r))
γ−(p−1)

p−1

]
�
∫ r

R

cH

(area(∂Bt))
γ−(p−1)

p−1

dt

= cHNωN

∫ r

R

1

t(N−1)
γ−(p−1)

p−1

dt

=
cHNωN (p− 1)

N(p− 1) − (N − 1)γ

[
r

N(p−1)−(N−1)γ
p−1 −R

N(p−1)−(N−1)γ
p−1

]
.

Therefore

p−1
γ − (p−1)

1

(μ(R))
γ−(p−1)

p−1

� cHNωN (p− 1)
N(p−1) − (N−1)γ

[
r

N(p−1)−(N−1)γ
p−1 −R

N(p−1)−(N−1)γ
p−1

]
.

We then let r → ∞ and conclude μ(R) = 0, which then contradicts our initial
hypothesis, implying that u must be constant a.e. on R

N .
When γ = N(p−1)

N−1 we instead get the inequality

p− 1
γ − (p− 1)

1

(μ(R))
γ−(p−1)

p−1

� cHNωN log
( r
R

)
,

which leads again to a contradiction. Note that such an approach involving a vector
field weighted with an exponential term allows to recover most of the well-known
properties for linear and nonlinear problems without perturbative eikonal terms.
For instance, one can deduce that every nonnegative superharmonic function in
R

2 must be constant, or the Liouville property for nonnegative classical solutions
to −div(∇u/√1 + |∇u|2) � 0 in R

2, or even that any solution to the inequality
−Δpu � 0 in R

N is constant provided p � N . This can be done using inequality
(3.3) and keeping the term

∫
Br
e−u|∇u|p dx instead of

∫
Br
e−u|∇u|γ dx. Actually,

this approach can be applied even to deduce the Liouville property for nonnegative
p-superharmonic functions on general noncompact Riemannian manifolds under the
area-growth condition ∫ +∞ 1

(area(∂Bρ))
1

p−1
dρ = +∞,

see [39] for further details. We recall that such results have been deduced through
other different methods: maximum principle methods have been exploited in [1, 2,
38], capacity methods have been used in [27], and, finally, probabilistic approaches,
through the recurrence properties of the Brownian motion, have been thoroughly
discussed in [25].

Remark 3.8. The same integral argument can be repeated to show that any
distributional solution to

−Δpu+ cH |∇u|γ = 0 in R
N , γ > p− 1 ,

must be constant when p− 1 < γ � N(p−1)
N−1 . On the other hand, if γ > N(p−1)

N−1

there exist global non-constant solutions belonging to W 1,γ
loc (RN ). Indeed, when
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N(p−1)
N−1 < γ < p the function u(x) = −c|x| p−γ

γ−(p−1) for an appropriate c > 0 belongs
to W 1,r

loc (RN ) for r < N [γ − (p− 1)] and solves the previous equation in distri-

butional sense. When γ > p it is sufficient to consider u(x) = c|x| γ−p
γ−(p−1) for a

suitable constant c > 0. When γ = p, one can construct a counterexample through
logarithmic-type functions. Hence, the results proved in [7, theorem A] entail that
such distributional solutions cannot be more regular (i.e. of class C1). Actually,
such a Liouville theorem has been proved for less regular solutions (continuous, in
the viscosity sense) in [9, theorem 3.1] for a wider class of fully nonlinear second
order equations avoiding any differentiation of the PDE as a consequence of gradi-
ent bounds via viscosity solutions methods initiated in [11]. Therefore, this integral
argument shows once more that such distributional solutions cannot be more reg-
ular (neither continuous). Therefore, as remarked in § 3.2 for the uniqueness of
solutions, the formulation of the problem is really important even for the range of
the validity of the Liouville theorem.

Remark 3.9. The Liouville results of the previous sections transfer to some non-
divergent and fully nonlinear elliptic equations. For instance, if the leading operator
in divergence form in (1.2) is replaced with the so-called minimal Pucci’s operator
defined as

P−
λ,Λ(M) = inf{−Tr(AM) : λIN � A � ΛIN , 0 < λ � Λ, λ,Λ ∈ R},

then

P−
λ,Λ(D2u) � cH |∇u|γ in R

N =⇒ −ΛΔu � cH |∇u|γ in R
N ,

and hence the Liouville property follows from theorem 1.3 under the same range
for γ. We expect a similar property would hold for supersolutions to equations
driven by linear non-divergent operators assuming suitable asymptotic conditions
at infinity on the diffusion coefficients. Still, one expects the Liouville property to
hold even for the maximal operator P+

λ,Λ (which is defined replacing the inf with
the sup over the same class of matrices) and thus to second order fully nonlinear
uniformly elliptic operators, as partly analysed in [15]. These properties in the
non-divergence setting will be the matter of a future research, since these integral
methods do not apply to such class of PDIs.

Remark 3.10. The results related to the Liouville property in theorem 1.3 are
sharp with respect to the parameter range p− 1 < γ � N(p−1)

N−1 , as shown in e.g.

[19, 21]. Indeed, the function u(x) = V (|x|) = c(1 + |x|2)− p−γ
2(γ−(p−1)) for a suitable

c > 0 is a bounded non-constant solution to the inequality

−Δpu � cH |∇u|γ in R
N
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when γ > N(p−1)
N−1 . To see this, set δ := p−γ

γ−(p−1) . One can use (3.1) to show that

− Δpu = −|c|p−2

∣∣∣∣ γ − p

γ − (p − 1)

∣∣∣∣p−2

(1 + |x|2)−( δ
2+1)(p−2)|x|p−2

· c
[
(p − 1)

γ − p

γ − (p − 1)
(1 + |x|2)−( δ

2+2)

( |x|2
γ − (p − 1)

− 1

)

−(N − 1)
γ − p

γ − (p − 1)
(1 + |x|2)−( δ

2+1)

]

� |c|p−2c
p − γ

γ − (p − 1)

∣∣∣∣ γ − p

γ − (p − 1)

∣∣∣∣p−2 (
N − 1 − p − 1

γ − (p − 1)

)
(1 + |x|2)−( δ

2+1)(p−1)|x|p−2

� |c|p−2c
p − γ

γ − (p − 1)

∣∣∣∣ γ − p

γ − (p − 1)

∣∣∣∣p−2 (
N − 1 − p − 1

γ − (p − 1)

)
(1 + |x|2)−( δ

2+1)γ |x|γ .

The last inequality can be made greater than or equal to

cH |∇u|γ = cH |∇V (|x|)|γ = cH |c|γ
∣∣∣∣ γ − p

γ − (p− 1)

∣∣∣∣γ (1 + |x|2)−( δ
2+1)γ |x|γ

provided that c > 0 is a suitable small constant and γ > N(p−1)
N−1 .

4. Generalizations to problems arising in sub-Riemannian and
Riemannian geometry

4.1. Problems modelled on Hörmander’s vector fields

In this section we briefly discuss some possible generalizations to problems mod-
elled on a frame of vector fields of R

N . Consider a family of smooth, say C∞, vector
fields X = {X1, . . . , Xm}, m � N , generating a Carnot groups, and thus satisfy-
ing the Hörmander’s rank condition. We define the horizontal gradient as ∇Xu =
(X1u, . . . , Xmu) and the symmetrized horizontal Hessian (D2

Xu)ij = XiXju+XjXiu
2 ,

while the horizontal divergence is defined as divX (Φ(x)) =
∑m

i=1X
∗
i Φi, X∗

i being
the formal adjoints of the Xi’s. We also denote by BX

r (x) = {y ∈ R
N : ρ < R},

where ρ stands for a given homogeneous norm. In this case, it holds

Vol(BX
r ) = crQ, r > 0, c > 0, (4.1)

Q being the corresponding homogeneous dimension. We denote by W 1,r
X ,loc(Ω) =

{u ∈ Lr
loc(Ω) : Xiu ∈ Lr

loc(Ω) , i = 1, .., m} the standard (local) horizontal Sobolev
space.

Let Ω be a bounded open set in R
N , N � 1. We consider the following degenerate

PDI

− divX (A(x, u,∇Xu)) + B3(x,∇Xu) � 0 in Ω, (4.2)

where A : Ω × R × R
N → R

N is a Carathéodory function such that (A) holds and

B3(x, ξ) � cH |ξ|γ − f(x). (B3)

We first give the horizontal counterpart of lemma 2.3 (a similar result holds for
inequalities with zero-th order terms of the form λu).
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Lemma 4.1. Let γ > p− 1, f ∈ L1,Qq (Ω), q � 1. Assume that (A) and (B3) hold.
Let u be a distributional solution of (4.2). Then, for every pair of concentric balls
BX

t ⊂ BX
R ⊂ Ω we have ∫

BX
t

|∇Xu|γ dx � K
RQ

(R− t)s

where s = max
{

Q
q ,

γ
γ−(p−1)

}
and K is a constant depending on ν, γ, q, Q, cH and

on ‖f‖
L1, Q

q (BX
R )

. In particular, the result holds when f ∈ Lq, q > Q
γ .

Proof. The proof is the same as that in lemma 2.3, the only difference being the
choice of a C1 cut-off function η such that 0 � η � 1, η ≡ 1 on BX

t , η ≡ 0 outside
BX

R , |∇X η| � C
R−t . �

As in the Euclidean case, this leads to the corresponding local Hölder continuity
for distributional subsolutions combining lemma 4.1 and applying [32, theorem 1.2],
as stated in the next.

Theorem 4.2. Assume (A) and (B3), γ > p, and let f ∈ L1,Qq (Ω) for some q > Q
γ .

Let u ∈W 1,γ
loc (Ω) which satisfies, in the sense of distributions, the inequality

−divX (A(x, u,∇Xu)) + |∇Xu|γ � f(x) in Ω .

Then u is locally Hölder continuous with exponent

α = min
{

1 − Q
qγ
,

γ − p

γ − (p− 1)

}
,

and K depends on p, q, N, ν, Ω, ‖f‖
L1, Q

q (Ω)
.

Remark 4.3. Similarly to what obtained in corollary 1.3, lemma 4.1 leads to a
Liouville property for distributional supersolutions (or solutions) when B(∇Xu) =
|∇Xu|γ and

p− 1 < γ � Q(p− 1)
Q− 1

These properties have been studied in detail in e.g. [19].

4.2. Problems posed on Riemannian manifolds

We end this section with some extensions of the Liouville property for supersolu-
tions in the context of noncompact geodesically complete Riemannian manifolds. In
what follows, M will be a smooth connected, noncompact, complete N -dimensional
Riemannian manifold, while for a fixed origin o ∈M , we denote by r(x) the dis-
tance function from o and, as above, with Br, ∂Br the geodesic ball and the sphere
of radius r > 0 centred at o. We will assume that ∂Br is smooth for any r > 0.
As discussed in the introduction of [40] (see also [37, theorem 1.1]) this is not
much restrictive. Moreover, Vol(Br) stands for the Riemannian measure of Br,
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while area(∂Br) the induced measure of ∂Br. The volume growth of the man-
ifold stands for the growth rate of the function r −→ Vol(Br), whilst the area
growth of the manifold for the growth rate of r −→ area(∂Br). We will denote
by dvolN the canonical Riemannian measure, and by dvolN−1 the corresponding
(N − 1)-Hausdorff measure.

We will consider inequalities like

−div(A(x, u,∇u)) � B2(x, u,∇u) in M,

where the divergence and the gradient are taken with respect to the Rieman-
nian structure under the same growth assumptions of the previous sections. More
precisely, A : TM ×Ω (M × R) → TM satisfies (A), where TM is the tangent bun-
dle of M and TM ×Ω (M × R) stands for the fibred product bundle of TM
and M × R with A(x, s, ξ) ∈ TxM for all x ∈M , s ∈ R and ξ ∈ TxM . Simi-
larly, B2 : TM ×Ω (M × R) → R satisfies (B2). As in the Euclidean case, points of
TM ×Ω (M × R) are denoted with (x, s, ξ), with (x, ξ) ∈ TM and (x, s) ∈M × R.

It is well-known that the Liouville property for subharmonic functions bounded
from above, namely the parabolicity of the manifold, is strictly related with its
volume growth, and it holds under the condition∫ +∞ 1

(area(∂Bt(o)))
dt = +∞, (4.3)

see [25, theorem 7.5]. Moreover, these properties are tied up with the recurrence
properties of the corresponding Brownian motion on M and the existence of Green
functions, cf [25, theorem 5.1]. This in particular implies that M = R

2 is parabolic,
i.e. the one-side Liouville property for subharmonic functions bounded from above
holds in the plane.

Still, it is known, as discussed in [25], that the condition

∫ +∞ t

(Vol(Bt(o)))
dt = +∞ (4.4)

is sufficient to derive the one-side property, but it is not necessary. Finally, we
emphasize that (4.3) always follows from (4.4) by [40, proposition 1.3], but the
converse does not hold in general. Therefore, in the study of the next properties we
focus on conditions involving area(∂Br) rather than those in terms of Vol(Br) or
on the optimal parameters for the exponents γ, p appearing in the equation (which
is the case when M = R

N ).
The next result provides a nonlinear version of (4.3) for quasi-linear equations

with power-growth nonlinearities of Hamilton–Jacobi type. To prove theorem 1.2
we state the following useful result, which generalises remark 2.5.

Lemma 4.4. Let u be a nonconstant distributional solution to the inequality

− div(A(x, u,∇u)) � cH |∇u|γ in M. (4.5)
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Then, there exists R > 0 and a constant C depending on ν, p, γ, N, cH such that
for every r > R � R we have(∫

BR

|∇u|γ dvolN

)− γ−(p−1)
p−1

� C

∫ r

R

(
1

area(∂Bt)

) γ−(p−1)
p−1

dt. (4.6)

Proof. Let X be the vector field X := A(x, u, ∇u). The proof follows the same
steps of remark 2.5 integrating div(X) and using the (weak) divergence theorem
together with the co-area formula, cf remark 2.6, but we omit this step for brevity.
We thus have

−
∫

Br

div(A(x, u,∇u)) dvolN � ν

(∫
∂Br

|∇u|γ dvolN−1

) p−1
γ

(area(∂Br))
γ−(p−1)

γ

We set σ(r) =
∫

Br
|∇u|γ dx. Hence, by the co-area formula it follows that

σ′(r) =
∫

∂Br

|∇u|γ dvolN−1.

We then get

σ′(r) � C(ν, γ, p, cH)(σ(r))
γ

p−1 (area(∂Br))−
γ−(p−1)

p−1 ,

which reads equivalently as

σ′(r)(σ(r))−
γ

p−1 � C(ν, γ, p, cH)(area(∂Br))−
γ−(p−1)

p−1 .

We now integrate on [R, r] and obtain that

p− 1
γ − (p− 1)

1

(σ(R))
γ−(p−1)

p−1

� p− 1
γ − (p− 1)

(
1

(σ(R))
γ−(p−1)

p−1

− 1

(σ(r))
γ−(p−1)

p−1

)

� C(ν, γ, p, cH)
∫ r

R

(
1

area(∂Bt)

) γ−(p−1)
p−1

dt. �

Proof of theorem 1.2. If u were not constant on the ball BR̃, one can apply lemma
4.4 and find the desired contradiction using (1.3). �

Remark 4.5. The previous result is slightly different from the one in corollary 1.3
and must be understood in the following sense: for γ, p fixed, (1.3) highlights how
the area of the geodesic sphere can grow to ensure the validity of the Liouville
property on a generic manifold without assuming any curvature restriction. This
is in line with the recent analyses carried out in [26, 43] and the earlier works
[37, 40], where the Liouville properties have been studied in terms of the volume
(and not the area) growth of the geodesic balls. We emphasize that in view of [40,
proposition 1.3] one has for any δ > 0∫ +∞( r

(Vol(Br(o))

) 1
δ

= +∞ =⇒
∫ +∞( 1

(area(∂Br(o))

) 1
δ

= +∞,

but the converse is not true in general, unless some curvature conditions are imposed
on the manifold, see [40].
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Remark 4.6. The same area-growth condition could have been obtained through
the scheme outlined in § 3.3.1 for nonnegative solutions.

Remark 4.7. Although this result has been widely analysed in the literature in
various different settings, we emphasize that the Liouville property under these
area-growth conditions seem new. Moreover, though the approach to derive the
Liouville property is mainly inspired by [31, 40], the results of theorem 1.2 cannot
be inferred from these works.

Remark 4.8. The previous result gives a critical condition in terms of the area of
the geodesic spheres for the solvability of the equation in M , and can be seen as a
generalization of the condition found in [27] in the context of Riemannian manfiolds.
It is worth noting that whenM = R

N condition (4.3) leads to the restriction p− 1 <
γ � N(p−1)

N−1 found in § 3.3.

Remark 4.9. It is worth remarking that corollary 1.3 leads to the Liouville prop-
erty for nonnegative solutions to an inequality involving powers of the unknown
functions and its gradient of the form

−Δpu � um|∇u|γ in R
N

when

(N − p)m+ (N − 1)γ < N(p− 1), m � 0, γ > 1,

cf [22, remark 1.1] for the case p = 2. This can be done through the transformation
v = ub for a suitable b > 0, which reduces the previous inequality to an inequal-
ity like −Δpv � cH |∇v|γ for γ < N(p−1)

N−1 for some suitable cH > 0 depending on
p, γ, m, and thus allows to exploit corollary 1.3, see e.g. [8, 15].

Remark 4.10. As remarked in [40, p.489] or in [28, theorem 4.6 and remark 4.8],
using the same techniques of the present paper one can obtain similar results for
supersolutions to elliptic problems equipped with Neumann boundary conditions
posed on manifolds with boundary.
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