SUBORDINATE AND PSEUDO-SUBORDINATE SEMI-ALGEBRAS. II

EDWARD J. BARBEAU

1. Introduction. This paper is a sequel to (1), to which the reader is referred for definitions and known results. As before, E is a compact Hausdorff space and $C^{+}(E)$ is the semi-algebra of all continuous non-negative functions defined on E. Recall that, for a uniformly closed subsemi-algebra A of $C^{+}(E)$, the semi-algebra A_{u} is the uniform closure of the set $\left\{f_{1} \cup f_{2} \cup \ldots \cup f_{k}: f_{\imath} \in A\right.$, k a positive integer $\}$ where \cup denotes the pointwise supremum operation; the semi-algebra A is pseudo-subordinate if and only if $A_{u} \neq C^{+}(E)$. It was conjectured in (1) that every proper closed subsemi-algebra of $C^{+}(E)$ is pseudosubordinate. My aim in this note is to provide a counter-example for the conjecture. In addition, two other results are proved: one giving a peak point characterization of pseudo-subordinate semi-algebras, the second showing that for finitely generated closed semi-algebras the property of being pseudosubordinate is equivalent to the property of being subordinate (i.e., contained in a maximal closed subsemi-algebra of $\left.C^{+}(E)\right)$. The latter result is a small step towards discovering whether every proper finitely generated closed subsemi-algebra is subordinate; cf. ($\mathbf{1}$, Theorem 8).
2. A characterization of pseudo-subordinate semi-algebras. The proof of one of the implications in the following theorem is due essentially to Bishop and de Leeuw. Following (2, p. 49), we say that the semi-algebra $A \subseteq C^{+}(E)$ satisfies Condition II at the point $\xi \in E$ if and only if, given any G_{δ}-set S containing ξ, there exists a function $f \in A$ such that $f(\xi)=\|f\|$ (the uniform norm) and f attains its maximum value only within S.

Theorem 1. Let A be a uniformly closed subsemi-algebra of $C^{+}(E)$. Then $A_{u}=C^{+}(E)$ if and only if A satisfies Condition II at each point ξ of E.

Proof. If $A_{u} \neq C^{+}(E)$, then by (1, Theorem 5, Corollary), there exists a point ξ of E and a positive measure μ on E with no mass at ξ such that $f(\xi) \leqq \int f d \mu(\forall f \in A)$. Choose an open neighbourhood U of ξ such that $\mu(U)<\frac{1}{2}$. Then, for any function $g \in A$ with $1=g(\xi)=\|g\|, g^{n} \in A$ and

$$
1<\frac{1}{2}+\int_{\backslash U} g^{n} d \mu \quad(n=1,2, \ldots)
$$

whence one deduces that g must attain its maximum on $\backslash U$. Hence Condition II is sufficient for a semi-algebra to be non-pseudo-subordinate.

[^0]Suppose that $A_{u}=C^{+}(E)$. For $0<\epsilon<1, \xi \in E$, and U an open neighbourhood of ξ, choose $g \in C^{+}(E)$ such that $\|g\|=1, g(\xi)=1$, and $g(\backslash U)=\{0\}$. Since $g \in A_{u}$, there exist $f_{i} \in A$ with $\left\|g-f_{1} \cup f_{2} \cup \ldots \cup f_{k}\right\|<\epsilon(2-\epsilon)^{-1}$. One of these functions, f_{1} say, satisfies $f_{1}(\xi)>1-\epsilon(2-\epsilon)^{-1}$. This function must also satisfy $\left\|f_{1}\right\| \leqq 2(2-\epsilon)^{-1}$ and $f_{1}(\backslash U) \subseteq[0, \epsilon]$. Taking

$$
f=\frac{1}{2}(2-\epsilon) f_{1},
$$

we see that Condition I (2, p. 49) holds for A. Hence Condition II holds, since the proof given in ($\mathbf{2}, \mathrm{p} .51$), involves only operations permissible in a semi-algebra.

Corollary. If E is a metric space, then $A_{u}=C^{+}(E)$ if and only if every point of E is a peak point for A.
3. The counter-example. Let $X_{1} X_{2} X_{3} X_{4}$ be a square of area 1 in the Euclidean plane, and $a \equiv A_{1} A_{2}$ a segment of length $\alpha \in[0,1]$ contained in the side $X_{1} A_{1} A_{2} X_{2}$. The pinnacle of a is the unique point A_{0} on $X_{1} X_{2}$ such that $X_{1} A_{0}: A_{0} X_{2}:: A_{1} A_{0}: A_{0} A_{2}$; let $\lambda=l\left(X_{1} A_{0}\right)$, the length of the segment $X_{1} A_{0}$. Each segment a is characterized by the pair $(\lambda, \alpha) \in[0,1] \times[0,1]$. A trapezoid $\tau(a)$ is associated with the segment a as follows: choose A_{5} inside the square such that $A_{0} A_{5} \perp X_{1} X_{2}$ and $l\left(A_{0} A_{5}\right)=2 \alpha\left(\alpha+\alpha^{\frac{1}{2}}\right)^{-1}$; then choose A_{3}, A_{4} such that

$$
\begin{aligned}
& l\left(A_{3} A_{5}\right)=\lambda \alpha^{\frac{1}{2}}, \quad A_{3} A_{5} \| A_{1} A_{2} \\
& l\left(A_{5} A_{4}\right)=(1-\lambda) \alpha^{\frac{1}{2}}, \quad A_{4} A_{5} \| A_{1} A_{2} .
\end{aligned}
$$

$\tau(a)$ is the trapezoid $A_{1} A_{2} A_{4} A_{3}$. (Note that if $\alpha=0$, all the A_{i} are taken to be coincident.) Observe that: (1) the area of $\tau(a)$ is equal to the length of a; (2) $l\left(A_{0} A_{5}\right)$ is a strictly increasing function of α mapping [0,1$]$ onto [0,1$]$; (3) cotangent angle $A_{1} A_{3} A_{5}=\frac{1}{2} \lambda(1-a)$; (4) if a and b are two segments contained in $X_{1} X_{2}$, then $b \subseteq a \Rightarrow \tau(b) \subseteq \tau(a)$, and the intersection of the boundaries of $\tau(a)$ and $\tau(b)$ is $a \cap b$ unless a and b have an endpoint in common. The proof of (4) is as follows. Let $a \sim(\lambda, \alpha), b \sim(\rho, \beta), \tau(a)=A_{1} A_{2} A_{4} A_{3}$, $\tau(b)=B_{1} B_{2} B_{4} B_{3}, b \subseteq a$. The point C_{1} such that

$$
C_{1} B_{1} \perp X_{1} X_{2}, \quad l\left(B_{1} C_{1}\right)=2 \beta\left(\beta+\beta^{\frac{1}{2}}\right)^{-1}
$$

is collinear with $B_{3} B_{4}$ and lies inside $\tau(a)$. If $A_{1} A_{3}$ and $B_{4} B_{3}$ intersect in D_{1}, then D_{1} and B_{3} lie on the same side of $C_{1} B_{1}$ and

$$
\begin{aligned}
l\left(D_{1} C_{1}\right)-l\left(B_{3} C_{1}\right)= & l\left(A_{1} B_{1}\right) \\
& \quad+l\left(C_{1} B_{1}\right)\left(\text { cotangent angle } A_{1} A_{3} A_{4}\right)-l\left(B_{3} C_{1}\right) \\
& =l\left(A_{1} B_{1}\right)+\lambda(1-\alpha) \beta\left(\beta+\beta^{\frac{1}{2}}\right)^{-1}-\rho\left(\beta^{\frac{1}{2}}-\beta\right) \\
= & l\left(A_{1} B_{1}\right)+\beta\left(\beta+\beta^{\frac{1}{2}}\right)^{-1}[\lambda(1-\alpha)-\rho(1-\beta)] \\
= & l\left(A_{1} B_{1}\right)\left[1-\beta\left(\beta+\beta^{\frac{1}{2}}\right)^{-1}\right] \geqq 0 .
\end{aligned}
$$

Similarly, if $C_{2} B_{2} \perp X_{1} X_{2}, l\left(C_{2} B_{2}\right)=2 \beta\left(\beta+\beta^{\frac{1}{2}}\right)$, and $C_{2} B_{4}$ intersects $A_{2} A_{4}$ in D_{2}, then $l\left(C_{2} D_{2}\right)-l\left(C_{2} B_{4}\right) \geqq 0$. Hence, the segment $B_{3} B_{4}$ is contained in the segment $D_{1} D_{2}$. We are now in a position to state the following fact.
(5) For s segments $a_{1}, a_{2}, \ldots, a_{s}$ in $X_{1} X_{2}$ with non-void intersection,

$$
\begin{aligned}
\operatorname{Area}\left[\tau\left(a_{1}\right) \cap \tau\left(a_{2}\right) \cap \ldots \cap \tau\left(a_{s}\right)\right] & \geqq \operatorname{Area}\left[\tau\left(a_{1} \cap a_{2} \cap \ldots \cap a_{s}\right)\right] \\
& =l\left(a_{1} \cap a_{2} \cap \ldots \cap a_{s}\right)
\end{aligned}
$$

Theorem 2. There exists a compact Hausdorff space E such that $C^{+}(E)$ contains a proper closed non-pseudo-subordinate subsemi-algebra.

Construction. Let E be the square $X_{1} X_{2} X_{3} X_{4}$ of area $1, Y_{1}$ the set of functions in $C^{+}(E)$ which vanish on side $X_{1} X_{2}$, and Y_{2} the set of functions f in $C^{+}(E)$ such that for each $\gamma \in[0,\|f\|]$,

$$
\{\eta: f(\eta) \geqq \gamma\}=\tau(a)
$$

for some segment a contained in $X_{1} X_{2}$. Let Z be the closed semi-algebra generated by the set $Y_{1} \cup Y_{2}$; this is the required semi-algebra.

Proof that $Z_{u}=C^{+}(E)$. It will be shown that the set $Y_{1} \cup Y_{2} \subseteq Z$ contains a function which peaks exactly at any prescribed point of E, so that the corollary of Theorem 1 can be applied. If $\xi \in E \backslash$ side $X_{1} X_{2}$, then, clearly, Y_{1} contains a function whose maximum value is attained only at ξ. Now let $\xi \in$ side $X_{1} X_{2}$. If $\xi \neq X_{1}$ or X_{2}, then Y_{2} contains a function which, when restricted to $X_{1} X_{2}$, vanishes at X_{1}, increases linearly to the value 1 at ξ, and decreases linearly to the value 0 at X_{2}; if ξ is either X_{1} or X_{2}, then Y_{2} contains a function which is linear on $X_{1} X_{2}$, takes the value 1 at ξ, and vanishes at the other endpoint.

Proof that Z is proper. Let μ_{1} be the two-dimensional Lebesgue measure on the square E and μ_{2} the linear Lebesgue measure on the side $X_{1} X_{2}$; let $\mu \equiv \mu_{1}-$ μ_{2}. Then $\mu \notin M^{+}(E)$. It will be shown that if g is a finite product of elements in $Y_{1} \cup Y_{2}$, then $\int g d \mu \geqq 0$, so that μ belongs to the dual cone of the closed convex cone generated by such products, i.e., the semi-algebra Z. Suppose then that $g=f_{1} f_{2} \ldots f_{s}$. If any of the f_{i} belong to Y_{1}, then clearly $\int g d \mu \geqq 0$. Assume now that each of the f_{i} is a member of Y_{2}. For integers i, m, and n with $1 \leqq i \leqq s, 1 \leqq n, 1 \leqq m \leqq 2^{n}-1$, define segments $a_{i, m, n}$ such that

$$
\tau\left(a_{i, m, n}\right) \equiv\left\{\eta: f_{i}(\eta) \geqq m 2^{-n}| | f_{i}| |\right\}
$$

and let

$$
f_{i}^{(n)}=2^{-n} \sum_{m=1}^{2 n-1} k\left(a_{i, m, n}\right),
$$

where $k(a)$ denotes the characteristic function of the trapezoid $\tau(a)$. Since $\Pi k\left(a_{i}\right)$ is the characteristic function of $\cap_{\tau}\left(a_{i}\right)$ (a set whose intersection with the side $X_{1} X_{2}$ is $\cap a_{i}$), it is a consequence of the Beppo Levi theorem and the fact stated in (5) above that

$$
\begin{aligned}
\int f_{1} f_{2} \ldots f_{s} d \mu & =\lim _{n \rightarrow \infty} \int f_{1}^{(n)} f_{2}^{(n)} \ldots f_{s}^{(n)} d \mu \\
& =\lim _{n \rightarrow \infty} 2^{-s n} \sum_{\left(m_{i}\right)} \int \prod_{i=1}^{s} k\left(a_{i, m_{i}, n}\right) d \mu \geqq 0 .
\end{aligned}
$$

The proof of Theorem 2 is now complete. The reason for making the conjecture originally was to permit us to state that each finitely generated closed semi-algebra is subordinate if it is proper; this result may indeed still hold. It will be indicated in Theorem 3 that it suffices to prove this with the property 'subordinate' replaced by the weaker property 'pseudo-subordinate'.

Theorem 3. Let A be a closed subsemi-algebra of $C^{+}(E)$ generated by a finite set. Then A is subordinate if and only if A is pseudo-subordinate.

Proof. Let A be the closed semi-algebra generated by $f_{1}, f_{2}, \ldots, f_{n}$, and suppose that A is pseudo-subordinate. A_{1} is defined to be the least closed semi-algebra containing A and all positive powers of the function f_{1}; for $i=2,3, \ldots, n, A_{i}$ is defined to be the least closed semi-algebra containing A_{i-1} and all positive powers of the function f_{i}. The semi-algebra A_{n} is the closed semi-algebra generated by all positive real powers of the functions $f_{1}, f_{2}, \ldots, f_{n}$, so that A_{n} is generated by a power-closed set.

Since A is pseudo-subordinate, there exists a point ξ in E, and a positive measure μ on E with $\mu(\{\xi\})=0$ and $f(\xi) \leqq \int f d \mu(\forall f \in A)$. If $f_{1}(\xi)=0$, then for $\lambda_{i}>0, g_{i} \in A$, and k a positive integer, we have that

$$
\left(g_{0}+\sum_{i=1}^{k} g_{i} f_{1}^{\lambda_{i}}\right)(\xi)=g_{0}(\xi) \leqq \int g_{0} d \mu \leqq \int\left(g_{0}+\sum_{i=1}^{k} g_{i} f_{1}^{\lambda_{i}}\right) d \mu
$$

so that $\mu-\delta_{\xi} \in A_{1}{ }^{\prime}$. On the other hand, if $f_{1}(\xi) \neq 0$, then, as in the proof of Proposition 5 in (1), we have that

$$
\left(f_{1}(\xi)\right)^{-1} \mu-\delta_{\xi}=f_{1}(\xi)^{-1}\left(\mu-f_{1} \cdot \delta_{\xi}\right) \in A_{1}^{\prime}
$$

In either case, by (1, Theorem 5, Corollary), A_{1} is pseudo-subordinate. Continuing in the same manner, one proves inductively that A_{2}, \ldots, A_{n} are all pseudo-subordinate. But A_{n} is generated by a power-closed set, and hence, by (1 , Theorem 7), is subordinate. This implies that A, being contained in A_{n}, is subordinate. Since the reverse implication is trivial, the theorem is proved.

References

1. E. J. Barbeau, Subordinate and pseudo-subordinate semi-algebras, Can. J. Math. 19 (1967), 212-224.
2. R. R. Phelps, Lectures on Choquet's theorem (Van Nostrand, Princeton, 1966).

Yale University, New Haven, Connecticut;
University of Toronto, Toronto, Ontario

[^0]: Received March 27, 1967. The author was a NATO Post-doctoral Fellow visiting Yale University during the academic year 1966-1967.

