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Abstract

The notion of ordered system signature, originally defined for independent and identical
coherent systems, is first extended to the case of independent and non-identical coherent
systems, and then some key properties that help simplify its computation are established.
Through its use, a dynamic ordered system signature is defined next, which facilitates a
systematic study of dynamic properties of several coherent systems under a life test. The
theoretical results established here are then illustrated through some specific examples.
Finally, the usefulness in the evaluation of aging used systems of the concepts introduced
is demonstrated.
Keywords: Ordered system signature; coherent system; dynamic ordered system signa-
ture; used system; aging; stochastic ordering
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1. Introduction

For coherent systems consisting of n independent and identically distributed (i.i.d.) compo-
nents with an absolutely continuous lifetime distribution, the system signature was originally
defined in [22] as a vector s = (s1, . . . , sn), where si is the probability that the system fails
due to the failure of the ith ordered component. The system signature plays an important
role in describing structures of reliability systems, and it can be more efficient than the tra-
ditional structure function for some large complex systems. Comparisons between different
system structures can be carried out based on stochastic orderings of their corresponding sys-
tem signatures [15], while transformation formulas for signatures of different sizes established
in [21] facilitate the comparison of systems with different numbers of components. Elaborate
discussions on the theory and applications of system signature can be found in [23], while
comparisons of different computational methods for system signature can be seen in [31].

Some other concepts related to system signatures have also been introduced based on dif-
ferent types of systems; for example, maximal/minimal signature for coherent systems with
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exchangeable components [19], dynamic signature for used working coherent systems with
known numbers of component failures [24], joint signature for two coherent systems with
shared components [20], survival signature for coherent systems with multiple types of com-
ponents [6], joint survival signature for multiple coherent systems with multiple types of shared
components [7], ordered system signature for several independent and identical coherent sys-
tems under a life-testing experiment [5], and progressive censoring signature for coherent
systems with censoring plans [8, 9]. For multi-state coherent systems with binary/multi-state
components, concepts such as multidimensional D-spectrum [13], bivariate signature [10],
multi-state survival signature [12, 29], and multi-state ordered signature [28] have also been
introduced and studied in detail by a number of authors.

In the present work, we mainly focus on the notion of ordered system signature due to
[5], which is quite useful in developing inference for component lifetime distribution based on
system lifetime data [26, 27]. This concept was originally defined in [5] for several independent
and identical coherent systems under a life test, but the assumption of identical systems is really
not necessary. Here, we first extend this notion of ordered system signature to the case of
independent and non-identical systems, then use it to develop the concept of dynamic ordered
system signature, which is then used to study dynamic properties of coherent systems.

To investigate residual lifetimes of used systems, [18] considered representations of their
reliability functions and found that the residual lifetime of a used system is indeed a mixture
of residual lifetimes of several k-out-of-n systems. As in [18], but under a particular con-
dition on the number of failed components, [24] introduced the notion of dynamic signature
through distribution-free coefficients of the reliability representation for used working systems.
Similar concepts and related properties of used coherent systems were further investigated in
[17] under different conditions on the system lifetime. Subsequently, different types of used
systems have been investigated using some concepts similar to dynamic signature, such as
networks under nonhomogeneous Poisson processes [32], three-state networks under differ-
ent conditions on system and components [1], coherent systems with dependent components
[11, 14], and multi-state coherent systems with shared components [30]. More discussions on
related stochastic ordering results can be found in [16, 25].

In this paper, some properties of used coherent systems are studied using a newly intro-
duced concept called dynamic ordered system signature, which is defined in terms of a general
ordered system signature based on independent and non-identical coherent systems under a
life-testing experiment. The rest of the paper proceeds as follows. In Section 2 we first extend
the notion of ordered system signature to independent and non-identical coherent systems
and then establish some of its key properties which assist in simplifying its computation. In
Section 3 we propose the dynamic ordered system signature that is useful in studying dynamic
properties of several coherent systems under a life test. Next, in Section 4, we present several
examples to illustrate all the developed results. An application of these concepts to the evalua-
tion of aging properties of used systems is demonstrated in Section 5. Finally, we present some
concluding remarks in Section 6.

2. Ordered system signature for independent and non-identical systems

Based on a life test of several independent and identical coherent systems, [5] introduced
the concept of ordered system signature as follows.

Definition 2.1. (Ordered system signature.) For a life test of n independent and identical coher-
ent systems, each of which has m i.i.d. components and a common system signature s, the
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ith (i = 1, . . . , n) ordered system signature is defined as the vector s(i:n) = (
s(i:n)

1 , . . . , s(i:n)
m

)
,

where, for j = 1, . . . , m,

s(i:n)
j =

n∑
k=1

P

{
Ti:n = X(k)

j:m

}
=

n∑
k=1

P

{
Ti:n = X(k)

j:m | Ti:n = Tk

}
is the probability that the ith ordered system failure corresponds to a system that failed
due to its jth ordered component failure. Here, for system k (k = 1, . . . , n), component life-
times X(k)

1 , . . . , X(k)
m are assumed to have a common continuous distribution function F, and

X(k)
1:m, . . . , X(k)

m:m are the corresponding ordered (in ascending order) lifetimes; similarly, the
system lifetimes T1, . . . , Tn are ordered (in ascending order) as T1:n, . . . , Tn:n.

Even though this definition was given in [5] for the case of independent and identical coher-
ent systems, it can easily be directly extended to the case of independent and non-identical
coherent systems of the same size, and then subsequently to independent and non-identical
coherent systems of different sizes by using the idea of equivalent systems and related trans-
formation formulas developed, for example, in [21]. The use of equivalent systems, of course,
hides information about components in the systems, such as the expected number of failed
components and possible maintenance policies in the original system. However, since equiv-
alent systems of the same size share the same system lifetime distribution and component
lifetime distribution, the generalization can be quite useful for describing system structures
and in developing statistical inferences. Here, we first discuss some important properties of
ordered system signature for the case of independent and non-identical coherent systems.

Let us consider a life test of n independent coherent systems with all their components i.i.d.,
and assume that they can be divided into N groups according to their equivalent systems of size
m, namely, the ki systems in each group i = 1, . . . , N have the same equivalent system with
m components and a system signature s(i) = (

s(i)
1 , . . . , s(i)

m
)
. Note that m is often chosen to be

the largest number of components in the n independent coherent systems. Also, ki ∈ {1, . . . , n}
for all i = 1, . . . , N, with

∑N
i=1 ki = n, and s(i) are different for different i (i = 1, . . . , N). The

component lifetimes and the system lifetimes are defined and ordered exactly as explained
in Definition 2.1. Then, along the lines of [5], associated properties of their ordered system
signatures can be presented. The first of these is the distribution-free property, as established
in the following proposition.

Proposition 2.1. The ordered system signature s(i:n) = (
s(i:n)

1 , . . . , s(i:n)
m

)
is a distribution-free

measure, i.e. free of the underlying component lifetime distribution F.

Proof. In each group i = 1, . . . , N, assume that there are li,j (j = 1, . . . , m) of the ki i.i.d.
coherent systems that failed due to the jth ordered component failure. Evidently, all possible
combinations of those li,j can be given as

Lk = {l = (li,j, 1 ≤ i ≤ N, 1 ≤ j ≤ m) : li,1 + · · · + li,m = ki for all i}.
Then, as in the discussions of [5], (li,1, . . . , li,m) are distributed as multinomial with parameters(

ki, s(i)
1 , . . . , s(i)

m

)
, i = 1, . . . , N, so that, for i = 1, . . . , N and j = 1, . . . , m we have

s(i:n)
j =

∑
l∈Lk

p(i:n)
j | l ·

N∏
w=1

{(
kw

lw,1, . . . , lw,m

)
m∏

r=1

[
s(w)

r

]lw,r

}
,
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where p(i:n)
j | l is the conditional probability that the ith system under test failed due to the jth

ordered component failure, given a fixed value of l, that is, given that lj = l1,j + · · · + lN,j

(j = 1, . . . , m) systems failed due to the jth ordered component failure. Note that p(i:n)
j | l depends

on l only through l1, . . . , lm, which means that it can also be denoted as p(i:n)
j | l1,...,lm

. Clearly,

p(i:n)
j | l can be expressed as probabilities of orderings of X(k)

jk:m, which are independent of the
component lifetime distribution F. Hence, the proposition. �

According to Proposition 2.1, the ordered system signature s(i:n) can be computed directly
from system signatures s(1), . . . , s(N). The required computation can be simplified by utilizing
some properties of the conditional probabilities p(i:n)

j | l presented in the following lemma.

Lemma 2.1. For any i = 1, . . . , n, the conditional probabilities p(i:n)
j | l , j = 1, . . . , m, satisfy the

following:

(i) For l1,j + · · · + lN,j = n, we have p(i:n)
j | l = 1;

(ii) For l1,j = · · · = lN,j = 0, we have p(i:n)
j | l = 0;

(iii)
∑n

i=1 p(i:n)
j | l =∑N

s=1 ls,j;

(iv) p(i:n)
j |l = p(n−i+1:n)

m−j+1 | rev l, where rev l = (li,m−j+1, 1 ≤ i ≤ N, 1 ≤ j ≤ m) is simply the reverse
ordering of l = (li,j, 1 ≤ i ≤ N, 1 ≤ j ≤ m).

Proof. (i) l1,j + · · · + lN,j = n means that all failures of the n coherent systems are caused
by the jth ordered component failure, which clearly implies that the ith failure is in them, i.e.
p(i:n)

j | l = 1.
(ii) l1,j = · · · = lN,j = 0 means that all failures of the n coherent systems are not caused by

the jth ordered component failure, which clearly implies that the ith failure is not in them, i.e.
p(i:n)

j | l = 0.

(iii) Given the value of l, there should be
∑N

s=1 ls,j (j = 1, . . . , m) failures among the n
coherent systems that are caused by the jth ordered component failure. The same number can
also be given as

∑n
i=1 p(i:n)

j | l (with p(i:n)
j | l = 1 for the case that the ith ordered system failure is

caused by the jth ordered component failure and p(i:n)
j | l = 0 for the case that it is not, under any

possible realization of related order statistics), leading to the fact that
∑n

i=1 p(i:n)
j | l =∑N

s=1 ls,j.

(iv) p(i:n)
j | l is the probability of a class of orderings of n order statistics from distribution F.

If we use a transformation X → M − X (where M is a large positive number greater than all
the realizations of the order statistics) to reverse all the realizations of order statistics, then
the ith smallest one in each ordering will become the (n − i + 1)th smallest one, and each
system that failed due to the jth ordered component failure would then become a system that
failed due to the (m − j + 1)th ordered component failure. This then implies that, for any i =
1, . . . , N, if there are li,j (j = 1, . . . , m) systems that failed due to the ordered component
failure before the transformation, then following the transformation there will be li,m−j+1 (j =
1, . . . , m) systems that failed due to the jth ordered component failure. Now, as the probability
p(i:n)

j | l is distribution-free, we will clearly have p(i:n)
j | l = p(n−i+1:n)

m−j+1 | rev l. Hence the lemma. �
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Based on Proposition 2.1 and Lemma 2.1, we can simplify the computation of ordered
system signature in the following manner.

Corollary 2.1. For any signature vectors s(1), . . . , s(N), for all n = 1, 2, . . . and j = 1, . . . , m
we will have s(1:n)

j = · · · = s(n:n)
j = 0 if and only if s(1)

j = · · · = s(N)
j = 0.

Proof. For s(1)
j = · · · = s(N)

j = 0, the terms in the expression

s(i:n)
j =

∑
l∈Lk

p(i:n)
j | l ·

N∏
w=1

{(
kw

lw,1, . . . , lw,m

)
m∏

r=1

[
s(w)

r

]lw,r

}

can be classified into two classes: for l ∈Lk such that l1,j = · · · = lN,j = 0, corresponding terms

will all be 0 with p(i:n)
j | l = 0 according to Lemma 2.1(ii), and for l ∈Lk such that

∑N
w=1 lw,j �= 0,

the corresponding terms will all be 0 with

N∏
w=1

[
s(w)

j

]lw,j = [
s(1)

j

]∑N
w=1 lw,j = 0.

Then, it is clear that we have s(i:n)
j = 0 for any i, i.e. s(1:n)

j = · · · = s(n:n)
j = 0.

For s(1:n)
j = · · · = s(n:n)

j = 0, we have

0 =
n∑

i=1

s(i:n)
j =

∑
l∈Lk

[
n∑

i=1

p(i:n)
j | l

]
·

N∏
w=1

{(
kw

lw,1, . . . , lw,m

)
m∏

r=1

[
s(w)

r

]lw,r

}

=
∑
l∈Lk

(
N∑

s=1

ls,j

)
·

N∏
w=1

{(
kw

lw,1, . . . , lw,m

)
m∏

r=1

[
s(w)

r

]lw,r

}

=
N∑

s=1

∑
ls∈L̃s

{
ls,j ·

(
ks

ls,1, . . . , ls,m

)
m∏

r=1

[
s(s)

r

]ls,r

}
=

N∑
s=1

kss
(s)
j ,

since vectors ls ∈ L̃s = {(ls,1, . . . , ls,m) : ls,1 + · · · + ls,m = ks} are distributed as multino-
mial with parameters

(
ks, s(s)

1 , . . . , s(s)
m
)

for s = 1, . . . , N. Then, we clearly have s(1)
j = · · · =

s(N)
j = 0. �

In addition to the above-stated properties, there are also some other interesting sym-
metry properties for ordered system signatures that could be used to further simplify the
computational process.

Proposition 2.2. The ordered system signatures s(1:n), . . . , s(n:n) satisfy

n∑
i=1

s(i:n) =
N∑

s=1

kis(s), rev s(i:n) = (rev s)(n−i+1:n), i = 1, . . . , n,

where s = (
s(1), . . . , s(N)

)
and rev s = (rev s(1), . . . , rev s(N)), with rev s(s) = (

s(s)
m , . . . , s(s)

1

)
(s = 1, . . . , N) given by the reverse ordering of s(s) = (

s(s)
1 , . . . , s(s)

m
)
.
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Proof. From the proof of Corollary 2.1, we have

n∑
i=1

s(i:n)
j =

N∑
s=1

kss
(s)
j , j = 1, . . . , m,

which clearly leads to
∑n

i=1 s(i:n) =∑N
s=1 kss(s). This means that the summation of all ordered

system signatures equals the summation of all system signatures of the original equivalent
systems of size m.

From the formula of s(i:n)
j (i = 1, . . . , n, j = 1, . . . , m) in Proposition 2.1, we have

s(n−i+1:n)
m−j+1 =

∑
l∈Lk

p(n−i+1:n)
m−j+1 | l ·

N∏
w=1

{(
kw

lw,1, . . . , lw,m

)
m∏

r=1

[
s(w)

r

]lw,r

}

=
∑
l∈Lk

p(i:n)
j | rev l ·

N∏
w=1

{(
kw

lw,1, . . . , lw,m

)
m∏

r=1

[
s(w)

r

]lw,r

}

=
∑
l∈Lk

p(i:n)
j | l ·

N∏
w=1

{(
kw

lw,1, . . . , lw,m

)
m∏

r=1

[
s(w)

m−r+1

]lw,r

}
= (rev s)(i:n)

j ,

which leads to rev s(i:n) = (rev s)(n−i+1:n) (i = 1, . . . , n). �

Corollary 2.2. If the system signatures s(1), . . . , s(N) are all symmetric (i.e. s(i) = rev s(i) for all
i = 1, . . . , N), then the ordered system signatures satisfy rev s(i:n) = s(n−i+1:n) (i = 1, . . . , N).

Proof. This can be established directly from Proposition 2.2. �

The ordered system signatures also possess another important property: stochastic orderings
between them, as presented in the following proposition.

Proposition 2.3. For any 1 ≤ i1 < i2 ≤ n, the ordered system signatures s(1:n), . . . , s(n:n) satisfy
the stochastic ordering s(i1:n) ≤st s(i2:n). In addition, if s(i1:n) ≥st s(i2:n) for any 1 ≤ i1 < i2 ≤ n,
then s(1) = · · · = s(N) is the signature of a κ-out-of-m system.

Proof. For 1 ≤ i1 < i2 ≤ n, the property that s(i1:n) ≤st s(i2:n) can be proved similarly to [5,
Proposition 3], and the only change caused by the difference in system signatures s(1), . . . , s(N)

is in the formula for probability C(S, u, v, jU, jL). For this reason, the corresponding proof is
omitted here for brevity.

If s(i1:n) ≥st s(i2:n) for any 1 ≤ i1 < i2 ≤ n, then clearly we have s(i1:n) = s(i2:n). Let κs, s =
1, . . . , N, be the smallest k such that s(s)

k > 0, and κ be the smallest among the κs, s = 1, . . . , N.
We then have

0 = s(i1:n)
κ − s(i2:n)

κ =
∑
l∈Lk

(
p(i1:n)
κ | l − p(i2:n)

κ | l

)
·

N∏
w=1

{(
kw

lw,1, . . . , lw,m

)
m∏

r=1

[
s(w)

r

]lw,r

}
.

To prove κ1 = · · · = κN = κ , we assume that there exists at least one κs such that κs > κ . Let
l be such that li,κi = ki (i = 1, . . . , N). Then, by an argument similar to that in [5], we have

p(i1:n)
κ | l − p(i2:n)

κ | l > 0, which implies an impossible result that
∏N

w=1

(
s(w)
κw

)kw = 0, i.e. s(1)
κ1 = · · · =
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s(N)
κN = 0. Thus, we conclude that κ1 = · · · = κN = κ . As discussed above, for any s = 1, . . . , N

and any κ < κ ′
s ≤ m, let l be such that ls,κ ′

s
= ks and li,κ = ki (i �= s), and we then have

[
s(s)
κ ′

s

]ks
N∏

w=1

(
s(w)
κ

)kw1{w �=s} = 0,

i.e. s(s)
κ ′

s
= 0. This implies that s(s) = ( 0, . . . , 0︸ ︷︷ ︸

κ−1

, 1, 0, · · · , 0︸ ︷︷ ︸
m−κ

) for all s = 1, . . . , N. �

3. Dynamic ordered system signature

As mentioned in Section 2, the concept of ordered system signature is applicable for inde-
pendent and non-identical coherent systems of any sizes. In this section we introduce a new
concept, called dynamic ordered system signature, which will be useful in examining dynamic
properties of used coherent systems.

Consider a life test of n independent coherent systems with all their components being i.i.d.,
and assume that they can be divided into N groups such that the ki systems in each group, i =
1, . . . , N, have the same system size mi and the same system signature s(i) =

(
s(i)

1 , . . . , s(i)
mi

)
.

Note that ki ∈ {1, . . . , n} for all i = 1, . . . , N, with
∑N

i=1 ki = n, and the s(i) (i = 1, . . . , N)
are different for different i. The component lifetimes and the system lifetimes are defined
and ordered exactly as explained in Definition 2.1. Let us further use Ek(t), k = (ki,j, 1 ≤
i ≤ N, 1 ≤ j ≤ mi), to denote the event that there are ki,j (i = 1, . . . , N, j = 1, . . . , mi) work-
ing systems in group i with exactly j working components at time t, i.e. there are exactly
k0 = n −∑N

i=1
∑mi

j=1 ki,j failed systems at time t with 0 ≤∑mi
j=1 ki,j ≤ ki for i = 1, . . . , N. Let

ñ =∑N
i=1

∑mi
j=1 ki,j be the total number of working systems at time t, m = sup{j : ki,j �= 0, i =

1, . . . , N, j = 1, . . . , mi} denote the largest number of working components in each of the ñ
working systems at time t, and m̃i = min{mi, m} denote the smaller number between mi and m.
Then, the concept of dynamic ordered system signature can be introduced as follows.

Definition 3.1. (Dynamic ordered system signature.) The ith (i = 1, . . . , ñ) dynamic ordered
system signature is given by s(i | k) = (

s(i | k)
1 , . . . , s(i | k)

m
)
, where, for j = 1, . . . , m,

s(i | k)
j =

n∑
k=1

P

{
Ti+k0:n = X̃(k)

j:m | Ek(t)
}

=
n∑

k=1

P

{
Ti+k0:n = X̃(k)

j:m | Ek(t), Ti+k0:n = Tk

}
is the conditional probability that the failure of the (i + k0)th system corresponds to the failure
of a system whose equivalent system (of size m) at time t fails due to the jth ordered component
failure, given that there are ki,j (i = 1, . . . , N, j = 1, . . . , mi) working systems in group i with
exactly j working components at time t. Here, for system k (k = 1, . . . , n), the component
lifetimes X̃(k)

1 , . . . , X̃(k)
m of its equivalent system (of size m) at time t also have a common

continuous distribution function F and are ordered (in ascending order) as X̃(k)
1:m, . . . , X̃(k)

m:m,
and similarly the (equivalent) system lifetimes T1, . . . , Tn are ordered as T1:n, . . . , Tn:n.

Then, along the lines of Section 2, some properties of dynamic ordered system signature
can be presented as follows.

Proposition 3.1. The dynamic ordered system signature s(i | k) =
(

s(i | k)
1 , . . . , s(i | k)

m

)
is

distribution-free, i.e. free of the underlying component lifetime distribution F.
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Proof. Given event Ek(t), there are ñ =∑N
i=1

∑mi
j=1 ki,j =∑N

i=1
∑m̃i

j=1 ki,j working systems
in the life test at time t. For the ki,j (i = 1, . . . , N, j = 1, . . . , m̃i) working systems in group
i with exactly j working components and mi − j failed components, according to [24], their

dynamic signature can be given from the system signature s(i) =
(

s(i)
1 , . . . , s(i)

mi

)
as

s(i,j) = 1∑mi
w=mi−j+1 s(i)

w

·
(

s(i)
mi−j+1, . . . , s(i)

mi

)
,

with the corresponding component lifetime distribution F̃ being the left-truncated form of
F given by F̃(x | t) = [F(x) − F(t)]/[1 − F(t)], x > t. According to [2], the signature of their

equivalent system (of size m) at time t is given by s̃(i,j) =
(

s̃(i,j)
1 , . . . , s̃(i,j)

m

)
, where, for

r = 1, . . . , m,

s̃(i,j)
r =

min{j,r}∑
l=max{1,j+r−m}

[
s(i)

mi−j+l∑mi
w=mi−j+1 s(i)

w

·
(

m
j

)−1(
r − 1
l − 1

)(
m − r
j − l

)]
.

Then, the distribution-free property of s(i | k) =
(

s(i | k)
1 , . . . , s(i | k)

m

)
follows directly as s(i | k)

j

(j = 1, . . . , m) can be expressed as

s(i | k)
j =

∑
l∈Lk

p(i | k)
j | l ·

N∏
u=1

m̃u∏
v=1

{(
ku,v

lu,v,1, . . . , lu,v,m

)
m∏

r=1

[
s̃(u,v)

r

]lu,v,r

}
,

with p(i | k)
j | l , l ∈Lk, as defined in Proposition 2.1,

Lk = {l = (lu,v,r, 1 ≤ u ≤ N, 1 ≤ v ≤ m̃u, 1 ≤ r ≤ m) : lu,v,1 + · · · + lu,v,m = ku,v for all u, v},
and p(i | k)

j | l is the conditional probability that the failure of the (i + k0)th system corresponds to
the failure of a system whose equivalent system (of size m) at time t is due to the jth ordered
component failure, given a fixed value of l, i.e. given that lj =∑N

u=1
∑m̃u

v=1 lu,v,j (j = 1, . . . , m)

systems failed due to the jth ordered component failure. Note that p(i | k)
j | l depends on l only

through l1, . . . , lm and is independent of k, which implies that it can also be denoted as
p(i:n)

j | l1,...,lm
. Clearly, similar to Proposition 2.1, p(i | k)

j | l is independent of the component lifetime
distribution F. Hence, the proposition. �

As in Corollary 2.2, the elements in the dynamic ordered system signatures s(1 | k),

. . . , s(ñ | k) are zero if and only if the corresponding elements in the system signatures
s(1), . . . , s(N) are zero.

Proposition 3.2. For any signature vectors s(1), . . . , s(N), for all ñ = 1, . . . , n and j =
1, . . . , m, clearly s(1 | k)

j = · · · = s(ñ | k)
j = 0 if and only if ku,vs̃(u,v)

j = 0 for all u = 1, . . . , N and

v = 1, . . . , m, i.e. max
{

ku,mu+1−l, . . . , ku,min{m̃u,mu+j−l}
}

· s(u)
l = 0 for all u = 1, . . . , N and

l = max{1, mu + j − m}, . . . , mu.

Proof. As for Proposition 2.2, we can prove that s(1 | k)
j = · · · = s(ñ | k)

j = 0 if and only

if s̃(u,v)
j = 0 for all u = 1, . . . , N and v = 1, . . . , m̃u such that ku,v ≥ 1, i.e. ku,vs̃(u,v)

j = 0.

Then, from the expression of s̃(u,v)
j , it is clear that ku,vs̃(u,v)

j = 0 is equivalent to
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ku,vs(u)
max{mu−v+1,mu+j−m} = · · · = ku,vs(u)

min{mu,mu−v+j} = 0. Then, for fixed u, ku,vs̃(u,v)
j = 0 for

all v = 1, . . . , m̃u should be equivalent to ku,vs(u)
l = 0 for all v, l such that max{mu − v +

1, mu + j − m} ≤ l ≤ min{mu, mu − v + j}, i.e. max
{
ku,mu+1−l, . . . , ku,min{m̃u,mu+j−l}

} · s(u)
l =

0 (l = max{1, mu + j − m}, . . . , mu). �

Similarly, as in Proposition 2.3, the dynamic ordered system signatures s(1 | k), . . ., s(ñ | k)

are also stochastically ordered, and any two of them are the same only when the corresponding
elements in the system signatures s(1), . . . , s(N) are zero.

Proposition 3.3. For any 1 ≤ i1 < i2 ≤ ñ, the ordered system signatures satisfy s(i1 | k) ≤st
s(i2 | k). In addition, if s(i1 | k) ≥st s(i2 | k) for any 1 ≤ i1 < i2 ≤ ñ, then s̃(u,v) is the signature
for a κ-out-of-m system, for all u = 1, . . . , N and v = 1, . . . , m̃u such that ku,v ≥ 1, i.e.

max{ku,mu+1−l, . . . , ku,min{m̃u,mu+j−l}} · s(u)
l = 0 for all (j = 1, . . . , κ − 1, κ + 1, . . . , m, l =

max{1, mu + j − m}, . . . , mu).

Proof. As in Proposition 2.3, for any 1 ≤ i1 < i2 ≤ ñ, we can prove that s(i1 | k) ≤st s(i2 | k)

and s̃(u,v) is the signature of a κ-out-of-m system for all u = 1, . . . , N and v = 1, . . . , m̃u such
that ku,v ≥ 1, if s(i1 | k) ≥st s(i2 | k). Then, from the expression of s̃(u,v)

j , it is clear that, for any

fixed u, ku,vs̃(u,v)
j = 0 (v = 1, . . . , m̃u, j = 1, . . . , κ − 1, κ + 1, . . . , m), which is equivalent to

ku,vs(u)
l = 0, for all v, l such that max{mu − v + 1, mu + j − m} ≤ l ≤ min{mu, mu − v + j}, with

any j = 1, . . . , κ − 1, κ + 1, . . . , m, i.e. max
{
ku,mu+1−l, . . . , ku,min{m̃u,mu+j−l}

} · s(u)
l = 0 (j =

1, . . . , κ − 1, κ + 1, . . . , m, l = max{1, mu + j − m}, . . . , mu). Hence, the proposition. �

4. Some illustrative examples

In this section, for a clear understanding of the theoretical results established in the pre-
ceding sections, we discuss the computation of the dynamic ordered system signatures for
two independent coherent systems (System 1 and System 2) with three components, when
they are both series-parallel systems with a common signature s = ( 1

3 , 2
3 , 0

)
, parallel-series

systems with a common signature s = (
0, 2

3 , 1
3

)
, and parallel systems with a common signa-

ture s = (0, 0, 1); and when they are a series-parallel system and a parallel-series system, a
series-parallel system and a parallel system, and a parallel-series system and a parallel system.
Assume that both systems are working at time t. Then, for example, we shall consider the
number of failed components in each system to be as follows:

Case 1: There is no failed component in any of the two systems at time t, i.e. k11 = 0, k12 = 0,
k13 = 1 and k21 = 0, k22 = 0, k23 = 1, for which case the pertinent calculations are
presented in Example 4.1.

Case 2: There is no failed component in System 1 but one failed component in System 2, i.e.
k11 = 0, k12 = 0, k13 = 1 and k21 = 0, k22 = 1, k23 = 0, for which case the pertinent
calculations are presented in Example 4.2.

Case 3: There is no failed component in System 1 but two failed components in System 2, i.e.
k11 = 0, k12 = 0, k13 = 1 and k21 = 1, k22 = 0, k23 = 0, for which case the pertinent
calculations are presented in Example 4.3.

Case 4: There is one failed component in each of the two systems, i.e. k11 = 0, k12 = 1, k13 = 0
and k21 = 0, k22 = 1, k23 = 0, for which case the pertinent calculations are presented
in Example 4.4.
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Case 5: There is one failed component in System 1 but two failed components in System 2, i.e.
k11 = 0, k12 = 1, k13 = 0 and k21 = 1, k22 = 0, k23 = 0, for which case the pertinent
calculations are presented in Example 4.5.

Before presenting these five examples, we need to provide some basic discussions first. For
System i with signature s(i) = (

s(i)
1 , s(i)

2 , s(i)
3

)
(i = 1, 2), according to [24], its dynamic signature

with two failed components and one failed component are given by s(i,1) = 1 if s(i)
3 �= 0 and

s(i,2) =
(

s(i)
2

s(i)
2 + s(i)

3

,
s(i)

3

s(i)
2 + s(i)

3

)

if s(i)
1 �= 1, respectively. Also, from [21], system signatures of their equivalent systems with

three components are given by s̃(i,1) = ( 1
3 , 1

3 , 1
3

)
and

s̃(i,2) =
⎛
⎝ 2s(i)

2

3
[
s(i)

2 + s(i)
3

] ,
1

3
,

2s(i)
3

3
[
s(i)

2 + s(i)
3

]
⎞
⎠ ,

respectively. Moreover, as presented in [5], Systems 1 and 2 have their ordered system
signatures as s(1:2) = (

s(1:2)
1 , s(1:2)

2 , s(1:2)
3

)
and s(2:2) = (

s(2:2)
1 , s(2:2)

2 , s(2:2)
3

)
, where

s(1:2)
1 = s(1)

1 s(2)
1 + 4

5

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
+ 19

20

[
s(1)

1 s(2)
3 + s(1)

3 s(2)
1

]
,

s(1:2)
2 = 1

5

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
+ s(1)

2 s(2)
2 + 4

5

[
s(1)

2 s(2)
3 + s(1)

3 s(2)
2

]
,

s(1:2)
3 = 1

20

[
s(1)

1 s(2)
3 + s(1)

3 s(2)
1

]
+ 1

5

[
s(1)

2 s(2)
3 + s(1)

3 s(2)
2

]
+ s(1)

3 s(2)
3 ,

s(2:2)
1 = s(1)

1 s(2)
1 + 1

5

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
+ 1

20

[
s(1)

1 s(2)
3 + s(1)

3 s(2)
1

]
,

s(2:2)
2 = 4

5

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
+ s(1)

2 s(2)
2 + 1

5

[
s(1)

2 s(2)
3 + s(1)

3 s(2)
2

]
,

s(2:2)
3 = 19

20

[
s(1)

1 s(2)
3 + s(1)

3 s(2)
1

]
+ 4

5

[
s(1)

2 s(2)
3 + s(1)

3 s(2)
2

]
+ s(1)

3 s(2)
3 .

For the computation of dynamic ordered system signatures, the probability that an order
statistic Xi:m is less than another order statistic X̃j:m when they arise from two indepen-
dent groups of m i.i.d. component lifetimes with the same distribution F can be given, for
i = 1, . . . , m and j = 1, . . . , m, with m = 2, 3, as follows:

P{Xi:m < X̃j:m} =
∞∫

0

j

(
m
j

)
Fj−1(x)F̄m−j(x)P{Xi:m < x} dF(x)

=
∞∫

0

j

(
m
j

)
Fj−1(x)F̄m−j(x)

m∑
k=i

(
m
k

)
Fk(x)F̄m−k(x) dF(x)

=
m∑

k=i

j

(
m
j

)(
m
k

) 1∫
0

uk+j−1(1 − u)2m−k−j du

=
m∑

k=i

j

k + j

(
m
j

)(
m
k

)(
2m

k + j

)−1

,
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TABLE 1. Probabilities P{Xi:m < X̃j:m} for i = 1, . . . , m, j = 1, . . . , m, m = 2, 3.

j

m i 1 2 3

2 1 1
2

5
6 NA

2 1
6

1
2 NA

3 1 1
2

4
5

19
20

2 1
5

1
2

4
5

3 1
20

1
5

1
2

TABLE 2. Values of p(i:2)
j | l1,l2,l3

for different i, j and l1, l2, l3.

(l1, l2, l3)

i j (2, 0, 0) (0, 2, 0) (0, 0, 2) (1, 1, 0) (1, 0, 1) (0, 1, 1)

1 1 1 0 0 4
5

19
20 0

2 0 1 0 1
5 0 4

5

3 0 0 1 0 1
20

1
5

2 1 1 0 0 1
5

1
20 0

2 0 1 0 4
5 0 1

5

3 0 0 1 0 19
20

4
5

which is clearly free of F, i.e. the probability remains the same if F is replaced by F̃. (See
[2, Lemma 1] for an alternate proof.) Table 1 presents values of these probabilities (with NA
meaning ‘not applicable’).

Then, according to the discussions in Proposition 3.1, for m = 3 (Cases 1–3), we have

p(1:2)
1 | (2,0,0) = p(2:2)

1 | (2,0,0) = p(1:2)
2 | (0,2,0) = p(2:2)

2 | (0,2,0) = p(1:2)
3 | (0,0,2) = p(2:2)

3 | (0,0,2) = 1,

p(1:2)
1 | (1,1,0) = p(2:2)

2 | (1,1,0) = P{X1:3 < X̃2:3} = 4
5 ,

p(2:2)
1 | (1,1,0) = p(1:2)

2 | (1,1,0) = P{X1:3 > X̃2:3} = 1
5 ,

p(1:2)
1 | (1,0,1) = p(2:2)

3 | (1,0,1) = P{X1:3 < X̃3:3} = 19
20 ,

p(2:2)
1 | (1,0,1) = p(1:2)

3 | (1,0,1) = P{X1:3 > X̃3:3} = 1
20 ,

p(1:2)
2 | (0,1,1) = p(2:2)

3 | (0,1,1) = P{X2:3 < X̃3:3} = 4
5 ,

p(2:2)
2 | (0,1,1) = p(1:2)

3 | (0,1,1) = P{X2:3 > X̃3:3} = 1
5 ,
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TABLE 3. Values of p(i:2)
j | l1,l2

for different i, j and l1, l2.

(l1, l2)

i j (2, 0) (0, 2) (1, 1)

1 1 1 0 5
6

2 0 1 1
6

2 1 1 0 1
6

2 0 1 5
6

and p(i:2)
j | l1,l2,l3

= 0 for other i, j, l1, l2, l3. With these, we find the values of p(i:2)
j | l1,l2,l3

as presented
in Table 2.

Similarly, for m = 2 (Cases 4 and 5), we have

p(1:2)
1 | (2,0) = p(2:2)

1 | (2,0) = p(1:2)
2 | (0,2) = p(2:2)

2 | (0,2) = 1,

p(1:2)
1 | (1,1) = p(2:2)

2 | (1,1) = P{X1:2 < X̃2:2} = 5
6 ,

p(2:2)
1 | (1,1) = p(1:2)

2 | (1,1) = P{X1:2 > X̃2:2} = 1
6 ,

and p(i:2)
j | l1,l2

= 0 for other i, j, l1, l2. With these, we find the values of p(i:2)
j | l1,l2

as presented in
Table 3.

We now proceed to the computation of dynamic order system signatures for the five cases
listed at the start of this section.

Example 4.1. To present the dynamic ordered system signatures of the two coherent systems
at time t in Case 1, values of p(i | 0,0,1;0,0,1)

j | l (i = 1, 2, j = 1, 2, 3, l ∈L0,0,1;0,0,1) need to be
presented first by

p(i | 0,0,1; 0,0,1)
j | l = p(i:2)

j | l1,l2,l3
= p(i:2)

j | l1,3,1+l2,3,1,l1,3,2+l2,3,2,l1,3,3+l2,3,3
,

with the values of p(i:2)
j | l1,l2,l3

in Table 2 and

L0,0,1; 0,0,1 = {l = (l1,3,1, l1,3,2, l1,3,3; l2,3,1, l2,3,2, l2,3,3) :

l1,3,1 + l1,3,2 + l1,3,3 = 1, l2,3,1 + l2,3,2 + l2,3,3 = 1}
= {(1, 0, 0; 1, 0, 0), (1, 0, 0; 0, 1, 0), (1, 0, 0; 0, 0, 1), (0, 1, 0; 1, 0, 0),

(0, 1, 0; 0, 1, 0), (0, 1, 0; 0, 0, 1), (0, 0, 1; 1, 0, 0), (0, 0, 1; 0, 1, 0), (0, 0, 1; 0, 0, 1)}.

Then, for k = (0, 0, 1; 0, 0, 1), the dynamic ordered system signatures s(1 | k) =
(

s(1 | k)
1 ,

s(1 | k)
2 , s(1 | k)

3

)
and s(2 | k) =

(
s(2 | k)

1 , s(2 | k)
2 , s(2 | k)

3

)
are given by

s(1 | k)
1 = p(1:2)

1 | (2,0,0)s
(1)
1 s(2)

1 + p(1:2)
1 | (1,1,0)

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
+ p(1:2)

1 | (1,0,1)

[
s(1)

1 s(2)
3 + s(1)

3 s(2)
1

]
,

s(2 | k)
1 = p(2:2)

1 | (2,0,0)s
(1)
1 s(2)

1 + p(2:2)
1 | (1,1,0)

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
+ p(2:2)

1 | (1,0,1)

[
s(1)

1 s(2)
3 + s(1)

3 s(2)
1

]
,

s(1 | k)
2 = p(1:2)

2 | (0,2,0)s
(1)
2 s(2)

2 + p(1:2)
2 | (1,1,0)

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
+ p(1:2)

2 | (0,1,1)

[
s(1)

2 s(2)
3 + s(1)

3 s(2)
2

]
,
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s(2 | k)
2 = p(2:2)

2 | (0,2,0)s
(1)
2 s(2)

2 + p(2:2)
2 | (1,1,0)

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
+ p(2:2)

2 | (0,1,1)

[
s(1)

2 s(2)
3 + s(1)

3 s(2)
2

]
,

s(1 | k)
3 = p(1:2)

3 | (0,0,2)s
(1)
3 s(2)

3 + p(1:2)
3 | (1,0,1)

[
s(1)

1 s(2)
3 + s(1)

3 s(2)
1

]
+ p(1:2)

3 | (0,1,1)

[
s(1)

2 s(2)
3 + s(1)

3 s(2)
2

]
,

s(2 | k)
3 = p(2:2)

3 | (0,0,2)s
(1)
3 s(2)

3 + p(2:2)
3 | (1,0,1)

[
s(1)

1 s(2)
3 + s(1)

3 s(2)
1

]
+ p(2:2)

3 | (0,1,1)

[
s(1)

2 s(2)
3 + s(1)

3 s(2)
2

]
,

that is,

s(1 | 0,0,1;0,0,1) =
(

s(1 | 0,0,1;0,0,1)
1 , s(1 | 0,0,1;0,0,1)

2 , s(1 | 0,0,1;0,0,1)
3

)
= 1

20

(
20s(1)

1 s(2)
1 + 16s(1)

1 s(2)
2 + 16s(1)

2 s(2)
1 + 19s(1)

1 s(2)
3 + 19s(1)

3 s(2)
1 ,

20s(1)
2 s(2)

2 + 4s(1)
1 s(2)

2 + 4s(1)
2 s(2)

1 + 16s(1)
2 s(2)

3 + 16s(1)
3 s(2)

2 ,

20s(1)
3 s(2)

3 + s(1)
1 s(2)

3 + s(1)
3 s(2)

1 + 4s(1)
2 s(2)

3 + 4s(1)
3 s(2)

2

)
,

s(2 | 0,0,1;0,0,1) =
(

s(2 | 0,0,1;0,0,1)
1 , s(2 | 0,0,1;0,0,1)

2 , s(2 | 0,0,1;0,0,1)
3

)
= 1

20

(
20s(1)

1 s(2)
1 + 4s(1)

1 s(2)
2 + 4s(1)

2 s(2)
1 + s(1)

1 s(2)
3 + s(1)

3 s(2)
1 ,

20s(1)
2 s(2)

2 + 16s(1)
1 s(2)

2 + 16s(1)
2 s(2)

1 + 4s(1)
2 s(2)

3 + 4s(1)
3 s(2)

2 ,

20s(1)
3 s(2)

3 + 19s(1)
1 s(2)

3 + 19s(1)
3 s(2)

1 + 16s(1)
2 s(2)

3 + 16s(1)
3 s(2)

2

)
.

From these expressions, we have, for different s(1) and s(2), the dynamic ordered system sig-
natures in Case 1, as presented in Table 4. From the results in Table 4, theoretical results like
Propositions 3.2 and 3.3 can be readily verified.

Example 4.2. To present the dynamic ordered system signatures of the two coherent systems
at time t in Case 2, values of p(i | 0,0,1;0,1,0)

j | l (i = 1, 2, j = 1, 2, 3, l ∈L0,0,1;0,1,0) need to be
presented first by

p(i | 0,0,1;0,1,0)
j | l = p(i:2)

j | l1,l2,l3
= p(i:2)

j | l1,3,1+l2,2,1,l1,3,2+l2,2,2,l1,3,3+l2,2,3
,

with the values of p(i:2)
j | l1,l2,l3

in Table 2 and

L0,0,1; 0,1,0 = {l = (l1,3,1, l1,3,2, l1,3,3; l2,2,1, l2,2,2, l2,2,3) :

l1,3,1 + l1,3,2 + l1,3,3 = 1, l2,2,1 + l2,2,2 + l2,2,3 = 1}
= {(1, 0, 0; 1, 0, 0), (1, 0, 0; 0, 1, 0), (1, 0, 0; 0, 0, 1), (0, 1, 0; 1, 0, 0),

(0, 1, 0; 0, 1, 0), (0, 1, 0; 0, 0, 1), (0, 0, 1; 1, 0, 0), (0, 0, 1; 0, 1, 0), (0, 0, 1; 0, 0, 1)}.

Then, the dynamic system ordered system signatures s(1 | 0,0,1;0,1,0), s(2 | 0,0,1;0,1,0) can be given

by replacing the signature s(2) =
(

s(2)
1 , s(2)

2 , s(2)
3

)
of System 2 in Example 4.1 by

s̃(2,2) =
(

2s(2)
2

3
[
s(2)

2 + s(2)
3

] , 1

3
,

2s(2)
3

3
[
s(2)

2 + s(2)
3

]
)

,
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TABLE 4. Dynamic ordered system signatures s(1 | k), s(2 | k) in Cases 1–5 for different s(1), s(2).

k

(0, 0, 1; (0, 0, 1; (0, 0, 1; (0, 1, 0; (0, 1, 0;
s(1), s(2) 0, 0, 1) 0, 1, 0) 1, 0, 0) 0, 1, 0) 1, 0, 0)(

1
3 , 2

3 , 0
) (

7
15 , 8

15 , 0
) (

2
3 , 1

3 , 0
)

NA (1, 0) NA(
1
3 , 2

3 , 0
) (

1
5 , 4

5 , 0
) (

1
3 , 2

3 , 0
)

NA (1, 0) NA

(
0, 2

3 , 1
3

) (
0, 4

5 , 1
5

) (
17
45 , 22

45 , 2
15

) (
17
60 , 8

15 , 11
60

) (
22
27 , 5

27

) (
3
4 , 1

4

)
(

0, 2
3 , 1

3

) (
0, 8

15 , 7
15

) (
1

15 , 23
45 , 19

45

) (
1
20 , 7

15 , 29
60

) (
14
27 , 13

27

) (
5
12 , 7

12

)

(0, 0, 1) (0, 0, 1)
(

0, 4
15 , 11

15

) (
19
60 , 4

15 , 5
12

)
(0, 1)

(
5
12 , 7

12

)
(0, 0, 1) (0, 0, 1)

(
0, 1

15 , 14
15

) (
1
60 , 1

15 , 11
12

)
(0, 1)

(
1
12 , 11

12

)
(

1
3 , 2

3 , 0
) (

17
60 , 2

3 , 1
20

) (
49
90 , 19

45 , 1
30

) (
29
60 , 7

15 , 1
20

) (
17
18 , 1

18

) (
11
12 , 1

12

)
(

0, 2
3 , 1

3

) (
1

20 , 2
3 , 17

60

) (
7

30 , 26
45 , 17

90

) (
11
60 , 8

15 , 17
60

) (
13
18 , 5

18

) (
7
12 , 5

12

)
(

1
3 , 2

3 , 0
) (

19
60 , 8

15 , 3
20

) (
3
10 , 3

5 , 1
10

) (
29
60 , 7

15 , 1
20

) (
5
6 , 1

6

) (
11
12 , 1

12

)
(0, 0, 1)

(
1
60 , 2

15 , 17
20

) (
1
30 , 2

5 , 17
30

) (
11
60 , 8

15 , 17
60

) (
1
6 , 5

6

) (
7
12 , 5

12

)
(

0, 2
3 , 1

3

) (
0, 8

15 , 7
15

) (
0, 2

3 , 1
3

) (
17
60 , 8

15 , 11
60

) (
5
9 , 4

9

) (
3
4 , 1

4

)
(0, 0, 1)

(
0, 2

15 , 13
15

) (
0, 1

3 , 2
3

) (
1
20 , 7

15 , 29
60

) (
1
9 , 8

9

) (
5
12 , 7

12

)

namely,

s(1 | 0,0,1;0,1,0) =
(

s(1 | 0,0,1;0,1,0)
1 , s(1 | 0,0,1;0,1,0)

2 , s(1 | 0,0,1;0,1,0)
3

)
= 1

30
[
s(2)

2 + s(2)
3

] ·
(

28s(1)
1 s(2)

2 + 27s(1)
1 s(2)

3 + 16s(1)
2 s(2)

2 + 19s(1)
3 s(2)

2 ,

14s(1)
2 s(2)

2 + 26s(1)
2 s(2)

3 + 2s(1)
1 s(2)

2 + 2s(1)
1 s(2)

3 + 8s(1)
3 s(2)

2 + 8s(1)
3 s(2)

3 ,

22s(1)
3 s(2)

3 + s(1)
1 s(2)

3 + 3s(1)
3 s(2)

2 + 4s(1)
2 s(2)

3

)
,

s(2 | 0,0,1;0,1,0) =
(

s(2 | 0,0,1;0,1,0)
1 , s(2 | 0,0,1;0,1,0)

2 , s(2 | 0,0,1;0,1,0)
3

)
= 1

30
[
s(2)

2 + s(2)
3

] ·
(

22s(1)
1 s(2)

2 + 3s(1)
1 s(2)

3 + 4s(1)
2 s(2)

2 + s(1)
3 s(2)

2 ,

26s(1)
2 s(2)

2 + 14s(1)
2 s(2)

3 + 8s(1)
1 s(2)

2 + 8s(1)
1 s(2)

3 + 2s(1)
3 s(2)

2 + 2s(1)
3 s(2)

3 ,

28s(1)
3 s(2)

3 + 19s(1)
1 s(2)

3 + 27s(1)
3 s(2)

2 + 16s(1)
2 s(2)

3

)
.
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From these expressions, we have, for different s(1) and s(2), the dynamic ordered system
signatures in Case 2 as presented in Table 4.

Example 4.3. To present the dynamic ordered system signatures of the two coherent systems
at time t in Case 3, values of p(i | 0,0,1;1,0,0)

j | l (i = 1, 2, j = 1, 2, 3, l ∈L0,0,1;1,0,0) need to be
presented first by

p(i | 0,0,1; 1,0,0)
j | l = p(i:2)

j | l1,l2,l3
= p(i:2)

j | l1,3,1+l2,1,1,l1,3,2+l2,1,2,l1,3,3+l2,1,3
,

with the values of p(i:2)
j | l1,l2,l3

in Table 2 and

L0,0,1; 1,0,0 = {l = (l1,3,1, l1,3,2, l1,3,3; l2,1,1, l2,1,2, l2,1,3) :

l1,3,1 + l1,3,2 + l1,3,3 = 1, l2,1,1 + l2,1,2 + l2,1,3 = 1}
= {(1, 0, 0; 1, 0, 0), (1, 0, 0; 0, 1, 0), (1, 0, 0; 0, 0, 1), (0, 1, 0; 1, 0, 0),

(0, 1, 0; 0, 1, 0), (0, 1, 0; 0, 0, 1), (0, 0, 1; 1, 0, 0), (0, 0, 1; 0, 1, 0), (0, 0, 1; 0, 0, 1)}.
Then, the dynamic ordered system signatures s(1 | 0,0,1;1,0,0), s(2 | 0,0,1;1,0,0) can be given by
replacing the signature s(2) = (

s(2)
1 , s(2)

2 , s(2)
3

)
of System 2 in Example 4.1 by s̃(2,1) = ( 1

3 , 1
3 , 1

3

)
:

s(1 | 0,0,1;1,0,0) =
(

s(1 | 0,0,1;1,0,0)
1 , s(1 | 0,0,1;1,0,0)

2 , s(1 | 0,0,1;1,0,0)
3

)
= 1

60
·
(

55s(1)
1 + 16s(1)

2 + 19s(1)
3 , 4s(1)

1 + 40s(1)
2 + 16s(1)

3 ,s(1)
1 + 4s(1)

2 + 25s(1)
3

)
,

s(2 | 0,0,1;1,0,0) =
(

s(2 | 0,0,1;1,0,0)
1 , s(2 | 0,0,1;1,0,0)

2 , s(2 | 0,0,1;1,0,0)
3

)
= 1

60
·
(

25s(1)
1 + 4s(1)

2 + s(1)
3 , 16s(1)

1 + 40s(1)
2 + 4s(1)

3 ,19s(1)
1 + 16s(1)

2 + 55s(1)
3

)
.

From these expressions, we have, for different s(1) and s(2), the dynamic ordered system
signatures in Case 3 as presented in Table 4.

Example 4.4. To present the dynamic ordered system signatures of the two coherent systems at
time t in Case 4, values of p(i | 0,1,0;0,1,0)

j | l (i = 1, 2, j = 1, 2, l ∈L0,1,0;0,1,0) need to be presented
first by

p(i | 0,1,0; 0,1,0)
j | l = p(i:2)

j | l1,l2
= p(i:2)

j | l1,2,1+l2,2,1,l1,2,2+l2,2,2
,

with the values of p(i:2)
j | l1,l2

in Table 3 and

L0,1,0; 0,1,0 = {l = (l1,2,1, l1,2,2; l2,2,1, l2,2,2) : l1,2,1 + l1,2,2 = 1, l2,2,1 + l2,2,2 = 1}
= {(1, 0; 1, 0), (1, 0; 0, 1), (0, 1; 1, 0), (0, 1; 0, 1)}.

Then, the dynamic ordered system signatures s(1 | 0,1,0;0,1,0) and s(2 | 0,1,0;0,1,0) are given by
replacing s(1) = (

s(1)
1 , s(1)

2

)
and s(2) = (

s(2)
1 , s(2)

2

)
in

s(1 | 0,1,0; 0,1,0)
1 = p(1:2)

1 | (2,0) · s(1)
1 s(2)

1 + p(1:2)
1 | (1,1) ·

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
,

s(2 | 0,1,0; 0,1,0)
1 = p(2:2)

1 | (2,0) · s(1)
1 s(2)

1 + p(2:2)
1 | (1,1) ·

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
,

s(1 | 0,1,0; 0,1,0)
2 = p(1:2)

2 | (0,2) · s(1)
2 s(2)

2 + p(1:2)
2 | (1,1) ·

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
,

s(2 | 0,1,0; 0,1,0)
2 = p(2:2)

2 | (0,2) · s(1)
2 s(2)

2 + p(2:2)
2 | (1,1) ·

[
s(1)

1 s(2)
2 + s(1)

2 s(2)
1

]
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with

s(1) =
(

s(1)
2

s(1)
2 + s(1)

3

,
s(1)

3

s(1)
2 + s(1)

3

)
, s(2) =

(
s(2)

2

s(2)
2 + s(2)

3

,
s(2)

3

s(2)
2 + s(2)

3

)
,

that is,

s(1 | 0,1,0; 0,1,0) = (
s(1 | 0,1,0; 0,1,0)

1 , s(1 | 0,1,0; 0,1,0)
2

)
= 1

6
[
s(1)

2 + s(1)
3

][
s(2)

2 + s(2)
3

] ·
(

6s(1)
2 s(2)

2 + 5s(1)
2 s(2)

3 + 5s(1)
3 s(2)

2 ,

6s(1)
3 s(2)

3 + s(1)
2 s(2)

3 + s(1)
3 s(2)

2

)
,

s(2 | 0,1,0; 0,1,0) = (s(2 | 0,1,0; 0,1,0)
1 , s(2 | 0,1,0; 0,1,0)

2 )

= 1

6
[
s(1)

2 + s(1)
3

][
s(2)

2 + s(2)
3

] ·
(

6s(1)
2 s(2)

2 + s(1)
2 s(2)

3 + s(1)
3 s(2)

2 ,

6s(1)
3 s(2)

3 + 5s(1)
2 s(2)

3 + 5s(1)
3 s(2)

2

)
.

Then, their equivalent systems with three components have the following signatures:

s̃(1 | 0,2,0) =
(

6s(1)
2 s(2)

2 + 5s(1)
2 s(2)

3 + 5s(1)
3 s(2)

2

9
[
s(1)

2 + s(1)
3

][
s(2)

2 + s(2)
3

] ,
1

3
,

6s(1)
3 s(2)

3 + s(1)
2 s(2)

3 + s(1)
3 s(2)

2

9
[
s(1)

2 + s(1)
3

][
s(2)

2 + s(2)
3

]
)

,

s̃(2 | 0,2,0) =
(

6s(1)
2 s(2)

2 + s(1)
2 s(2)

3 + s(1)
3 s(2)

2

9
[
s(1)

2 + s(1)
3

][
s(2)

2 + s(2)
3

] ,
1

3
,

6s(1)
3 s(2)

3 + 5s(1)
2 s(2)

3 + 5s(1)
3 s(2)

2

9
[
s(1)

2 + s(1)
3

][
s(2)

2 + s(2)
3

]
)

.

From these expressions, we have, for different s(1) and s(2), the dynamic ordered system
signatures in Case 4 as presented in Table 4.

Example 4.5. To present the dynamic ordered system signatures of the two coherent systems at
time t in Case 5, values of p(i | 0,1,0;1,0,0)

j | l (i = 1, 2, j = 1, 2, l ∈L0,1,0;1,0,0) need to be presented
first, where

L0,1,0; 1,0,0 = {l = (l1,2,1, l1,2,2; l2,1,1, l2,1,2) : l1,2,1 + l1,2,2 = 1, l2,1,1 + l2,1,2 = 1}
= {(1, 0; 1, 0), (1, 0; 0, 1), (0, 1; 1, 0), (0, 1; 0, 1)}.

Then, the dynamic ordered system signatures s(1 | 0,1,0;1,0,0) and s(2 | 0,1,0;1,0,0) are given by
replacing s(1) = (

s(1)
1 , s(1)

2

)
and s(2) = (

s(2)
1 , s(2)

2

)
in Example 4.4 with s(1) = ( 1

2 , 1
2

)
and s(2) =( 1

2 , 1
2

)
, respectively, that is,

s(1 | 0,1,0; 1,0,0) = 1

12
[
s(1)

2 + s(1)
3

] ·
(

11s(1)
2 + 5s(1)

3 , s(1)
2 + 7s(1)

3

)
,

s(2 | 0,1,0; 1,0,0) = 1

12
[
s(1)

2 + s(1)
3

] ·
(

7s(1)
2 + s(1)

3 , 5s(1)
2 + 11s(1)

3

)
.
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FIGURE 1. Conditional survival probabilities of the first (left) and second (right) failed coherent systems

in Cases 1–5 for s(1) = s(2) =
(

1
3 , 2

3 , 0
)

.

Then, their equivalent systems with three components have the following signatures:

s̃(1 | 1,1,0) =
⎛
⎝ 11s(1)

2 + 5s(1)
3

18
[
s(1)

2 + s(1)
3

] ,
1

3
,

s(1)
2 + 7s(1)

3

18
[
s(1)

2 + s(1)
3

]
⎞
⎠ ,

s̃(2 | 1,1,0) =
⎛
⎝ 7s(1)

2 + s(1)
3

18
[
s(1)

2 + s(1)
3

] ,
1

3
,

5s(1)
2 + 11s(1)

3

18
[
s(1)

2 + s(1)
3

]
⎞
⎠ .

From these expressions, we have, for different s(1) and s(2), the dynamic ordered system
signatures in Case 5 as presented in Table 4.

5. Applications to evaluation of aging properties of used systems

The computation of dynamic ordered system signatures discussed in the preceding sections
facilitates comparison of used systems at time t in different cases (see Table 4 for their dynamic
ordered system signatures). Suppose the component lifetimes in each system are all i.i.d. from
an exponential distribution F with F(x) = 1 − e−x, x ≥ 0, which leads to the corresponding
residual lifetime distribution as F̃(x | t) = 1 − e−(x−t), x > t. In this case, the respective con-
ditional survival probabilities in Cases 1–5 that the first/second failed system among the two
used systems fails after time x + t, given Ek(t), are plotted in Figs. 1–6 for different s(1) and s(2),
along with the survival probability that the first/second failed system among the two original
systems, with signatures s(1) and s(2) and component lifetime distribution F̃(x | t) = 1 − e−(x−t),
x > t, fails after time x + t. As seen in Figs. 1–6, for any s(1) and s(2) in Table 4, the best systems
are the original systems or the systems in Case 1.

6. Concluding remarks

In this paper, we first generalized the notion of ordered system signature from independent
and identical coherent systems to the case of independent and non-identical coherent systems,
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FIGURE 2. Conditional survival probabilities of the first (left) and second (right) failed coherent systems

in Cases 1–5 for s(1) = s(2) =
(

0, 2
3 , 1

3

)
.

FIGURE 3. Conditional survival probabilities of the first (left) and second (right) failed coherent systems
in Cases 1–5 for s(1) = s(2) = (0, 0, 1).

and then established some related properties for the purpose of simplifying its computation.
Based on such a general ordered system signature, a new concept, called dynamic ordered sys-
tem signature, was then proposed for several coherent systems under a life-testing experiment.
Then, several examples were presented to illustrate the established results. The usefulness of
these results in the evaluation of aging properties of used systems was also demonstrated.

It is important to mention here that the notions introduced and their properties would be
quite useful in developing parametric/non-parametric inferential methods for component life-
times in coherent systems along the lines of [3, 4, 26, 27]. As shown in [26], the ordered system
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FIGURE 4. Conditional survival probabilities of the first (left) and second (right) failed coherent systems

in Cases 1–5 for s(1) =
(

1
3 , 2

3 , 0
)

, s(2) =
(

0, 2
3 , 1

3

)
.

FIGURE 5. Conditional survival probabilities of the first (left) and second (right) failed coherent systems

in Cases 1–5 for s(1) =
(

1
3 , 2

3 , 0
)

, s(2) = (0, 0, 1).

signature leads to a more efficient method than the system signature for inferences on compo-
nent lifetimes based on system lifetime data in a life test of several i.i.d. coherent systems.
With the use of ordered system signature generalized in this paper, inferential methods can
be developed for a life test of several independent and non-identical coherent systems, which
would be a less restrictive life test in practice. Furthermore, the concept of dynamic ordered
system signature can be applied to study dynamic properties of used systems in a life test,
which would assist in studying maintenance policy, for example. We are currently working on
these problems and hope to report the findings in a future paper.
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FIGURE 6. Conditional survival probabilities of the first (left) and second (right) failed coherent systems

in Cases 1–5 for s(1) =
(

0, 2
3 , 1

3

)
, s(2) = (0, 0, 1).
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