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Abstract. In this paper we study non-axisymmetric oscillations of thin twisted magnetic tubes
taking the density variation along the tube into account. We use the approximation of the
zero-beta plasma. The magnetic field outside the tube is straight and homogeneous, however
it is twisted inside the tube. We assume that the azimuthal component of the magnetic field
is proportional to the distance from the tube axis, and that the tube is only weakly twisted,
i.e. the ratio of the azimuthal and axial components of the magnetic field is small. Using the
asymptotic analysis we show that the eigenmodes and eigenfrequencies of the kink and fluting
oscillations are described by a classical Sturm-Liouville problem for a second order ordinary
differential equation. The main result is that the twist does not affect the kink mode.

1. Introduction
Non-axisymmetric waves in magnetic flux tubes can be divided into kink waves and

fluting waves. Fast kink waves were first studied theoretically by Ryutov & Ryutova
(1976), who obtained the expression for the phase speed of these waves. After that kink
waves in magnetic tubes were studied by many authors (see, e.g., Spruit (1981), Spruit
(1982); Edwin & Roberts (1983), and references therein).

Since transverse oscillations of coronal loops were first observed by TRACE (Aschwan-
den et al. 1999; Nakariakov et al. 1999), and subsequently interpreted as fast kink oscilla-
tions of magnetic flux tubes by Nakariakov et al. (1999), the theory of non-axisymmetric
oscillations of magnetic tubes remains among the hot topics in solar physics. For the lat-
est review on observations of coronal loop oscillations see e.g. Banerjee el al. (2007). The
most attention was given to kink oscillations. In early theoretical studies only straight ho-
mogeneous tubes with circular cross-sections were considered. In recent years the theory
was extended in different directions.

However, one important effect that has not been studied extensively yet in the context
of oscillations. This effect is the magnetic twist. Twisted magnetic tubes have been inves-
tigated for many years, but mainly either in the context of tube stability, or in relation to
the MHD wave resonant absorption. To our knowledge the only early papers where the
effect of the magnetic twist on the waves propagation was studied are those by Bogdan
(1984) and Bennett et al. (1999). These authors studied the wave propagation in twisted
magnetic tubes in incompressible plasmas.

Recently the wave propagation in twisted magnetic tubes started to receive an en-
hanced attention. Erdélyi & Fedun (2006) considered the sausage wave propagation in
magnetic tubes in incompressible plasmas with the magnetic field twisted both inside
and outside the tube. Erdélyi & Carter (2006), Carter & Erdélyi (2007) and Carter &
Erdélyi (2008) investigated the wave propagation in a tube that consists of a core with
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straight magnetic field and an annulus with twisted magnetic field. Erdélyi & Fedun
(2007) studied the compressibility effect on the wave propagation in twisted magnetic
flux tubes. However, in all these papers propagating waves were considered. To our knowl-
edge, standing non-axisymmetric oscillations of magnetic flux tubes with fixed ends has
not been studied yet.

In this paper we study the eigenmodes and eigenfrequencies of non-axisymmetric oscil-
lations of thin magnetic tubes taking two effects into account simultaneously: magnetic
twist and the density variation along the tube axis. The paper is organized as follows. In
the next section we formulate the problem and write the linearized system of governing
equations and boundary conditions in terms of the plasma displacement and magnetic
pressure perturbation. In Section 3 we derive the eigenvalue problem determining the
eigenfrequencies and eigenfunctions of the twisted tube oscillations. In Section 4 we study
the eigenmodes of non-axisymmetric tube oscillations. Section 5 contains the summary
of the obtained results and our conclusions.

2. Formulation
We consider a twisted magnetic tube of radius a in a cold plasma. We introduce

cylindrical coordinates r, ϕ, z with the z-axis coinciding with the tube axis. The tube
length is L, and the tube ends are fixed at z = 0 and z = L. This corresponds to the
condition that the magnetic field lines are frozen in the dense photospheric plasma. The
density, ρ, depends on z and has a jump at the tube boundary, so that

ρ =
{

ρi(z), r < a,
ρe(z), r > a.

(2.1)

We assume that ρe(z) < ρi(z), otherwise ρi(z) and ρe(z) are arbitrary. In what follows
the subscripts ‘e’ and ‘i’ refer to quantities ourside and inside the tube respectively.

We assume that the equilibrium magnetic field is straight and have constant magnitude
B0 outside the tube, i.e. for r > a. Inside the tube it is twisted, i.e. it has z and ϕ
components, and it only depends on r. We choose the simplest possible dependence of
the asimuthal component of the magnetic field on r, Bϕi = Ar. The magnetic field has
to satisfy the equailibrium condition inside the tube,

d(B2
ϕi + B2

z i)
dr

= −
2B2

ϕi

r
, (2.2)

and at the tube boundary,

B2
ϕi + B2

z i = B2
e . (2.3)

It follows from (2.2) and (2.3) that the z-component of the magnetic field inside the tube
is given by

B2
z i = B2

0 + 2A2(a2 − r2). (2.4)

The equilibrium configuration is shown in Fig. 1.
The plasma motion is described by the system of linearized ideal MHD equations for

a cold plasma. Since the equilibrium quantities are independent of ϕ, we Fourier-analyze
the perturbations of all quantities, and take them proportional to eimϕ , where m is an
integer, m �= 0. In addition, we are looking for eigenmodes, so that we take perturbations
of all variables proportional to e−iω t . Then the system of linearized ideal MHD equations
can be written in terms of the plasma displacement, ξ = (ξr , ξϕ , ξz ), and the perturbation

https://doi.org/10.1017/S1743921308015068 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308015068


346 M. S. Ruderman

L

B

ρ

a

e

e

ρ
i

Figure 1. Twisted magnetic tube.

of the magnetic pressure, P , as (Ruderman (2007))(
ρω2 +

B2

µ0
D2

‖

)
ξr +

2A2

µ0

∂(rξr )
∂r

=
∂P

∂r
+

2AB

µ0

∂ξ⊥
∂z

, (2.5)

(
ρω2 +

B2

µ0
D2

‖

)
ξ⊥ = D⊥P − 2ABz

µ0
D‖ξr , (2.6)

P = − B2

rµ0

∂(rξr )
∂r

+
2A2r

µ0
ξr −

B2

µ0
D⊥ξ⊥. (2.7)

Here

ξ⊥ = (Bzξϕ − Bϕξz )/B, P = B · b, (2.8)

where B is the equilibrium magnetic field, and b is the magnetic field perturbation. Note
that ξ‖ = (Bϕξϕ +Bzξz )/B is zero in the cold plasma approximation. Operators D⊥ and
D‖ are given by

D⊥ = −Ar

B

∂

∂z
+

imBz

rB
, D‖ =

Bz

B

∂

∂z
+

imA

B
. (2.9)

The system of equations (2.5)–(2.7) is written for motions inside the tube with the
subscript ‘i’ omitted. To obtain the system of equation for motions outside the tube we
only need to take A = 0 in (2.5)–(2.7).

The perturbations have to satisfy the kinematic and dynamic boundary conditions at
r = a. These conditions can be written as (see Bennett 1999 or Erdélyi & Fedun 2006)

ξri = ξre , (2.10)

Pi −
aA2

µ0
ξri = Pe. (2.11)

In additions, all perturbations are assumed to decay as r → ∞.
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The system of equations (2.5)–(2.7) with the boundary conditions (2.10) and (2.11)
will be used in the next section to study the eigenmodes of the tube oscillations.

3. Eigenvalue problem for tube oscillations
In this section we derive the governing equation for non-axisymmetric oscillations of

a thin magnetic tube with twisted magnetic field. The assumption that the tube is thin
implies that ε = a/L � 1. We also assume that the magnetic field inside the tube is
only weakly twisted, so that aA/B0 = O(ε) and introduce Ã = ε−1A. Then it follows
that Bzi = B0 + O(ε2). We also assume that ω ∼ B0/L

√
µ0ρi and introduce the scaled

frequency Ω = ε−1ω. Finally, we introduce the stretching variable ζ = εz.
Now we look for the solution to equations (2.5)–(2.7) in the form of series expansions

with respect to ε. Here we give only the main results. The details of calculations can be
found in Ruderman (2007). In the lowest order approximation we obtain the equation
for ξr and the expression for P in terms of ξr ,(

Ω2 +
B2

0

µ0ρi
D̃2

‖

)(
∂

∂r
r
∂(rξr )

∂r
− m2ξr

)
= 0, (3.1)

P = ε2 r

m2

(
ρiΩ2 +

B2
0

µ0
D̃2

‖

)
∂(rξr )

∂r
− ε2 2iB0Ãr

mµ0
D̃‖ξr + O(ε4), (3.2)

where

D̃‖ =
∂

∂ζ
+

imÃ

Bi
. (3.3)

The first factor equal to zero corresponds to Alfvén waves inside the tube. In what follows
we eliminate Alfvén waves from the analysis, and assume that Ω2 is not close to any
eigenvalue of the operator determined by the differential expression −(B2

0 /µ0ρi)D̃2
‖ and

the zero boundary conditions at ζ = 0, εL. More precisely, we assume that the difference
between any such eigenvalue and Ω2 is of the order of unity. Then it follows that equation
(3.1) reduces to

∂

∂r
r
∂(rξr )

∂r
− m2ξr = 0. (3.4)

The solution of this equation regular at r = 0 is very simple,

ξr = r|m |−1η(ζ), (3.5)

where η(ζ) is an arbitrary function satisfying η(0) = η(εL) = 0. Using (3.5) we easily
obtain

P = ε2r|m |
[

B2
0

µ0 |m|
d2η

dζ2 +
2iÃB0(|m| − 1)

mµ0

dη

dζ
+

Ã2(2 − |m|)
µ0

η +
ρiΩ2

|m| η

]
+ O(ε4). (3.6)

Outside the tube, the system of equations (2.5)–(2.7) is reduced to the system of
equations for ξr and P ,

∂2ξr

∂ζ2 +
µ0ρeΩ2

B2
0

ξr =
ε−1µ0

B2
0

∂P

∂R
, (3.7)

∂2P

∂R2 +
1
R

∂P

∂R
+

∂2P

∂ζ2 +
(

µ0ρeΩ2

B2
0

− m2

R2

)
P = 0, (3.8)

where R = εr is the stretching variable in the radial direction. Equation (3.8) can be
solved by means of variable separation. For what follows we need only to know the
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solution near the tube boundary, where R = O(ε). For these values of R the solution to
(3.8) is given by the asymptotic expression

Pe = f(ζ)
( εa

R

)|m |
. (3.9)

It follows from the boundary condition (2.10) and equation (2.7) that function f satisfies
f(0) = f(εL) = 0. Otherwise it is arbitrary.

Now we match the solutions inside and outside the tube using equation (3.7), and
the boundary conditions (2.10) and (2.11). It follows from (2.10) and (3.5) that ξre =
a|m |−1η(ζ). Substituting this expression in (3.7) we obtain

f(ζ) = −ε2a|m | B2
0

µ0 |m|

(
d2η

dζ2 +
µ0ρeΩ2

B2
0

η

)
. (3.10)

Now we substitute Pe with f(ζ) given by (3.10) in (2.11), use (3.5) and (3.6), and return
to the original variables. As a result, after some algebra, we arrive at the following Sturm-
Liouville problem determining the eigenfunction η and the eigenfrequency ω of the tube
oscillation:

d2η

dz2 +
iA[m − sgn(m)]

B0

dη

dz
+

(
ω2

C2
k

− A2 |m|(|m| − 1)
2B2

0

)
η = 0,

η = 0 at z = 0, L,

(3.11)

where

C2
k (z) =

2B2

µ0 [ρi(z) + ρe(z)]
. (3.12)

When A = 0, equation (3.11) coincides with equation (21) in Dymova & Ruderman
(2005) for an untwisted tube. The substitution

η = h exp
(
− izA[m − sgn(m)]

2B0

)
(3.13)

reduces (3.11) to the standard Sturm-Liouville problem,

d2h

dz2 +
(

ω2

C2
k

− A2(m2 − 1)
4B2

0

)
h = 0, h = 0 at z = 0, L. (3.14)

This problem determines all eigenfrequencies and corresponding eigenmodes of the tube
oscillation for any m �= 0.

4. Eigenmodes of tube oscillations
The eigenvalue problem (3.14) is self-adjoint, so that all its eigenvalues are real. Ob-

viously, we can assume that all eigenfunctions are also real. Multiplying (3.14) by h and
using the integration by parts we obtain

ω2
∫ L

0

h2

C2
k

dz =
∫ L

0

(
dh

dz

)2

dz +
A2(m2 − 1)

4B2
0

∫ L

0
h2 dz. (4.1)

This equation shows that all eigenvalues of the Sturm-Liouville problem (3.14) are posi-
tive, so that there are no unstable modes described by (3.14).

Now we note that equation (3.14) is independent of the sign of m. Hence, there is
only one standing mode for each |m| > 0, and we can take m > 0 in what follows. When
m = 1, which corresponds to the kink mode, equation (3.14) coinsides with with equation
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(21) in Dymova & Ruderman (2005) describing kink oscillations of an untwisted tube.
Hence, we obtained a very important result that weak magnetic twist does not affect the
kink oscillations. However. it does affect the fluting modes. For a non-stratified tube the
fundamental frequencies of non-axisymmetric modes are given by

ω2
mf = C2

k

(
π2

L2 +
A2(m2 − 1)

4B2
0

)
. (4.2)

We see that the magnetic twist increases the frequency of a fluting mode.

5. Summary and conclusions
In this paper we have studied non-axisymmetric oscillations of a thin twisted magnetic

tube with fixed ends in a zero-beta plasma. We have taken the density stratification
into account and allowed the arbitrary variation of densities inside and outside the tube
in the longitudinal direction. The only condition that we imposed was that the density
inside the tube is larger than that outside. We have taken the magnetic field outside
the tube straight and homogeneous, while inside the tube the magnetic field has the
axial and azimuthal components, the latter being proportional to the radial coordinate
r. Then we have made a very important assumption that the twist is weak, i.e. the
azimuthal component of the magnetic field inside the tube is much smaller than the
axial component. More precisely, we assumed that the ratio of these two components is
of the order of the ratio of the tube radius to its length, ε = a/L � 1.

Using the asymptotic expansions with ε as a small parameter, we have shown that
the eigenmodes and eigenfrequencies of the tube oscillation with perturbations of all
quantities proportional to exp(imϕ) (m �= 0) are determined by the Sturm-Liouville
problem (3.14), which is a generalization of the result obtained by Dymova & Ruderman
(2005) for a straight magnetic tube.

The most important result obtained in this paper is that the weak twist does not
affect the kink oscillations (m = 1). In this respect it is interesting to note that a similar
result was obtained by Bennett et al. (1999), Carter & Erdélyi (2008) for kink waves
propagating in magnetic tubes in incompressible plasmas.

We showed that all modes described by the Sturm-Liouville problem (3.14) are stable.
However, it is very important to note that this Sturm-Liouville problem describes by far
not all modes that can be supported by a thin twisted magnetic tube. To show this we
first recall the results concerning straight magnetic tubes. In that case, for each m > 0,
in addition to the mode described be (3.14) with A = 0, there are infinitely many other
modes. The characteristic property of the modes described by (3.14) with A = 0 is that
the plasma displacement in the radial direction takes its maximum value at the tube
boundary. In contrast, for modes not described by (3.14), the plasma displacement at
the tube boundary is very small, and it tends to zero as ε → 0. In accordance with the
classification introduced by Roberts (1981), both the modes described and not described
by (3.14) are body waves in the zero-beta plasma approximation. To distinguish the kink
mode described by (3.14) from those not described by (3.14), Ruderman & Roberts (2002)
suggested to call it “global kink mode,” retaining the name “body kink modes” for all
other kink modes. We generalize this convention for fluting modes, and call fluting modes
described by (3.14) “global fluting modes,” retaining the name “body fluting modes” for
all other fluting modes.

In the case of a thin straight tube, body kink and fluting modes are all leaky modes and,
in addition, their phase speeds are tending to infinity as ε → 0. Hence, the assumption
that ω ∼ B0/L

√
µ0ρi effectively eliminates the body modes from the analysis. However,
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the situation is completely different when the tube is twisted. Now the body modes
are not necessarily leaky, and their phase speeds can be small even in the thin tube
approximation. A preliminary analysis show that body kink and fluting modes with
frequencies close to πnB0/(L

√
µ0ρi), where n is a positive integer, can exist even in the

approximation of incompressible plasma in an unstratified tube (e.g., Erdélyi & Carter
(2006)). To eliminate the body modes from the analysis we had to make an additional
assumption that the squared eigenfrequency of the tube oscillation is not close to any of
the eigenvalues of the Sturm-Liouville problem

B2
0

µ0ρi

(
d2f

dz2 +
2imA

B0

df

dz
− m2A2

B2
0

f

)
= −σf, f = 0 at z = 0, L. (5.1)

This eigenvalue problem describes standing Alfvén waves in the tube.
An important problem is the stability of a twisted tube. For an infinite tube this prob-

lem was partially studied by Dungey & Loughhead (1954), Bennett et al. (1999) and
Carter & Erdélyi (2008) in the approximation of an incompressible plasma. In particu-
lar, it follows from the results obtained by these authors that, in the long wavelength
approximation, the first travelling body wave (the wave that has no nodes in the radial
direction inside the tube) with m = −1 becomes unstable when 2πA/kzB0 > 1 + O(ε)
(see Fig. 7 in Bennett et al. 1999). The line-tying condition at the tube ends should
stabilize the tube. The study of stability of a twisted tube with fixed ends is a problem
for future investigation. However the conjecture that the stability criterion for such a
loop has the form LA/B0 < q + O(ε) with q being a positive constant (unknown at
present) looks quite viable. In Section 3 we assumed that A = εÃ with aA/B0 = O(ε). If
our conjecture about the stability criterion is correct, then a more accurate assumption
should be aA/B0 < qε.
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Carter, B. K. & Erdélyi, R. 2007, A&A, 475, 323
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