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Anelastic convection at high Rayleigh number in a plane parallel layer with no slip
boundaries is considered. Energy and entropy balance equations are derived, and they
are used to develop scaling laws for the heat transport and the Reynolds number. The
appearance of an entropy structure consisting of a well-mixed uniform interior, bounded
by thin layers with entropy jumps across them, makes it possible to derive explicit forms for
these scaling laws. These are given in terms of the Rayleigh number, the Prandtl number
and the bottom to top temperature ratio, which also measures how much the density varies
across the layer. The top and bottom boundary layers are examined and they are found
to be very different, unlike in the Boussinesq case. Elucidating the structure of these
boundary layers plays a crucial part in determining the scaling laws. Physical arguments
governing these boundary layers are presented, concentrating on the case in which the
boundary layers are so thin that temperature and density vary little across them, even
though there may be substantial temperature and density variations across the whole layer.
Different scaling laws are found, depending on whether the viscous dissipation is primarily
in the boundary layers or in the bulk. The cases of both high and low Prandtl number
are considered. Numerical simulations of no-slip anelastic convection up to a Rayleigh
number of 107 have been performed and our theoretical predictions are compared with the
numerical results.
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1. Introduction

The problem of the influence of density stratification on developed convection is of great
importance from the astrophysical point of view. Giant planets and stars are typically
strongly stratified and the anelastic approximation, see, e.g. Ogura & Phillips (1962),
Gough (1969) and Lantz & Fan (1999), is commonly used to describe convection in their
interiors, e.g. Toomre et al. (1976), Glatzmaier & Roberts (1995), Brun & Toomre (2002),
Browning et al. (2006), Miesch et al. (2000), Jones & Kuzanyan (2009), Jones et al.
(2011), Verhoeven, Wiesehöfer & Stellmach (2015), Kessar et al. (2019) and many others.
Note that ‘stratified’ here means that the density is continuously varying and can span
several density scale heights, but the layer is convecting rather than stably stratified. The
anelastic approximation is based on the convective system being a small departure from the
adiabatic state, which is appropriate for large-scale systems with developed, turbulent and,
thus, strongly mixing convective regions. The small departure from adiabaticity induces
convective velocities much smaller than the speed of sound, so sound waves are neglected
in the dynamics. We consider a plane layer of fluid between two parallel plates a distance
d apart, and we assume that the convection is in a statistically steady state, so that the time
averages of time-derivative terms can be neglected. In numerical simulations there are
sidewalls or periodic boundary conditions, but here we assume these are chosen to have
a negligible influence on the horizontally averaged flow quantities. Most astrophysical
applications are in spherical geometry, but the simpler plane layer problem is a natural
place to start our investigation of high-Rayleigh-number anelastic convection.

In convection theory, we try to determine the dependencies of the superadiabatic heat
flux and the convective velocities (measured by the Nusselt, Nu, and Reynolds Re numbers)
on the driving force measured by the imposed temperature difference between the top
and bottom plates, i.e. on the Rayleigh number, Ra, and on the Prandtl number, Pr (the
ratio of the fluid kinematic viscosity to its thermal diffusivity). Here we aim to discover
how these dependencies are affected by the stratification. We rely strongly on the theory
of Grossmann & Lohse (2000) (further advanced and updated in Stevens et al. 2013)
developed for Boussinesq convection, where the density scale height has to be much
larger than the fluid depth. However, compressible convection differs strongly from the
Boussinesq case, with the latter mostly corresponding to experimental situations. There
are two crucial differences, which have very important consequences for the dynamics
of convection. Firstly, in the compressible case the viscous heating and the work of the
buoyancy force are no longer negligible compared with the heat transport. Secondly, in
stratified convection the boundary layers and the flow velocities are different at the top of
the layer and the bottom of the layer (Verhoeven et al. 2015), unlike the Boussinesq case
where the top and bottom boundary layers have the same structure and the temperature of
the well-mixed interior is exactly half-way between the temperature of the top and bottom
plates. So although our approach is based on that of Grossmann & Lohse (2000), there
are additional novel features required in the compressible convection case. We develop
the theory of fully developed convection in stratified systems and study the dependence of
the total superadiabatic heat flux and the amplitude of convective flow on the number of
density scale heights in the layer. The scaling laws, i.e. the dependencies of the Nusselt and
Reynolds numbers on the Rayleigh and Prandtl numbers, are the same as in Boussinesq
convection.

In this paper we concentrate on the convective regimes which seem to be most relevant
to current numerical capabilities, i.e. the regimes most easily achieved by numerical
experiments. These are the regimes where the thermal dissipation is dominated by the
thermal boundary layer contribution. These regimes. denoted by Iu, Il, IIu and IIl on the
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phase diagram, figure 2 of Grossmann & Lohse (2000), correspond to Rayleigh numbers
less than about 1012 in the Boussinesq case. It must be noted, however, that contrary to
the Boussinesq case, which is well established by numerous experimental and numerical
investigations, there are to date no experiments on fully turbulent stratified convection,
due to the difficulties of achieving significant density stratification in laboratory settings.
Some experiments are being developed using the centrifugal acceleration in rapid rotating
systems to enhance the effective gravity (Menaut et al. 2019). There have also been
some numerical investigations of anelastic convection in a plane layer, mostly focused
on elucidating how well the anelastic approximation performs compared with fully
compressible convection, Verhoeven et al. (2015) and Curbelo et al. (2019). This latter
paper notes that the top and bottom boundary layer structures that occur in the case of a
high Prandtl number are different.

In addition to the dependence on the Rayleigh and Prandtl numbers, our problem
depends on how stratified the layer is, which can be estimated by the ratio Γ of the
temperature at the bottom of the layer TB to the temperature at the top TT . When Γ

is close to unity the layer is nearly Boussinesq, but when Γ is large there are many
temperature and density scale heights within the layer. We aim to derive the functional
form of Nu(Γ, Ra, Pr) and Re(Γ, Ra, Pr), but we cannot derive reliable numerical values
for the prefactors in anelastic convection. Since experiments are not available, this will
require high resolution high Ra simulations.

In § 2 we derive the anelastic equations and the reference states we use, and outline
the structure of high-Rayleigh-number anelastic convection. Further details of the form
of the anelastic temperature perturbation are given in Appendix A. In § 3 we derive the
energy and entropy production integrals, which are the fundamental building blocks for
developing convective scaling laws. In §§ 4 and 5 we derive the physical arguments used
to obtain the key properties of the top and bottom boundary layers. In § 6 we derive the
scaling laws for the case where the viscous dissipation is primarily in the boundary layers.
The case where the dissipation is mainly in the bulk is dealt with in Appendix B. Section
7 gives the results of our numerical simulations, comparing them with our theoretical
results. Our conclusions are presented in § 8.

2. Fully developed compressible convection under the anelastic approximation

Consider a layer of compressible perfect gas with two parallel boundaries a distance d
apart, periodic in the horizontal directions, the evolution of which is described by the
set of the Navier–Stokes, mass conservation and energy equations under the anelastic
approximation,

∂u
∂t

+ (u · ∇) u = −∇
(

p
ρ̄

)
+ g

cp
sêz + μ

ρ̄

[
∇2u + 1

3
∇ (∇ · u)

]
, (2.1)

∇ · (ρ̄u) = 0, (2.2)

ρ̄T̄
[
∂s
∂t

+ u · ∇s
]

= k∇2T + μ

[
q + ∂ui

∂xj

∂uj

∂xi
− (∇ · u)2

]
, (2.3)

p
p̄

= ρ

ρ̄
+ T

T̄
, s = cv

p
p̄

− cp
ρ

ρ̄
, γ = cp

cv

, cp − cv = R, (2.4a–d)

where here and below suffix notation is used,

q = ∂ui

∂xj

∂ui

∂xj
+ 1

3
(∇ · u)2 , (2.5)
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u being the fluid velocity, p the pressure, ρ the density, T the temperature and s the entropy.
Barred variables are adiabatic reference state variables, unbarred variables denote the
perturbation from the reference state due to convection. The dynamic viscosity μ = ρ̄ν,
the thermal conductivity k, gravity g and the specific heats at constant pressure, cp,
and constant volume, cv , are all assumed constant. The bounding plates are no-slip and
impenetrable, so u = 0 there. We consider the constant entropy boundary conditions

s = �S at z = 0, s = 0 at z = d. (2.6a,b)

Note that we do not replace the thermal diffusion term in (2.3) by an entropy diffusion
term, as is often done in anelastic approaches. With our no-slip boundaries, there will
be boundary layers which may be laminar even at very high Rayleigh number, and
entropy diffusion is not appropriate if laminar boundary layers are present. We discuss
the additional issues raised by adopting constant temperature boundary conditions rather
than constant entropy conditions in Appendix A.

In the anelastic approximation, the full variables, p̂, ρ̂ and T̂ , are expanded in terms of
the small parameter ε, which is defined precisely in (2.10) below, so

p̂ = p̄ + εp, ρ̂ = ρ̄ + ερ, T̂ = T̄ + εT, u ∼ (εgd)1/2,

t ∼
(εg

d

)−1/2
, ŝ = s̄ + εs,

⎫⎬⎭ (2.7)

where p̄, ρ̄ and T̄ comprise the adiabatic reference state. Here s̄ is simply a constant,
and since s = cv ln p̂/ρ̂

γ + const., and p̄/ρ̄γ is constant, we obtain (2.4b) by choosing the
constant appropriately.

2.1. The adiabatic reference state
The reference state is the adiabatic static equilibrium governed by dp̄/dz = −gρ̄, p̄ =
Rρ̄T̄ , together with the polytropic law p̄/pB = (ρ̄/ρB)γ . Here R is the gas constant, z = 0
is the bottom of the layer and z = d the top, and pB, ρB are the pressure and density at the
bottom of the layer. It follows that

T̄ = TB

(
1 − θ

z
d

)
, ρ̄ = ρB

(
1 − θ

z
d

)m
, p̄ = gdρB

θ (m + 1)

(
1 − θ

z
d

)m+1
, (2.8a–c)

gd
cp

= �T̄ = TB − TT > 0, θ = �T̄
TB

, m = 1
γ − 1

, Γ = TB

TT
= 1

1 − θ
, (2.8d–g)

which defines θ , and the polytropic index m. We use subscripts T and B to denote
conditions at the top and bottom boundary, respectively. The temperature ratio, Γ > 1,
is a convenient measure of the compressibility. Here Γ → 1 is the Boussinesq limit,
and highly compressible layers have Γ large. Note that Γ m = ρB/ρT is the ratio of the
highest to lowest density in the layer. The density ratio can be very large in astrophysical
applications, the density of the bottom of the solar convection zone being ∼106 times
the density at the top. Sometimes the number of density scale heights, Nρ (the scale
height being defined at the top of the layer), that fit into the layer is used to measure
compressibility, Nρ = m(Γ − 1).

2.2. The conduction state
The adiabatic reference state satisfies ∇2T̄ = 0, but since it is isentropic, it does not satisfy
the entropy boundary conditions. The anelastic conduction state is also a polytrope, but
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with a slightly more negative temperature gradient, so T̃B = TB, T̃T < TT . The conduction
state is

T̃ = TB

(
1 − θ̃

z
d

)
, ρ̃ = ρB

(
1 − θ̃

z
d

)m̃
, p̃ = gdρB

θ̃ (m̃ + 1)

(
1 − θ̃

z
d

)m̃+1
, (2.9a–c)

�̃T = TB − T̃T > 0, θ̃ = �̃T
TB

, m̃ = gd
R�̃T

− 1. (2.9d–f )

The small anelastic parameter ε is now defined as

ε = θ̃
m̃ + 1 − γ m̃

γ
= − d

TB

[
dT̃
dz

+ g
cp

]
� 1, (2.10)

and the entropy in the conduction state is

s̃ = cv ln
p̃
ρ̃γ

+ const. = εcp

θ
ln
(

1 − θ
z
d

)
+ const., so s = cp

θ
ln
(

1 − θ
z
d

)
+ const.,

(2.11)

which is the scaled entropy, see (2.7), correct to O(ε) since θ̃ and θ differ by only O(ε).
Since the boundaries have fixed entropy, the entropy at the boundaries in the conduction
state defines the entropy drop across the layer for all Rayleigh numbers, so

�S = cp

θ
ln Γ = cpΓ ln Γ

Γ − 1
, (2.12)

relating to the entropy boundary conditions (2.6a,b). Note that as our entropy variable s
is scaled by ε, the entropy drop is O(ε). Some anelastic papers take the conduction state
as the reference state, and some take the adiabatic state as the reference state. Taking the
conduction state as the reference state is appropriate when convection near the critical
Rayleigh number is considered, but at the large Rayleigh numbers considered here, the
conduction state is less relevant. Although the conduction state tends to the adiabatic
reference state as ε → 0, the thermodynamic variables are not the same in the two systems:
T = 0 with respect to the adiabatic state corresponds to T = TBz/d if the conduction state
is chosen as the reference state.

In (2.1) we have made use of (2.4b), (2.8a–c) and (2.10) to write (Braginsky & Roberts
1995; Lantz & Fan 1999)

− ∇p
ρ̄

− ρ

ρ̄
gêz = −∇

(
p
ρ̄

)
+ g

cp
sêz + O(ε). (2.13)

2.3. The Nusselt and Rayleigh numbers in anelastic convection
Next we consider the superadiabatic heat flux. The horizontal average at level z is denoted
by 〈 〉h. At the boundaries, all the heat is carried by conduction, and if the total temperature
T̂ = T̄ + εT , then the total heat flux at the boundaries is −k d〈T̂〉h/dz = −k dT̄/dz −
kε d〈T〉h/dz, but the superadiabatic part is obtained by subtracting off the heat flux carried
along the adiabat, so

Fsuper = −k
d 〈T〉h

dz

∣∣∣∣
z=0

. (2.14)

The Nusselt number in anelastic convection is defined as the ratio of the superadiabatic
heat flux divided by the heat conducted down the conduction state superadiabatic gradient.
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Note that the flux conducted down the adiabatic gradient is ignored in this definition, so

Nu = Fsuperd
kTB

, (2.15)

so Nu is close to unity near onset, and is large in fully developed convection. For fixed
entropy boundary conditions, the Rayleigh number is defined as

Ra = g�Sd3ρ2
B

μk
≈ cp�S�T̄d2ρ2

B
μk

. (2.16)

The anelastic approximation is asymptotically valid in the limit ε → 0. Note that a small
superadiabatic temperature gradient does not imply a small Rayleigh number Ra, since the
diffusion coefficients can be small, in fact to get Ra ∼ O(1) in the limit ε → 0 we must
have

k
ρBcp

∼ (gd3ε)1/2,
μ

ρB
∼ (gd3ε)1/2, (2.17a,b)

allowing large but finite Ra even when the superadiabatic gradient is small. To derive
the anelastic equations (2.1) to (2.5), we insert (2.7) into the full compressible equations
and divide the momentum equation by ε, the mass conservation equation by ε1/2 and the
energy equation by ε3/2. Having taken this limit, the parameter ε no longer appears in our
analysis. However, if anelastic work is compared with fully compressible situations, then
a finite value of ε must be chosen, and the anelastic results are only approximate, though
there is a growing body of evidence that the anelastic approximation does capture the main
features of subsonic compressible convection.

2.4. High-Rayleigh-number convection
We have the following physical picture in mind. In strongly turbulent convection we expect
the entropy s to be well-mixed away from boundary layers near z = 0, d. We denote the
global spatial average over the convecting layer by || || and the horizontal average at level
z by 〈 〉h. The total entropy drop is the conduction state value �S = cp ln Γ/θ. Since
the entropy is constant in the bulk interior, we define the entropy drops �SB and �ST
across the bottom and top boundary layers, respectively. These will not be equal, with
�ST normally considerably larger than �SB. We must however have

�SB + �ST = �S. (2.18)

We consider only the case where both the top and bottom boundary layers are laminar. At
extremely high Ra these layers may become turbulent as can happen in the Boussinesq
case. The laminar boundary layer case is simpler, and gives predictions which can
be broadly compared with numerical simulations, though it is difficult for numerical
simulations to get into the fully developed large Rayleigh and Nusselt number regime
we are aiming at here. A schematic picture of the horizontally averaged entropy profile
expected in highly supercritical anelastic convection is shown in figure 1(a).

Since the heat flux through the boundary layers is determined by thermal diffusion
rather than entropy diffusion, we need to express the temperature jumps across the thermal
boundary layers in terms of the entropy jumps. From (2.4a–d) we obtain

(�ρ)i

ρi
≈ 1

γ − 1

[
(�T)i

Ti
− γ

(�s)i

cp

]
,

(�p)i

pi
≈ γ

γ − 1

[
(�T)i

Ti
− (�s)i

cp

]
, (2.19a,b)

where the Δ quantities refer to the jump in the horizontally averaged value across the
boundary layer and the subscript i stands either for B or T . We also define the thermal
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s = 0

z

(a) (b)

T = 0s = �S

�sT
�TT

�TB

�Tvel

δT
th δT

th

δB
th δB

th

�sB

S̃(z )

〈S〉h (z )

〈T 〉h,B > 0

〈T 〉h(z)

〈T 〉h,B

〈T 〉h,T > 0

〈T 〉h,T

〈s〉h 〈T〉h

Figure 1. (a) A schematic picture of the entropy profile in developed convection. (b) A schematic picture of
the anelastic temperature perturbation in developed convection.

and viscous boundary layer thicknesses, δth
i and δν

i with i = B, T , which we use to obtain
scaling estimates. Numerical simulations indicate that the horizontal velocity

UH = (〈u2
x〉h + 〈u2

y〉h)
1/2 (2.20)

has local maxima close to both boundaries (see, e.g. figure 3(b) below), so these maxima
are a convenient way to define the velocity jumps across the viscous boundary layers, �Ui,
so

�UB = UH(z = zmax,B), �UT = UH(z = zmax,T), (2.21a,b)

where z = zmax,B, z = zmax,T are the locations of the local maxima. The thermal boundary
layer thickness for the entropy, δth

i , and the viscous boundary layer thickness, δν
i , can be

defined as

δth
i =

{
− 1

�Si

d 〈S〉h

dz

∣∣∣∣
z=zi

}−1

, δν
i =

{
± 1

�Ui

dUH

dz

∣∣∣∣
z=zi

}−1

, zi = 0, d. (2.22)

In the boundary layers, the dominant balance in the z-component of the Navier–Stokes
equation occurs between the pressure gradient and the buoyancy force. Mass conservation
in the boundary layers means uz,i ∼ O(δν

i Ui/d) so the vertical component of inertia is
small. The boundary layers are therefore approximately hydrostatic,

(�p)i ≈ g
cp

ρi�siδ
th
i . (2.23)

Inserting (2.23) into (2.19b) leads to

(�T)i

Ti
≈ (�s)i

cp

(
1 + θ

δth
i
d

TB

Ti

)
. (2.24)

Typically the term (θδth
i TB)/(Tid) resulting from the pressure jump across the boundary

layers is expected to be small because the boundary layer is thin. However, in simulations
where the Rayleigh number is bounded above by numerical constraints, the top boundary
layer may not be as thin as desired for accurate asymptotics to apply, and the factor TB/TT
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can be large in layers containing many scale heights. We refer to the case where the
pressure term is not negligible as the compressible boundary layer case. However, in this
work we assume the boundary layers are incompressible, which is valid provided TB/TT
remains finite as the Rayleigh number increases and the boundary layers become very thin.
Then the pressure term makes a negligible contribution in both boundary layers, so that in
these boundary layers

(�T)i

Ti
≈ (�s)i

cp
and

(∇T)i

Ti
≈ (∇s)i

cp
. (2.25a,b)

Defining the temperature boundary layer thicknesses similarly to (2.22),

δT
i =

{
− 1

�Ti

d 〈T〉h

dz

∣∣∣∣
z=zi

}−1

, (2.26)

the temperature boundary layer thicknesses are the same as the entropy boundary layer
thicknesses. Note that in the compressible boundary layer case the entropy and temperature
boundary layer thicknesses will be different. For incompressible boundary layers and
high Rayleigh number, the Nusselt number can be written in terms of the boundary layer
thicknesses, using (2.15), (2.14), (2.26) and (2.25a,b),

Nu = d

δth
T

�ST

Γ cp
= d

δth
B

�SB

cp
. (2.27)

In figure 1(b) we sketch the horizontally averaged anelastic temperature perturbation
〈T〉h. This is sometimes referred to as the superadiabatic temperature (e.g. Verhoeven
et al. 2015). Note that with our constant entropy boundary conditions, 〈T〉h is not zero
at the boundaries. We show in Appendix A that the offsets, 〈T〉hB at z = 0 and 〈T〉hT
at z = d, are both positive and we show also that in the bulk, turbulent pressure effects
make the gradient of 〈T〉h positive as shown in figure 1(b). Since T is the difference
between the actual temperature and the adiabatic reference state temperature, it might
be assumed that if d〈T〉h/dz > 0 the layer is stably stratified. However, we must be
careful not to confuse the anelastic temperature with the potential temperature, which
in our problem is TB(T/T̄ − (γ − 1)p/γ p̄) = sTB/cp where the reference temperature of
potential temperature is taken as TB. It is the potential temperature gradient which must be
negative for convective instability, not the anelastic temperature gradient.

To obtain the anelastic temperature fluctuation as sketched in figure 1(b), we need to
make use of (2.4a) and (2.4b), so we need to make a specific choice for entropy at the
boundaries. Here we have chosen to take the entropy at the top boundary as zero, so the
entropy at the bottom boundary is s = �S. A different choice of entropy constant adds an
easily found function of z to T , ρ and p but this does not affect the velocity field obtained.
One further point is that if (2.1) is horizontally averaged, the horizontal average satisfies a
first-order differential equation in z (see Appendix A for details), so a boundary condition
on 〈p〉h is required. Here we choose the natural condition that mass is conserved over the
layer, so that

||ρ|| = 0 ⇒ 〈p〉h,T = 〈p〉h,B. (2.28)

This means that the total mass in the layer is the same as in the adiabatic reference
state. As we see in Appendix A, this means the horizontally averaged anelastic pressure
perturbations at the top and bottom of the layer must be equal.
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Fully developed anelastic convection with no-slip boundaries

3. Energy and entropy production integrals

Understanding the energy transfer and entropy production in convective flow is the key to
understanding the physics of compressible convection. Therefore, we derive now a few
exact relations which will allow us to study some general aspects of the dynamics of
developed compressible convection. We assume any initial transients in the convection
have been eliminated, and we are in a statistically steady state. Formally, this means we
consider time-averaged quantities throughout the paper.

3.1. Energy balance
By multiplying the Navier–Stokes equation (2.1) by ρ̄u and averaging over the entire
volume (recalling that horizontal averages of x and y derivatives are zero), we obtain the
relation

g
cp

||ρ̄uzs|| = μ||q||, (3.1)

stating that the total rate of working per unit volume of the buoyancy force is equal to the
total viscous dissipation in the fluid per unit volume. In deriving (3.1) use has been made
of the no-slip boundary conditions and (2.2).

We derive the superadiabatic heat flux in the system at every z by averaging over a
horizontal plane and integrating the heat equation (2.3) from 0 to z,

Fsuper = 〈
ρ̄T̄uzs

〉
h − k

d 〈T〉h

dz
+ g

cp

∫ z

0
〈ρ̄uzs〉h dz

− μ

∫ z

0
〈q〉h dz − 2μ

[〈
uz

duz

dz

〉
h
− m�T̄

T̄d

〈
u2

z

〉
h

]
. (3.2)

In deriving this expression, we have made use of (2.8a,d) and

∂ui

∂xj

∂uj

∂xi
− (∇ · u)2 = ∂2

∂xi∂xj
(uiuj) − 2

∂

∂xj
(uj∇ · u)

= ∂2

∂xi∂xj
(uiuj) + 2

∂

∂xj

(
ujuz

m�T̄
T̄

)
(3.3)

since the continuity equation gives

∇ · u = uzm�T̄
T̄d

, (3.4)

and we recall that x or y derivatives vanish on horizontal averaging. As z → d, all terms
with a factor uz tend to zero, so on using (3.1) we obtain the overall energy balance
equation,

Fsuper = −k
d 〈T〉h

dz

∣∣∣∣
z=0

= −k
d 〈T〉h

dz

∣∣∣∣
z=d

; (3.5)

thus, in a stationary state the heat flux entering the fluid volume at z = 0 must be equal to
the outgoing heat flux at z = d.
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3.2. Entropy balance
This energy balance equation alone is not very helpful for evaluating the Nusselt number.
We need the entropy balance equation, obtained by dividing the energy equation (2.3) by
T̄ , horizontally averaging, and integrating from 0 to z,

〈ρ̄uzs〉h = − k
TB

d
dz

〈T〉h

∣∣∣∣
z=0

+ k
T̄

d
dz

〈T〉h

∣∣∣∣
z
−
∫ z

0

k�T̄

T̄2d

d
dz

〈T〉h dz +
∫ z

0

μ

T̄
〈q〉h dz

+
∫ z

0

μ

T̄

〈
∂2

∂xi∂xj
(uiuj) − 2

∂

∂xj

(
uj

∂ui

∂xi

)〉
h

dz, (3.6)

where use has been made of (3.3). The overall entropy balance equation comes from taking
the limit z → d of (3.6), noting uz → 0 in this limit,

k
TB

d
dz

〈T〉h

∣∣∣∣
z=0

− k
TT

d
dz

〈T〉h

∣∣∣∣
z=d

= −
∫ d

0

k�T̄

T̄2d

d
dz

〈T〉h dz +
∫ d

0

μ

T̄
〈q〉h dz. (3.7)

Equations (3.6), (3.7) look complicated, but they simplify considerably when the top and
bottom boundary layers are thin. We start with (3.6), which we write as

Sconv = Sdiff + Svisc, (3.8)

where
Sconv = 〈ρ̄uzs〉h , (3.9)

the net entropy carried out of the region (0, z) by the convective velocity at level z,

Sdiff = − k
TB

d
dz

〈T〉h

∣∣∣∣
z=0

+ k
T̄

d
dz

〈T〉h

∣∣∣∣
z
−
∫ z

0

k�T̄

T̄2d

d
dz

〈T〉h dz (3.10)

so that Sdiff is the entropy balance in region (0, z) of the entropy change due to thermal
diffusion. This is divided into the first term, which represents the positive entropy being
conducted into our region at the bottom boundary (the gradient of 〈T〉h is negative there;
see figure 1b), the second term is the entropy conducted across level z, and the third
term is the entropy production by internal diffusion in our given region. By looking at
figure 1(b) it is apparent that when the boundary layers are thin, the first term is much
larger than the other two except when z is in the boundary layers. If z is in the bulk, the
gradient of 〈T〉h is O(�T̄/d) whereas at the boundary it is O(�T̄/δth), much larger since
the boundary layer is thin. The third term is always small compared with the first, because
the gradient is O(�T̄/d) outside the boundary layers. The integrand is of order O(�T̄/δth)
in the boundary layers, but because they are thin this only contributes a small amount to
the integral. So when the boundary layers are thin

Sdiff ≈ − k
TB

d
dz

〈T〉h

∣∣∣∣
z=0

if z is in the bulk, (3.11)

Sdiff ≈ − k
TB

d
dz

〈T〉h

∣∣∣∣
z=0

+ k
TT

d
dz

〈T〉h

∣∣∣∣
z=d

if z = d. (3.12)

We now turn to

Svisc =
∫ z

0

μ

T̄
〈q〉h dz +

∫ z

0

μ

T̄

〈
∂2

∂xi∂xj
(uiuj) − 2

∂

∂xj

(
uj

∂ui

∂xi

)〉
h

dz. (3.13)
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Fully developed anelastic convection with no-slip boundaries

Because of the horizontal averaging, and using (2.2), (2.8a–c) and (3.4), the second
integral can be written as∫ z

0

μ

T̄

〈
∂2

∂xi∂xj
(uiuj) − 2

∂

∂xj

(
uj

∂ui

∂xi

)〉
h

dz

=
∫ z

0

μ

T̄

[
∂2

∂z2

〈
u2

z

〉
h
− m�T̄

T̄d
∂

∂z

〈
u2

z

〉
h
− m(�T̄)2

T̄2d2

〈
u2

z

〉
h

]
dz. (3.14)

We now consider the magnitude of the terms in (3.13). If the root-mean-square velocity in
the bulk is U, we expect the horizontal velocity to vary from 0 to O(U) across the boundary
layers of thickness δν

i , so the velocity gradients appearing in q are of magnitude O(U/δν
i ).

Therefore, q itself is O(U2/(δν
i )2), and since the boundary layers are thin their contribution

to the first integral in Svisc is O(μU2/T̄δν
i ). In the boundary layers uz is small, but in

the bulk we expect uz to be O(U) and so 〈u2
z 〉h is O(U2). Because 〈u2

z 〉h is horizontally
averaged, it will vary on a length scale d with z, so the gradient of 〈u2

z 〉h is O(U2/d) and
the second derivative is O(U2/d2). From (3.14), the order of magnitude of the second term
in (3.13) is then O(μU2/Td), which is O(δν

i /d) smaller than the contribution from the term
due to q. Therefore, provided the Rayleigh number is high enough for the boundary layers
to be thin, (3.6) is asymptotically equivalent to

〈ρ̄uzs〉h ∼ − k
TB

d
dz

〈T〉h

∣∣∣∣
z=0

+
∫ z

0

μ

T̄
〈q〉h dz. (3.15)

when z is in the bulk. Note that this simplification still holds if the dissipation in the
bulk is larger than the dissipation in the boundary layers, which can happen, as noted by
Grossmann & Lohse (2000). When the dissipation is primarily in the boundary layers, the
left-hand side of (3.15) is constant in the bulk, which we exploit later. In either case, as
z → d, we get

k
TB

d
dz

〈T〉h

∣∣∣∣
z=0

− k
TT

d
dz

〈T〉h

∣∣∣∣
z=d

= Fsuper�T̄
TBTT

∼
∫ d

0

μ

T̄
〈q〉h dz. (3.16)

Note also that in these expressions, the term (∇ · u)2/3 in (2.5) makes a negligible
contribution to (3.16) compared with the gradient terms, by using (3.4).

3.3. The Boussinesq limit
At first sight, it appears that our entropy balance formulation of the equation for dissipation
(3.7) is fundamentally different from that used by Grossmann & Lohse (2000) in the
Boussinesq case, who start from (2.3) of Siggia (1994),

(Nu − 1)Ra =
〈(

∂ui

∂xj

)2
〉

, or gακ�T(Nu − 1) = ν

∫ d

0
〈q〉h dz (3.17)

in our dimensional units. Here �T is the superadiabatic temperature difference between
the boundaries. In the Boussinesq limit Γ → 1, the basic state temperature and density
tend to constant values TB and ρB, respectively, so the thermal diffusivity κ and kinematic
viscosity ν are constants, κ = k/ρBcp and ν = μ/ρB. For a perfect gas, the coefficient
of expansion α = 1/TB. In this subsection we show that (3.17) is in fact the Boussinesq
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limit of the entropy balance equation (3.7), which we use to derive the scaling laws in § 6
below. Our entropy balance formulation is a generalization of the Grossmann & Lohse
(2000) formulation, which is now seen to be a limiting case of the more general entropy
balance approach.

Following Spiegel & Veronis (1960), from the z-component of (2.1), p/ρ̄d ∼ gs/cp, so

p
p̄

∼ gρ̄d
p̄

s
cp

∼ d
H

s
cp

, (3.18)

where H is the pressure scale height. In the Boussinesq limit d/H becomes small; the
Boussinesq limit Γ → 1 is the thin layer limit (Spiegel & Veronis 1960). Then (2.4a,b)
become

T
TB

∼ − ρ

ρB
,

s
cp

∼ αT, (3.19a,b)

so the entropy variable becomes equivalent to the superadiabatic temperature variable.
The entropy jump �S across the layer can be written as a superadiabatic temperature jump
�T = �S/αcp. As Γ → 1, from (2.12), �S/cp → 1, so �T → 1/α = TB. From energy
conservation, (3.5), the gradient of 〈T〉h is the same at the top and bottom of the layer, so
(3.7) can be written as

− �T̄

T2
B

d
dz

〈T〉h

∣∣∣∣∣
z=0

= −k�T̄

T2
Bd

∫ d

0

d
dz

〈T〉h dz + μ

TB

∫ d

0
〈q〉h dz, (3.20)

using the constancy of T̄ in the Boussinesq limit. From (2.14) and (2.15),

Nu = − d
TB

d
dz

〈T〉h

∣∣∣∣
z=0

or Nu = − d
�T

d
dz

〈T〉h

∣∣∣∣
z=0

, (3.21)

which is the familiar form of the Boussinesq Nusselt number, the ratio of the total heat
flux at the bottom to the conducted heat flux −k�T/d. From (2.8d), �T̄ can be written as
gd/cp, so (3.20) becomes

k
cpTB

Nugα�T = k
cpTB

gα�T + μ

TB

∫ d

0
〈q〉h dz or (Nu − 1)ga�Tκ = ν

∫ d

0
〈q〉h dz,

(3.22)

which is (3.17), showing that the dissipation integral, which plays a key role in Grossmann
& Lohse’s (2000) analysis, is indeed the Boussinesq limit of the entropy balance equation
(3.7).

4. The boundary layers and Prandtl number effects

As in the Boussinesq case, the thermal and viscous boundary layers can be nested inside
each other when the Prandtl number is different from unity.

A central idea in the theory of fully developed Boussinesq convection is based on
the assumption that the structure of turbulent convective flow is always characterised by
the presence of a large-scale convective roll called the wind of turbulence, Grossmann
& Lohse (2000). This idea, which in the non-stratified case stems from vast numerical
and experimental evidence, is retained in the case of anelastic convection. However, the
significant stratification in the anelastic case breaks the Boussinesq up-down symmetry
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Fully developed anelastic convection with no-slip boundaries

and so we must distinguish between the magnitude of the wind of turbulence near the
bottom of the bulk and its magnitude near the top of the bulk, denoted by UB and
UT , respectively, which can now significantly differ. So the label Ui can denote either
the horizontal velocity just outside the top or bottom viscous boundary layers. We also
assume that this wind of turbulence forms boundary layers with a horizontal length scale
comparable to the layer depth d. It is of course an assumption that such layers form in
anelastic convection, but they are observed to occur in incompressible flow, and the limited
simulations we have available gives this idea some support. Whereas the results in §§ 2
and 3 are asymptotically valid in the anelastic framework in the limit of large Ra, what
follows is dependent on the Grossmann & Lohse (2000) approach being valid for anelastic
convection.

The Prandtl number is a constant in this problem, given by

Pr = μcp

k
. (4.1)

In figure 2(a) the high-Prandtl-number case is shown, with the thinner thermal boundary
layer nested inside the viscous boundary layer. The velocity at the edge of the thermal
boundary layer is then δth

i Ui/δ
ν
i , assuming the velocity falls off linearly inside the viscous

boundary layer over the thinner thermal boundary layer. In the boundary layers, advection
balances diffusion, so from the momentum equation (2.1) we estimate that

ρiU2
i

d
∼ μUi

(δν
i )2 so Ui ∼ μd

ρi(δ
ν
i )2 . (4.2)

For the entropy boundary layers, from (2.3),

ρiTiUis
d

δth
i

δν
i

∼ k∇2T ≈ kTi

cp
∇2s ∼ kTis

cp(δ
th
i )2

, so Ui = kdδν
i

ρicp(δ
th
i )3

, (4.3)

where (2.25a,b) has been used and the factor δth
i /δν

i arises because the horizontal velocity
is reduced since the entropy boundary layer is thinner than the viscous boundary layer.
Dividing (4.2) by (4.3) we obtain

δν
i

δth
i

∼ Pr1/3, (4.4)

giving the ratio of the viscous to thermal boundary layer thickness for the
high-Prandtl-number case. Note that although the top and bottom boundary layers have
different thicknesses, this ratio is the same for both layers.

For the low-Prandtl-number case, the viscous boundary layer lies inside the thermal
boundary layer; see figure 2(b). Now the velocity at the edge of the thermal boundary
layer is the same as that at the edge of the viscous boundary layer, so the velocity reduction
factor δth

i /δν
i is no longer required, and (4.3) becomes

ρiTiUis
d

∼ k∇2T ≈ kTi

cp
∇2s ∼ kTis

cp(δ
th
i )2

, so Ui = kd

ρicp(δ
th
i )2

, (4.5)

giving the ratio of the boundary layer thicknesses as

δν
i

δth
i

∼ Pr1/2 (4.6)

in the low-Prandtl-number case.
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Ui

Ui

δi
th

δi
v Ui

δi
th

δi
thδi

v

δi
v

(a) (b)

Figure 2. (a) Thermal and viscous boundary layers in the case Pr > 1. The thermal diffusion is smaller, so
the thermal boundary layer is nested inside the viscous boundary layer. (b) The case Pr < 1, where the viscous
boundary layer is nested inside the thermal boundary layer.

5. The boundary layer ratio problem

In Boussinesq convection there is a symmetry about the midplane, which means that the
top and bottom boundary layers have the same thickness and structure, and the temperature
of the bulk interior is midway between that of the boundaries. In anelastic convection this
symmetry no longer holds, so the top and bottom boundary layers can be very different,
and the entropy of the bulk interior is significantly different from �S/2. This raises the
question of how the ratios of the thicknesses of the top and bottom boundary layers,
the ratio of the bulk horizontal velocities just outside the boundary layers and the ratio of
the entropy jumps across the layers are actually determined. We assume the incompressible
boundary layer case holds throughout this section.

We write the ratio of the entropy jumps across the boundary layers as

rs = �ST

�SB
, so �SB = �S

1 + rs
and the entropy in the bulk is

rs

1 + rs
�S, (5.1)

and the ratio of the anelastic temperature jumps across the boundary layers is

rT = �TT

�TB
. (5.2)

We define the ratio of the velocities at the edge of the boundary layers as

ru = UT

UB
. (5.3)

The last important ratio is the ratio of the thicknesses of the boundary layers. In general
the viscous and thermal boundary layers will be of different thickness, but here we start
with the thermal boundary layers which have thicknesses at the top and bottom of δth

T and
δth

B with ratio

rδ = δth
T

δth
B

. (5.4)

We have four unknown ratios, so we need four equations to determine them. Our first
equation uses the fact that the heat flux passing through the bottom boundary must
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equal the heat flux passing through the top boundary. Since this heat flux is entirely by
conduction close to the boundary,

−k
dT
dz

∣∣∣∣
i
∼ k

�Ti

δth
i

⇒ rδ = rT . (5.5)

We can use the balance of advection and diffusion in the boundary layers exploited in § 4
to obtain another equation relating the boundary layer ratios. In § 4 we saw that the ratio of
the thermal boundary layer thicknesses was the same as the ratio of the viscous boundary
layer thicknesses,

δth
T

δth
B

= δν
T

δν
B

= rδ, (5.6)

so we use the viscous boundary balance equation (4.2) to estimate

ρBU2
B

d
∼ μUB

δν
B

2 ,
ρTU2

T
d

∼ μUT

δν
T

2 ⇒ rurδ
2 ∼ ρB

ρT
= Γ m. (5.7)

We now need an equation for the ratio of bulk large-scale flow velocities at the top and
bottom of the layer, rU . We consider first the case where the viscous dissipation occurs
primarily in the boundary layers, which is likely to be true in numerical simulations with
no-slip boundaries. Since the entropy production occurs in the boundary layers and is
relatively small in the interior, and since entropy diffusion is small in the bulk interior,
the convected entropy flux 〈ρ̄uzs〉h is approximately constant in the bulk interior. We now
multiply the equation of motion (2.1) by ρ̄u and average over the bulk interior, ignoring
the small viscous term in the bulk, to get

1
2

∂

∂z
(ρ̄〈uzu2〉h) ≈ − ∂

∂z
〈uzp〉h + g

cp
〈ρ̄uzs〉h . (5.8)

Near the boundary layers, the pressure term p will be approximately constant as shown in
(2.23), and since 〈uz〉h = 0, the term involving 〈uzp〉h will be small there, and we ignore
it. Since we expect 〈ρ̄uzs〉h to be approximately the same just outside the two boundary
layers,

∂

∂z
(ρ̄〈uzu2〉h)|T ≈ ∂

∂z
(ρ̄〈uzu2〉h)|B, (5.9)

where here T and B refer to conditions at the top of the bulk and the bottom of the bulk,
respectively. In the turbulent bulk interior (unlike the boundary layers), we expect the
three components of velocity to have similar magnitudes. It remains to estimate the length
scale associated with the z-derivative, and this is perhaps the most uncertain part of the
analysis. Astrophysical mixing length theory uses the pressure scale height, or a multiple
of the pressure scale height, as the mixing length for the vertical length scale. Since we
are only interested in the top and bottom ratios here, our results are independent of what
multiple of the scale height is chosen. Some support for the mixing length idea can be
derived from Kessar et al. (2019), which shows that convective length scales decrease in
the bulk towards the top of the layer. We also note that because we are only concerned
with ratios, it does not matter whether the pressure scale height or the density scale height
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is used. Adopting the pressure scale height,

HT = d
(m + 1)(Γ − 1)

, HB = Γ d
(m + 1)(Γ − 1)

⇒ HT

HB
= Γ −1, (5.10)

so that (5.9) gives

ρTu3
T

HT
∼ ρBu3

B
HB

⇒ r3
u ∼ Γ m−1 ⇒ ru ∼ Γ (m−1)/3. (5.11)

From the incompressible boundary layer equation (2.25a,b) we have rs = Γ rT , so with
the other three ratio equations (5.5), (5.7) and (5.11) we have

rs = Γ rT , rδ = rT , rUrδ
2 = Γ m, ru = Γ (m−1)/3, (5.12a–d)

with solution

ru = Γ (m−1)/3, rδ = Γ (2m+1)/6, rs = Γ (2m+7)/6, rT = Γ (2m+1)/6. (5.13a–d)

In the case where m = 3/2, appropriate for ideal monatomic gas,

ru = Γ 1/6, rδ = Γ 2/3, rs = Γ 5/3, rT = Γ 2/3. (5.14a–d)

Since Γ is always greater than 1 and can be large, we see that the entropy in the bulk
is much closer to the entropy of the bottom boundary than to the entropy of the top
boundary. The top boundary layer is thicker than the bottom boundary layer. The challenge
for numerical simulations is to get to a sufficiently high Rayleigh number that the top
boundary layer is truly thin, as required by our asymptotic analysis. The ratio of the bulk
velocities at the top and bottom is only weakly dependent on Γ , so again rather large values
of Ra are required to establish the asymptotic trend.

Note that in deriving (5.7) we assumed that the horizontal length scale for advection
along the boundary layer was d, as did Grossmann & Lohse (2000). We found that
choosing the vertical length scales in the bulk to be based on the pressure scale height in
(5.10) agreed reasonably with the numerics, see § 7 below, so a natural question is whether
the horizontal length scale near the top boundary becomes less than d when the layer is
strongly stratified. The picture from our numerics is somewhat mixed, and is discussed
further in § 7 below. For moderate stratification, the numerics suggest the boundary layers
do appear to extend to d at both the top and bottom boundary; including a factor Γ in
the horizontal length scales in the boundary layers gives poorer agreement with numerical
estimates of the boundary layer thickness ratio. However, at the largest values of Γ we
did find a departure from the (5.14a–d) scalings which could be accounted for by some
reduction in the horizontal length scale near the top boundary.

In the case where the viscous dissipation is mainly in the bulk, which happens at low Pr
(Grossmann & Lohse 2000), (5.1)–(5.7) still hold, but the argument for (5.11) breaks down
because the entropy flux is no longer approximately constant in the bulk because viscous
dissipation in the bulk is no longer negligible. This case is discussed in Appendix B.
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6. The Nusselt number and Reynolds number scaling laws

When the boundary layers are thin, the overall entropy balance reduces to (3.16),

Fsuper�T̄
TBTT

∼
∫ d

0

μ

T̄
〈q〉h dz. (6.1)

If the dissipation is mainly in laminar boundary layers, the z-derivatives of the horizontal
velocities will dominate terms in the expression for q, so

q = ∂ui

∂xj

∂ui

∂xj
+ 1

3
(∇ · u)2 ≈

(
∂ux

∂z

)2

+
(

∂uy

∂z

)2

∼ U2
i

(δν
i )2 , (6.2)

in these layers. So integrating over the boundary layers of thickness δν
i and assuming T̄

varies little in these layers,

Fsuper�T̄
TBTT

∼ μU2
B

TBδν
B

+ μU2
T

TTδν
T

= μU2
B

TBδν
B

(
1 + Γ r2

u

rδ

)
, (6.3)

where we have used the ratios (5.3), (5.4) and (2.8g). Now we can write the superadiabatic
flux in terms of the thermal boundary layer thicknesses, using (2.14), (2.26), (2.25a,b),
(5.1) and (2.18) to get

Fsuper = k�TB

δth
B

= kTB�S

cp(1 + rs)δ
th
B

. (6.4)

Inserting this into (6.3) and using the definition (2.16) for the Rayleigh number, the entropy
balance equation can be written as

k2RaΓ

c2
p(1 + rs)d2ρ2

B

δν
B

δth
B

∼ U2
B

(
1 + Γ r2

u

rδ

)
. (6.5)

Now we introduce the Reynolds number near the bottom boundary

ReB = ρBUBd
μ

, (6.6)

noting that the Reynolds number near the top, ReT , is given by ruReB. We also use the
definition of the Prandtl number, (4.1), to write (6.5) as

RaΓ

Pr2(1 + rs)

δν
B

δth
B

∼ Re2
B

(
1 + Γ r2

u

rδ

)
. (6.7)

The entropy balance equation has thus given us a relation between the Reynolds number
and the Rayleigh number, which is similar to that of regime I of Grossmann & Lohse
(2000) but with additional factors of Γ . In the high-Prandtl-number limit, applying (4.4)
gives

ReB ∼ Ra1/2Pr−5/6Γ 1/2(1 + rs)
−1/2

(
1 + Γ r2

u

rδ

)−1/2

, (6.8)

while in the low-Prandtl-number case we get, using (4.6),

ReB ∼ Ra1/2Pr−3/4Γ 1/2(1 + rs)
−1/2

(
1 + Γ r2

u

rδ

)−1/2

. (6.9)

We now use the viscous boundary layer balance between advection and diffusion, (4.2),
ρBUB/d ∼ μ/(δν

B)2, to obtain a balance between Nu and ReB. The boundary layer balance
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becomes

ReB ∼
(

d
δν

B

)2

, (6.10)

while

Nu = d

δth
B

Γ ln Γ

(1 + rs)(Γ − 1)
, (6.11)

using the expression (2.27) for the Nusselt number together with (2.12) and (5.1).
Eliminating d/δth

B between these two equations yields

Re1/2
B = δth

B
δν

B

Nu(Γ − 1)(1 + rs)

Γ ln Γ
. (6.12)

As above, the ratio of the boundary layer thicknesses can be evaluated in terms of the
Prandtl number, and (6.12) allows us to eliminate ReB from (6.7) to obtain the Nusselt
number as a function of the Rayleigh number,

RaΓ

Pr2(1 + rs)

(
δν

B

δth
B

)5

∼
(

Nu(Γ − 1)(1 + rs)

Γ ln Γ

)4 (
1 + Γ r2

u

rδ

)
. (6.13)

At large Pr, (4.4) gives the Nusselt number vs. Rayleigh number scaling in the form

Nu ∼ Ra1/4Pr−1/12 Γ 5/4 ln Γ

Γ − 1
(1 + rs)

−5/4
(

1 + Γ r2
u

rδ

)−1/4

, (6.14)

while at low Pr, (4.6) gives

Nu ∼ Ra1/4Pr1/8 Γ 5/4 ln Γ

Γ − 1
(1 + rs)

−5/4
(

1 + Γ r2
u

rδ

)−1/4

. (6.15)

If we accept the ratio scalings derived in § 5, in the case of a monatomic ideal gas, γ =
5/3, m = 3/2, we can write

(1 + rs)
−5/4

(
1 + Γ r2

u

rδ

)−1/4

= (1 + Γ 5/3)−5/4(1 + Γ 2/3)−1/4, (6.16)

so we can write the main results (6.14) and (6.15) in terms of Ra, Pr and Γ only,

Nu ∼ Ra1/4Pr−1/12 Γ 5/4 ln Γ

Γ − 1
(1 + Γ 5/3)−5/4(1 + Γ 2/3)−1/4 for Pr 
 1 (6.17)

and

Nu ∼ Ra1/4Pr1/8 Γ 5/4 ln Γ

Γ − 1
(1 + Γ 5/3)−5/4(1 + Γ 2/3)−1/4 for Pr � 1. (6.18)

The equivalent formulae for the Reynolds number are

ReB ∼ Ra1/2Pr−5/6Γ 1/2(1 + Γ 5/3)−1/2(1 + Γ 2/3)−1/2 for Pr 
 1 (6.19)

and

ReB ∼ Ra1/2Pr−3/4Γ 1/2(1 + Γ 5/3)−1/2(1 + Γ 2/3)−1/2 for Pr � 1. (6.20)

As Γ becomes large, Nu decreases as ln Γ Γ −2. So we expect the Nusselt number, the
dimensionless measure of the heat transport, to be considerably smaller when the layer
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is strongly compressible, i.e. when Γ is large and there are many density scale heights
in the layer at a given Ra and Pr. Analogous results for the case where the dissipation is
mainly in the bulk rather than in the boundary layers, as can happen at low Pr, are given
in Appendix B.

In the Boussinesq limit, Γ is close to unity and θ = (Γ − 1)/Γ is small, so ln Γ/(Γ −
1) → 1 and ρB → ρT and TB → TT . Equation (2.1) reduces to the usual Boussinesq
equation with s/cp replaced by αT , where for a perfect gas, α = 1/T̄ is the coefficient
of expansion, consistent with (2.25a,b). The total jump of entropy across the layer, �S,
is replaced by the total temperature jump �T = �S/αcp, so the Rayleigh number (2.16)
reduces to the familiar form Ra = gα�Td3/κν, where κ = k/ρ̄cp and ν = μ/ρ̄ are the
thermal diffusivity and kinematic viscosity, respectively. These are both constant in the
Boussinesq limit, and the ratios ru, rδ and rs all go to unity; see § 5. Our scaling laws (6.8),
(6.9), (6.14) and (6.15) all reduce to those of regimes Iu and Il of Grossmann & Lohse
(2000). Grossmann & Lohse also give suggested prefactors for their scaling laws in table 2
of their paper, and since our anelastic scaling laws reduce to theirs in the Boussinesq limit,
our prefactors should in theory be consistent with theirs. In practice, the prefactors depend
on the aspect ratio of the experiments (or numerical experiments) used to determine them
(see, e.g. Chong et al. 2018). For the case of the high-Prandtl-number regime Iu, their
values were Nu ≈ 0.33Ra1/4Pr−1/12 and Re ≈ 0.039Ra1/2Pr−5/6, so (6.14) becomes

Nu ≈ CNuRa1/4Pr−1/12 Γ 5/4 ln Γ

Γ − 1
(1 + rs)

−5/4
(

1 + Γ r2
u

rδ

)−1/4

, CNu = 0.93.

(6.21a,b)

In the low Pr limit where (6.15) applies, regime Il of Grossmann & Lohse (2000),
they suggest a prefactor corresponding to CNu = 0.76 rather than 0.93. For the Reynolds
number, (6.8) becomes

ReB ≈ CReRa1/2Pr−5/6Γ 1/2(1 + rs)
−1/2

(
1 + Γ r2

u

rδ

)−1/2

, CRe = 0.078. (6.22a,b)

There is some uncertainty about the prefactor CRe, discussed in § 7 below. Prefactors in
the case Il and in the case where dissipation is mainly in the bulk, their case IIl, (see
Appendix B) can also be found.

7. The numerical results and discussion

We have tested the theoretical predictions of our asymptotic theory using numerical
simulations of high-Rayleigh-number plane layer anelastic convection. The numerical
code differs from the theory in one respect, as it uses entropy diffusion ks rather than
temperature diffusion in the heat equation, so

ρ̄T̄
[
∂s
∂t

+ u · ∇s
]

= ks∇ · T̄∇s + μ

[
q + ∂ui

∂xj

∂uj

∂xi
− (∇ · u)2

]
, (7.1)

where ks is constant, replaces (2.3). This simplifies the code because entropy is the only
anelastic thermodynamic variable computed, and it can be justified in circumstances where
turbulent diffusion dominates laminar diffusion (Braginsky & Roberts 1995). Constant
entropy boundary conditions were used in the code. The energy balance equation (3.5) is
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only changed by replacing −k d〈T〉h/dz by −ksT̄ d〈s〉h/dz. In the entropy balance equation,
entropy diffusion Sdiff changes to

Sdiff = −ks
d
dz

〈s〉h

∣∣∣∣
z=0

+ ks
d
dz

〈s〉h

∣∣∣∣
z
−
∫ z

0

ks�T̄
T̄d

d
dz

〈s〉h dz. (7.2)

Just as in the temperature diffusion case, the last two terms are negligible when the entropy
boundary layers are thin, except when z is in the boundary layer, where the second term
is significant. In the case when the viscous dissipation is primarily in the boundary layers,
the argument leading to (5.9) still holds, so the ratios satisfy (5.13a–d) in the entropy
diffusion case as well as in the temperature diffusion case. It is therefore reasonable to
compare with the numerical results for the entropy diffusion case in the expectation that
they will be reasonably close to the temperature diffusion case.

The numerical code is described in Kessar et al. (2019), though for that paper, stress-free
boundary conditions were applied, whereas no-slip boundaries where imposed in the runs
described here. The unit of length is taken as d, the unit of time is ρBd2cp/k, the thermal
diffusion time at the bottom of the layer. The velocities are in units of k/ρBdcp, so they
correspond to local Péclet numbers, where Pe = RePr.

All the runs have polytropic index m = 3/2. The code assumes periodic boundary
conditions in the horizontal x and y directions, with aspect ratio 2, that is, the period
in the horizontal directions is 2d.

Table 1 gives the parameters used in the eleven runs, which span a range of Prandtl
numbers and are at Rayleigh numbers which are as large as is numerically feasible, bearing
in mind the need to resolve the small-scale structures that develop. The last three runs
are for Boussinesq cases, Γ = 1, for comparison with the anelastic cases. The density
stratification measured by Γ varies over a moderate range only, because for the modest
values of Ra that are numerically accessible, large Γ leads to a top boundary layer which
is no longer thin, so our theory will no longer be valid. In figure 3 the entropy profiles (in
units of cp) and the horizontal velocity profiles are shown for the three runs A1, B1 and C1,
and the profiles for A4 and A5 are shown in figure 4. The entropy profiles are constructed
by horizontal averaging and time averaging the vertical profiles. From (2.12) the entropy
difference between the boundaries is Γ ln Γ/(Γ − 1) and the constant is chosen so that it
is zero at the bottom boundary z = 0.

From figure 3 it is immediately apparent that the entropy is indeed rather constant in the
well-mixed bulk interior, consistent with a key assumption of the theory. It is also clear
that the jump in entropy across the top boundary layer is greater than that across the bottom
boundary layer, and that the top entropy boundary layer is thicker than the bottom entropy
boundary layer. This is consistent with the boundary layer ratios found in § 5. The velocity
profiles have local maxima near the boundaries, which gives a convenient definition for
the top and bottom Reynolds numbers, ReB and ReT , after converting Péclet numbers to
Reynolds numbers using RePr = Pe. We note that there is no great difference between
the top and bottom horizontal velocities, consistent with the weak scaling with Γ found
in (5.11). This result is slightly surprising, because astrophysical mixing length theory
predicts faster velocities where the fluid is less dense, but in our problem the boundaries
play an important role. The low-Prandtl-number case, figures 3(e) and 3( f ), has a slightly
different entropy boundary layer profile from those of the Pr = 1 and Pr = 10 cases, with a
more gradual matching on to the uniform entropy interior, which is particularly noticeable
in the upper boundary layer. This suggests it may be necessary to go to higher Ra at
low Pr before accurate agreement with a theory that assumes thin boundary layers can
be obtained. The cases shown in figure 4, together with figures 3(a) and 3(b), form a
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Run A1 A2 A3 A4 A5
B1 B2 C1 D1 D2 D3

Ra 106 3 × 106 107 3 × 106 6 × 106

106 3 × 106 106 106 106 106

Pr 1 1 1 1 1
10 10 0.25 1 10 0.25

Γ 1.9438 1.9438 1.9438 2.924 4.6416
1.9438 4.6416 1.9438 1 1 1

ρb/ρT 2.71 2.71 2.71 5 10
2.71 10 2.71 1 1 1

rδ 1.65 ± 0.01 1.70 ± 0.01 1.69 ± 0.01 2.05 ± 0.01 2.27 ± 0.02
1.48 ± 0.01 2.17 ± 0.01 2.05 ± 0.04 1 1 1

rs 3.21 ± 0.02 3.29 ± 0.01 3.31 ± 0.01 5.99 ± 0.02 10.62 ± 0.03
2.91 ± 0.02 10.0 ± 0.02 4.04 ± 0.04 1 1 1

ru 0.92 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.96 ± 0.01 1.06 ± 0.02
1.17 ± 0.01 1.38 ± 0.01 0.82 ± 0.02 1 1 1

Nu 5.90 ± 0.02 7.75 ± 0.03 10.69 ± 0.03 5.35 ± 0.02 4.26 ± 0.02
6.18 ± 0.02 4.09 ± 0.02 5.00 ± 0.04 8.78 ± 0.03 8.76 ± 0.04 8.17 ± 0.04

UT 186 ± 3 321 ± 3 570 ± 3 298 ± 3 368 ± 3
287 ± 2 410 ± 3 125 ± 4 200 ± 3 260 ± 5 149 ± 3

UB 202 ± 3 348 ± 3 613 ± 3 311 ± 3 348 ± 3
244 ± 2 298 ± 3 154 ± 4 200 ± 3 260 ± 5 149 ± 3

Γ 2/3 1.557 1.557 1.557 2.045 2.783
1.557 2.783 1.557 1 1 1

Γ 5/3 3.028 3.028 3.028 5.979 12.915
3.028 12.915 3.028 1 1 1

Γ 1/6 1.117 1.117 1.117 1.196 1.292
1.117 1.292 1.117 1 1 1

Nu-theory 5.56 7.32 9.89 4.65 2.98
5.55 2.50 5.18 8.78 8.76 8.17

Nu-nblr 5.60 7.22 9.67 4.97 3.86
5.63 3.11 4.37 8.78 8.76 8.17

PeT -theory 194 336 614 307 376
252 345 144 200 260 149

PeB-theory 174 301 549 257 291
226 267 129 200 260 149

PeT -nblr 177 306 559 283 361
256 358 118 200 260 149

PeB-nblr 192 332 601 295 341
219 260 144 200 260 149

Table 1. Data from the numerical runs all corresponding to m = 3/2 polytropes. The first four rows are the
input parameters. Here rδ , rs and ru are the measured boundary layer ratios for each run. The velocities UT and
UB are the local maxima at the edge of the boundary layers, measured in velocity units of k/dρBcp, i.e they are
Péclet numbers based on the diffusivity at the base of the layer. The theoretical predictions for the boundary
layer ratios are given in the next three rows; see (5.14a–d). The Nu-theory entries are based on (6.21a,b) with
the prefactors CNu as given in the text, and the boundary ratios come from (5.14a–d). The Nu-nblr entries also
use (6.21a,b) with the same prefactors, but instead of using (5.14a–d), the numerical boundary layer ratios
(nblr) above are used. The PeT -theory and PeB-theory entries come from (6.8) and (6.9). The prefactors used
are not those of Grossmann & Lohse (2000), see (6.22a,b), but those given in the text. Again, (5.14a–d) is used
to determine the boundary layer ratios. The PeT -nblr and PeB-nblr entries use the numerical boundary layer
ratios.
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Figure 3. Horizontally averaged entropy (in units of cp) and horizontal mean velocity profiles (Péclet number
units) from the numerical simulations for Γ = 1.9438, Ra = 106, runs A1, B1 and C1. (a) Entropy profile at
Pr = 1. (b) Horizontal velocity profile at Pr = 1. (c) Entropy profile at Pr = 10. (d) Horizontal velocity profile
at Pr = 10. (e) Entropy profile at Pr = 0.25. ( f ) Horizontal velocity profile at Pr = 0.25.

sequence at constant Pr = 1 with increasing Γ . The most noticeable feature is that at
larger Γ the entropy of the mixed interior becomes close to that of the bottom boundary,
so the boundary layer ratio rS increases rapidly, consistent with the prediction of (5.14a–d).
Also notable is that the velocity ratio of the maximum horizontal velocities, rU , is never
far from unity, again consistent with the weak scaling with Γ in (5.14a–d). As expected,
the boundary layers become thicker at larger Γ , so that at fixed Ra the thin boundary layer
assumption breaks down at large Γ .

In table 1 we compare various results of the simulations against the theoretical
predictions of §§ 5 and 6. To evaluate the entropy boundary layer thicknesses for our
numerical data, we use the definition (2.22), so the gradients d〈S〉h/dz at z = 0 and
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Figure 4. Horizontally averaged entropy 〈S〉h and horizontal mean velocity UH profiles for (a,b) Γ = 2.924,
Ra = 3 × 106, Pr = 1, run A4: (c,d) Γ = 4.6416, Ra = 6 × 106, Pr = 1, run A5.

z = 1 were obtained by differentiating a cubic spline representation of the entropy, and
the entropy jumps were obtained by averaging the entropy over the well-mixed region,
assuming constant entropy there. The ratio of the top and bottom entropy boundary layer
thicknesses and the ratio of the entropy jumps are denoted by rδ and rs in table 1. The
velocity ratios at the top and bottom are denoted by ru. We used 256 mesh points in the
z-direction for all runs, with an additional 512 mesh point run for case A3, the highest Ra
case, to check that our resolution was sufficient for the table 1 data. A 256 point mesh in
the z-direction gives about 8 mesh points in the thinner lower boundary layer, which was
found to be adequate in the high Ra Rayleigh–Bénard studies of Shishkina et al. (2010).
The code is spectral in the horizontal directions, and we used 256 × 256 Fourier modes in
our runs, giving a resolution comparable to that used by Gastine, Wicht & Aurnou (2015)
for similar Ra in spherical shell Rayleigh–Bénard convection, and we did one 512 × 512
run to check that this was adequate. The energy spectrum of the 256 × 256 × 256 runs
was checked to ensure that the resolution is sufficient to resolve the Kolmogorov length
scale. A typical run on the computational cluster used 256 processors and settled down to
a nonlinear saturated state after a few hours. However, the typical run time was around a
hundred hours, the long run being needed to get reliable time-averaged quantities.

We can compare our numerically obtained ratios with the predicted ratios in (5.14a–d).
We see that there is some variation in the numerical results, but they are roughly in
agreement with the predicted results. Considering that the top boundary layer is not that
thin, as can be seen in figures 3 and 4, these results are as good as can be expected. We also
tested how well the equations leading to our boundary layer ratios compare individually
with the numerical results. Equation (5.5) expresses the fact that the heat flux is the same
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at the top and bottom, and together with the incompressible boundary layer equation
(2.25a,b), gives rs = Γ rδ , which agrees with our numerics rather well, to the 1 % level.
The viscous boundary layer balance, (5.7), has less accurate agreement with the numerics.
All the runs at Γ = 1.9438 had errors less than 10 % (except the low Pr run where, as
we saw in figure 3, the boundary layer structure is slightly different), but the runs with
density ratio 10, A5 and B2, have rδ and rs large, but not quite as large as predicted by
(5.14a–d). The likely explanation is that the horizontal length scale at the top boundary
layer is getting smaller than at the bottom boundary, though not by as much as the factor Γ

predicted for the vertical length scale ratio. There is therefore some doubt as to whether it
is correct to have d as the horizontal length scale in the boundary layers when Γ is large.
Some support for a different horizontal length scale at the two boundaries can be seen
in figure 2(b) of Kessar et al. (2019). The convection pattern near the top boundary has
broad upwellings surrounded by a network of thin rapidly descending regions, whereas
close to the bottom boundary there is no well-defined network, but just a general turbulent
behaviour. Even though our boundaries are no-slip rather than stress-free, we also found
a network of thin descending regions near the top, but a more turbulent regime near the
bottom. The persistent network of descending regions may limit the ‘wind of turbulence’
near the top to a length scale corresponding to that of the upwelling regions rather than
that of the layer depth, whereas no such restriction applies at the bottom. The effective d in
the top boundary layer balance (5.7) might therefore be somewhat reduced, which would
reduce rδ consistent with our numerics. Further research is needed to elucidate this issue.
The velocity ratio equation (5.11) correctly predicts that the velocity ratio is always close
to unity, but is less reliable at predicting whether it is above or below unity. However, the
higher density ratio runs do have ru > 1, as predicted by (5.11).

We also evaluated the Nusselt number from the data, using

Nu = − d
cp

d〈S〉h

dz

∣∣∣∣
z=0

= − d
Γ cp

d〈S〉h

dz

∣∣∣∣
z=d

, (7.3)

again determining the gradients from our spline representation. When the run has been
integrated long enough, initial transients in the numerical run are eliminated and these two
estimates of the Nusselt number become close, and the average value is used in table 1.
Because the flow is turbulent, the Nusselt number fluctuates continuously at about the
10 % level, so a long time-average is used. The finite length of the run means there is a
small uncertainty due to the fluctuations not exactly cancelling, which we estimate as error
bars in table 1.

In table 1 we also give the value of the Nusselt number calculated by our theory. We
used the Boussinesq runs D1, D2 and D3 to determine the prefactors CNu appropriate for
each Prandtl number used. This gives CNu = 0.949 for Pr = 10, CNu = 0.785 for Pr = 1
and CNu = 0.869 for Pr = 0.25. Note that in table 1 this means that for the Boussinesq
runs D1, D2, and D3, the Nu-theory entries are the same as the actual Nu entries by
construction. None of these prefactors is very far from the values suggested by Grossmann
& Lohse (2000), who had CNu = 0.93 at large Pr and CNu = 0.76 at small Pr, suggesting
that the differences in aspect ratio and geometry only make relatively small changes to the
Nusselt number. For consistency, we use these same prefactors in all runs. Since our main
interest is in the compressible cases, we have not explored why the prefactor for the Pr = 1
case is slightly lower than the other values of CNu.

We first consider the Nusselt number for the cases where the density ratio is only
2.71, runs A1, A2, A3, B1 and C1. We note that all the predicted values are not too far
off the numerical values, though the predicted values are generally a little lower than
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the actual numerical values. Using the numerically calculated boundary layer ratios in
formula (6.21a,b) rather than the theoretically predicted ones gives the result Nu-nblr
in table 1. These are only available after the simulation is run, but they are helpful
for testing whether small errors are due to slightly inaccurate boundary layer ratios, or
whether the formula (6.21a,b) is inaccurate. For the density ratio 2.71 runs with Pr � 1,
the boundary layer ratios were close to the predicted values, so not surprisingly, the Nu-nblr
values are not significantly more accurate than the Nu-theory values. We conclude that the
under-prediction of the Nusselt number in these cases, which is less than about the 10 %
level, is due to the viscous dissipation not being completely in the boundary layers, as
required by the theory. We believe that at higher Ra, where the dissipation progressively
goes into the boundary layers, and using longer runs to average out the fluctuations, the
small discrepancy will disappear. Using runs A1, A2 and A3, where only Ra varies, we
can test the Ra1/4 power law predicted in (6.21a,b). The least squares fit to a straight line
in log(Nu) vs log(Ra) space has a slope of 0.257, rather close to the predicted slope.

We now look at the larger Γ cases, runs A4, A5 and B2, corresponding to the more
compressible cases. In the run A4, at density ratio 5, the predicted and numerical Nusselt
numbers are reasonably close, but in the most extreme cases of density ratio 10 the
predicted Nu is only 61 % of the numerical value for run B2, and in the run A5 the predicted
Nu is 71 % of the numerical Nu. Part of this discrepancy is down to the boundary layer
ratios, which become very large at high Γ , and so any small inaccuracy can affect the
Nusselt number significantly. If we use the numerical boundary layer ratios in (6.21a,b)
rather than the theoretical ones for run B2, the predicted Nu-nblr rises to 3.12, but even
this is only 76 % of the numerical value, and A5 similarly improves but still is too low.
We again conclude that in runs B2 and A5 the assumption that the dissipation occurs
dominantly in the boundary layers is suspect (particularly near the top boundary) and that
higher Ra is needed before it becomes robustly valid.

We now consider the Reynolds number formula, (6.22a,b), though it is convenient
to express this in terms of Péclet number Pe = RePr. If the table 1 parameter values
are inserted into (6.22a,b) with the value of CRe quoted there, the values of the Péclet
number are consistently a factor of about five too small compared with the numerical
values of UT and UB in table 1. There are a number of reasons for this, but the two most
important are (i) the power law dependence of the Péclet number with Rayleigh number in
Boussinesq convection is slightly less than the predicted 0.5 (Grossmann & Lohse 2002),
and (ii) our runs are for aspect ratio 2, whereas experiments, and the numerical simulations
that simulate them (e.g. Silano, Sreenivasan & Verzicco 2010), use aspect ratios of 1 or
less. The prefactor in (6.22a,b) is based on experiments at large Ra which mostly used
aspect ratios less than unity. The experiments of Qiu & Tong (2001), see also figure 1 of
Grossmann & Lohse (2000), using water (with Pr = 5.5) in a cylinder of aspect ratio unity
found Re = 0.085Ra0.455. At the run A1 parameters this formula gives Pe = 251 consistent
with a prefactor of CRe = 0.38 in (6.22a,b), much larger than the Grossmann & Lohse
(2000) value. They found very similar Re prefactors for both high and low Pr. If we adopt
the same procedure as we did to get the Nusselt number prefactors, and normalise using
the Boussinesq runs D1, D2 and D3 we obtain CRe = 0.354 for Pr = 10, CRe = 0.400
for Pr = 1 and CRe = 0.421 for Pr = 0.25. Reassuringly, these are all quite close to the
Qiu & Tong (2001) value of CRe = 0.38. We therefore use these three values of CRe at
the appropriate Prandtl number in all our theory calculations. With these prefactors, the
numerical results for UT and UB agree reasonably well with the predicted PeT -theory and
PeB-theory results. The results have some scatter, which seems to reflect the scatter in our
computed rU . If we use the computed boundary layer ratios, rather than the asymptotically
predicted ratios, there is less scatter in the comparison between computed and theoretical
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Péclet numbers, though the theoretical Péclet numbers are generally a few percent lower
that the computed Péclet numbers. Given that the boundary layers are not very thin, these
small discrepancies are not unexpected, and overall the predicted Reynolds numbers are in
reasonable agreement with those of our § 6 asymptotic theory.

8. Conclusions

The scaling laws for heat flux and Reynolds number at high-Rayleigh-number convection
have been derived from the energy balance and entropy balance equations derived in § 3.
These scaling laws are formulated in terms of the Rayleigh number, the Prandtl number and
the temperature ratio Γ which measures the strength of the stratification. In the Boussinesq
limit, Γ → 1, they reduce to the scaling laws of Grossmann & Lohse (2000). The existence
of the well-mixed entropy state, with the entropy changes being mainly confined to thin
boundary layers, makes it possible to estimate the terms in the entropy balance equation, so
allowing Nusselt number and Reynolds number relationships to be established. The cases
treated are those where the viscous dissipation occurs in the boundary layers, the cases
labelled as Iu and Il by Grossmann & Lohse (2000), the subscripts referring to the high-
and low-Prandtl-number regimes, and the cases where the viscous dissipation is primarily
in the bulk, the cases IIu and IIl. A limitation of the theory is that both the entropy
boundary layers do have to be thin for the theory to be valid. For the top boundary layer
to be thin when the stratification is strong, the Rayleigh number has to be very large,
which is numerically difficult, so the range of Γ which can be tested both numerically
and asymptotically is quite limited. This condition that the top boundary layer is thin is
equivalent to the condition that the boundary layers are incompressible, so that a rather
simple relationship holds between temperature and entropy within the boundary layers.
The more difficult case where the boundary layers are compressible has not yet been solved
in closed form, but it is likely to be significantly different from our solutions.

A feature of this high-Rayleigh-number anelastic problem is that the top and bottom
boundary layers have a different structure, so to determine the scaling laws, boundary
layer ratios for the top and bottom boundary layers have to be established. The three key
ratios are those for the boundary layer widths, the boundary layer entropy jumps and the
horizontal velocities just outside the boundary layers. In § 4 we found that although the top
and bottom boundary layers are different, the ratios of the viscous and thermal (entropy)
boundary layer thicknesses at each boundary depend only on the Prandtl number. In § 5 we
proposed formulae based on a simple physical picture for these ratios. The higher density at
the bottom means that the viscous shear must be larger there (so a thinner boundary layer)
to bring the fluid to rest at the boundary. The boundary layer ratios will be sensitive to the
assumptions made about the viscosity, e.g. whether there is constant dynamic viscosity
(the assumption made here) or constant kinematic viscosity. The ratios will also change if
the viscosity is temperature dependent, as the top and bottom boundaries have significantly
different temperatures if Γ > 1.

We have performed some numerical simulations to test these proposed boundary layer
ratios, and within the constraints imposed by the numerics, namely not very high Ra, we
find broad agreement between the theory and the numerics. Another important assumption
for Grossmann–Lohse theory to be valid is the existence of a wind of turbulence. Our
numerics suggest that this feature persists in our simulations. There is, however, still some
uncertainty about whether the horizontal length scale of that wind, which controls the
boundary layers, remains at the vertical length scale d as the stratification Γ increases, or
whether it becomes smaller at the top boundary than the bottom boundary at large Γ .
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We have also tested the theoretically derived Nusselt number and Reynolds number
relationships against the numerics, in the case where the viscous dissipation is mainly
in the boundary layers, the only numerically accessible case. Using the prefactors
determined in the Boussinesq case, which are the only free parameters in the theory,
the Nusselt numbers obtained are in reasonable agreement with the theory, again noting
the numerical limitations preventing accurate agreement. A problem was encountered
when comparing with the theoretical Reynolds numbers, in that the theory using the
original Grossmann–Lohse prefactors gave smaller Re than did the numerics. However,
the disagreement seems to be due more to issues with the Boussinesq problem rather than
to its extension to the anelastic case, in particular to the difficulty of establishing a single
prefactor over a huge range of Ra and to the dependence of Re on the aspect ratio. When
the prefactors were determined by normalizing on our Boussinesq runs, the issue was
resolved.

We have focused here on the case of no-slip boundaries, as this seems the simplest case
in which scaling laws can be derived from first principles without introducing arbitrary
constants into the formulae. There are, however, many problems of great astrophysical
interest that could be similarly addressed: the case of stress-free boundaries is thought
to be particularly relevant to stellar convection zones. Even within the context of our
simplified no-slip problem, the case of compressible boundary layers would be of interest.
We found it most convenient to consider fixed entropy boundary conditions, but other
boundary conditions, such as fixed temperature or fixed flux are of interest too. Another
issue that could be explored are the differences between temperature diffusion and entropy
diffusion cases. In our particular problem, with incompressible boundary layers, the
differences appear to be quite minor, but this is not necessarily the case if more challenging
cases are addressed. Given the growing importance of the anelastic approximation in
exploring a very wide range of exciting astrophysical problems, a firmer understanding of
the fundamental behaviour of high-Rayleigh-number anelastic convection would be very
valuable.
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Appendix A. Form of the anelastic temperature perturbation

Taking the horizontal average of the anelastic continuity equation (2.2), and using the
uz = 0 boundary conditions gives

〈uz〉h = 0. (A1)
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Using (2.1) and (2.13), the z-component of the anelastic equation of motion can be written
as

ρ̄
∂uz

∂t
+ ∇ · (ρ̄uzu) + ∇p = −gρ + μ

(
∇2uz + 1

3
∂

∂z
∇ · u

)
. (A2)

Taking the horizontal average of (A2) we see that, using (A1), the viscous term vanishes
to leave

d
dz

〈
ρ̄u2

z

〉
h
+ d 〈p〉h

dz
= −g 〈ρ〉h = −gρ̄

( 〈p〉h

p̄
− 〈T〉h

T̄

)
(A3)

using (2.4a). In the bulk, entropy is well mixed, so it is constant there, so differentiating
(2.4b) and using (2.4a),

R
d
dz

( 〈p〉h

p̄

)
= cp

d
dz

( 〈T〉h

T̄

)
(A4)

in the bulk. Using the adiabatic reference state hydrostatic and perfect gas equations, with
(2.8a–c), this can be written as

d〈p〉h

dz
= cpρ̄

d〈T〉h

dz
− gρ̄

p̄
〈p〉h + gρ̄

T̄
〈T〉h, (A5)

and on substituting this into (A3) we obtain

d〈T〉h

dz
= − 1

cpρ̄

d
dz

〈ρ̄u2
z 〉h, (A6)

which is valid in the bulk. Integrating this across the bulk from z = δth
B to z = d − δth

T , and
assuming uz is negligible close to the boundaries,

〈Tbulk(d − δth
T )〉h − 〈Tbulk(δ

th
B )〉h =

∫ d−δth
T

δth
B

〈ρ̄u2
z 〉h

d
dz

(
1

cpρ̄

)
dz = �Tvel > 0, (A7)

since ρ̄ is monotonic decreasing with z. This establishes that in the bulk the gradient
d〈T〉h/dz is positive on average, corresponding to a subadiabatic horizontally averaged
temperature gradient. We denote this jump in T across the bulk by �Tvel because it is
physically connected to the pressure changes induced by the fluid velocity. A natural
question is how large �Tvel is compared with the jumps in 〈T〉h across the boundary layers,
�TB and �TT? Formally they are both of the same order of magnitude in the anelastic
approximation, but �Tvel will be small if we are close to Boussinesq or if the Rayleigh
number is small. Numerical evidence is sparse, but figure 4 from Verhoeven et al. (2015)
suggests that for their parameters, Ra = 106, ρB/ρT = 2.72 and Pr = 0.7, their �Tvel was
small.

A.1. Positivity of the temperature offsets
We now consider the temperature offsets at the bottom and top boundaries, 〈T〉h,T and
〈T〉h,B. Without numerical simulations, we cannot determine their magnitude, but we can
show that they must both be positive, a useful check on future simulations.
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By examining the sum of the temperature jumps across the layer in figure 1(b) we can
see that

〈T〉h,T − 〈T〉h,B + �TB + �TT = �Tvel. (A8)

Using the incompressible boundary layer forms for the temperature jumps across the
boundary layers, (2.25a,b), and the formulae for the ratios of these jumps,

rs = �ST

�SB
, rT = �TT

�TB
, rs = Γ rT , (A9a–c)

(A8) becomes

〈T〉h,T − 〈T〉h,B + TB�S
cp

(1 + rT)

(1 + Γ rT)
= �Tvel. (A10)

A second equation for the temperature offsets can be derived from the boundary
conditions. From (2.4a) and (2.4b) we can deduce that

s = cpT

T̄
− p

ρ̄T̄
. (A11)

At z = 0 and z = d this gives

�S = cp 〈T〉h,B

TB
− 〈p〉h,B

ρBTB
, 0 = cp 〈T〉h,T

TT
− 〈p〉h,T

ρTTT
. (A12a,b)

We now use the mass conservation equation (2.28) to set the pressure perturbations on the
top and bottom boundary equal, giving

TB�S
cp

= 〈T〉h,B − 〈T〉h,T
ρT

ρB
. (A13)

Equations (A10) and (A13) are two equations for the temperature offsets 〈T〉h,B and 〈T〉h,T ,
and using ρB/ρT = Γ m the solutions are

〈T〉h,B = �Tvel

Γ m − 1
+ TB�S

cp

{
Γ m(1 + Γ rT) − (1 + rT)

(Γ m − 1)(1 + Γ rT)

}
, (A14)

〈T〉h,T = Γ m�Tvel

Γ m − 1
+ TB�S

cp

{
(Γ − 1)Γ mrT

(Γ m − 1)(1 + Γ rT)

}
. (A15)

Since Γ > 1 and �Tvel > 0, it follows that both quantities are positive whatever �Tvel is.
It is not possible to decide which offset is larger without having more information about
�Tvel, but these results confirm that figure 1(b) is a plausible sketch of the temperature
perturbation, and will be helpful in testing numerical simulations.

Appendix B. The case when the dissipation in the bulk dominates the dissipation in
the boundary layers

Grossmann & Lohse (2000) point out that at low Pr and large Ra it is possible for the
viscous dissipation in the bulk to be larger than the viscous dissipation in the boundary
layers. When this occurs, our arguments about the boundary layer ratios in § 5 and the
scaling laws in § 6 need revising. We now consider this scenario.
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B.1. The boundary layer ratios
When the viscous dissipation is mainly in the bulk, (5.1)–(5.7) still hold, but the argument
for (5.11) breaks down because the entropy flux is no longer approximately constant in the
bulk, since viscous dissipation in the bulk is no longer negligible. We can, however, use
the energy flux equation (3.2) because when the viscous dissipation is mainly in the bulk,
the work done by buoyancy must balance the viscous dissipation in the bulk, since now
the viscous dissipation in the boundary layers is negligible.

So (3.1) becomes
g
cp

∫
bulk

〈ρ̄uzs〉h dz = μ

∫
bulk

〈q〉h dz, (B1)

and since thermal diffusion and the last two terms in (3.2) are negligible in the bulk when
the boundary layers are thin, it follows that 〈ρ̄T̄uzs〉h will be approximately the same just
outside the two boundary layers at z = δν

B and z = d − δν
T , so

ρBTB〈uzs〉h|z=δν
B

≈ ρTTT〈uzs〉h|z=d−δν
T
. (B2)

Note this is different from the case where the dissipation was mainly in the boundary
layers, when 〈ρ̄uzs〉h is approximately constant. As we did in § 5, we horizontally average
the dot product of u and (2.1), and apply it just outside the boundary layers, at z = δν

B and
z = d − δν

T . Here we are justified in neglecting the pressure term as we did in § 5, and we
also neglect the viscous term. This is not obvious when most of the viscous dissipation is
in the bulk, but following Grossmann & Lohse (2000), we envisage a turbulent cascade,
where the dissipation at larger scales is dominated by the inertial term. We therefore adopt

1
2

∂

∂z
(ρ̄〈uzu2〉h) ≈ − ∂

∂z
〈uzp〉h + g

cp
〈ρ̄uzs〉h ≈ g

cp
〈ρ̄uzs〉h (B3)

at z = δν
B and z = d − δν

T . Then since we expect all velocity components to be of similar
magnitude in the bulk, using (B2),

ρBTB
U3

B
HB

≈ ρTTT
U3

T
HT

⇒ ru ∼ Γ m/3, (B4)

where the pressure scale heights are defined in (5.10). This result differs from (5.11), where
the dissipation is in the boundary layers, so that now the horizontal velocity at the top
is expected to be considerably faster than the velocity at the bottom, whereas (5.13a–d)
predicts only a weak dependence on Γ .

B.2. The scaling laws when dissipation is in the bulk
We still expect thin boundary layers even when the dissipation is mainly in the bulk, so
(6.1),

Fsuper�T̄
TBTT

∼
∫ d

0

μ

T̄
〈q〉h dz, (B5)

still applies, but unlike the boundary layer dissipation case, we do not know how the
dissipation is distributed over the interior. We therefore assume that the dissipation in
the interior can be written as 〈q〉h ∼ U3

H/2H, where UH(z) is the horizontally averaged
horizontal velocity and H is the local pressure scale height. We do not know how UH(z)
is distributed in z, but we argued in § B.1 above that ρU3

H is approximately the same at the
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edge of both boundary layers, so a reasonable assumption for the purposes of estimation
is that

ρU3
H ∼ const. ≈ ρBU3

B ≈ ρTU3
T . (B6)

The form of UH(z) from our numerical results suggests this might overestimate the
dissipation integrated over the whole layer, but nevertheless we adopt (B6) for the rest
of this section. Equation (B5) then becomes

Fsuper�T̄
TBTT

∼
∫ d

0

ρ̄U3
H

2T̄H
dz =

∫ d

0

ρBU3
B(m + 1)�T̄

2dT̄2 dz = ρBU3
B(m + 1)(Γ − 1)

2Tb
. (B7)

From (2.15), Fsuper = NukTB/d, and writing UB in terms of the bottom Reynolds number
using (6.6),

Nuk�T̄
dTT

∼ μ3Re3
B(m + 1)(Γ − 1)

2Tbρ
2
Bd2

. (B8)

Combining (2.12) and (2.16), we can write the Rayleigh number as

Ra = c2
p�T̄d2ρ2

BΓ ln Γ

μk(Γ − 1)
, (B9)

and combining this with (B8) and using the definition of the Prandtl number (4.1) we
obtain

NuRa
Pr2 ∼ (m + 1) ln Γ

2
Re3

B, (B10)

which is the entropy balance equation in the case where the dissipation is mainly in
the bulk rather than the boundary layers. We now use the same boundary layer balance
equation as before, but since we expect bulk dissipation only to dominate at low Pr, we
only use (4.5) for the boundary layer ratio, so (6.12) becomes

(ReBPr)1/2 = Nu(Γ − 1)(1 + rs)

Γ ln Γ
. (B11)

Combining (B10) and (B11) we get the Nusselt number in terms of the Rayleigh number
in this case,

Nu ∼ Ra1/5Pr1/5
(

2
m + 1

)1/5
Γ 6/5 ln Γ

(Γ − 1)6/5 (1 + rs)
−6/5. (B12)
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