SUBORDINATE AND PSEUDO-SUBORDINATE SEMI-ALGEBRAS. II

EDWARD J. BARBEAU

- 1. Introduction. This paper is a sequel to (1), to which the reader is referred for definitions and known results. As before, E is a compact Hausdorff space and $C^+(E)$ is the semi-algebra of all continuous non-negative functions defined on E. Recall that, for a uniformly closed subsemi-algebra A of $C^+(E)$, the semi-algebra A_u is the uniform closure of the set $\{f_1 \cup f_2 \cup \ldots \cup f_k : f_i \in A,$ k a positive integer where \cup denotes the pointwise supremum operation; the semi-algebra A is pseudo-subordinate if and only if $A_u \neq C^+(E)$. It was conjectured in (1) that every proper closed subsemi-algebra of $C^+(E)$ is pseudosubordinate. My aim in this note is to provide a counter-example for the conjecture. In addition, two other results are proved: one giving a peak point characterization of pseudo-subordinate semi-algebras, the second showing that for finitely generated closed semi-algebras the property of being pseudosubordinate is equivalent to the property of being subordinate (i.e., contained in a maximal closed subsemi-algebra of $C^+(E)$). The latter result is a small step towards discovering whether every proper finitely generated closed subsemi-algebra is subordinate; cf. (1, Theorem 8).
- **2.** A characterization of pseudo-subordinate semi-algebras. The proof of one of the implications in the following theorem is due essentially to Bishop and de Leeuw. Following (2, p. 49), we say that the semi-algebra $A \subseteq C^+(E)$ satisfies Condition II at the point $\xi \in E$ if and only if, given any G_{δ} -set S containing ξ , there exists a function $f \in A$ such that $f(\xi) = ||f||$ (the uniform norm) and f attains its maximum value only within S.

THEOREM 1. Let A be a uniformly closed subsemi-algebra of $C^+(E)$. Then $A_u = C^+(E)$ if and only if A satisfies Condition II at each point ξ of E.

Proof. If $A_u \neq C^+(E)$, then by (1, Theorem 5, Corollary), there exists a point ξ of E and a positive measure μ on E with no mass at ξ such that $f(\xi) \leq \int f d\mu$ ($\forall f \in A$). Choose an open neighbourhood U of ξ such that $\mu(U) < \frac{1}{2}$. Then, for any function $g \in A$ with $1 = g(\xi) = ||g||$, $g^n \in A$ and

$$1 < \frac{1}{2} + \int_{\backslash U} g^n d\mu \qquad (n = 1, 2, \ldots),$$

whence one deduces that g must attain its maximum on \U . Hence Condition II is sufficient for a semi-algebra to be non-pseudo-subordinate.

Received March 27, 1967. The author was a NATO Post-doctoral Fellow visiting Yale University during the academic year 1966–1967.

Suppose that $A_u = C^+(E)$. For $0 < \epsilon < 1, \xi \in E$, and U an open neighbourhood of ξ , choose $g \in C^+(E)$ such that ||g|| = 1, $g(\xi) = 1$, and $g(\setminus U) = \{0\}$. Since $g \in A_u$, there exist $f_i \in A$ with $||g - f_1 \cup f_2 \cup \ldots \cup f_k|| < \epsilon(2 - \epsilon)^{-1}$. One of these functions, f_1 say, satisfies $f_1(\xi) > 1 - \epsilon(2 - \epsilon)^{-1}$. This function must also satisfy $||f_1|| \le 2(2 - \epsilon)^{-1}$ and $f_1(\setminus U) \subseteq [0, \epsilon]$. Taking

$$f = \frac{1}{2}(2 - \epsilon)f_1,$$

we see that Condition I (2, p. 49) holds for A. Hence Condition II holds, since the proof given in (2, p. 51), involves only operations permissible in a semi-algebra.

COROLLARY. If E is a metric space, then $A_u = C^+(E)$ if and only if every point of E is a peak point for A.

3. The counter-example. Let $X_1X_2X_3X_4$ be a square of area 1 in the Euclidean plane, and $a \equiv A_1A_2$ a segment of length $\alpha \in [0, 1]$ contained in the side $X_1A_1A_2X_2$. The *pinnacle* of a is the unique point A_0 on X_1X_2 such that X_1A_0 : A_0X_2 : A_0A_2 ; let $\lambda = l(X_1A_0)$, the length of the segment X_1A_0 . Each segment a is characterized by the pair $(\lambda, \alpha) \in [0, 1] \times [0, 1]$. A trapezoid $\tau(a)$ is associated with the segment a as follows: choose A_5 inside the square such that $A_0A_5 \perp X_1X_2$ and $l(A_0A_5) = 2\alpha(\alpha + \alpha^{\frac{1}{2}})^{-1}$; then choose A_3 , A_4 such that

$$l(A_3A_5) = \lambda \alpha^{\frac{1}{2}}, \qquad A_3A_5 || A_1A_2,$$

$$l(A_5A_4) = (1 - \lambda)\alpha^{\frac{1}{2}}, \qquad A_4A_5 || A_1A_2.$$

 $\tau(a)$ is the trapezoid $A_1A_2A_4A_3$. (Note that if $\alpha=0$, all the A_i are taken to be coincident.) Observe that: (1) the area of $\tau(a)$ is equal to the length of a; (2) $l(A_0A_5)$ is a strictly increasing function of α mapping [0, 1] onto [0, 1]; (3) cotangent angle $A_1A_3A_5=\frac{1}{2}\lambda(1-\alpha)$; (4) if a and b are two segments contained in X_1X_2 , then $b\subseteq a\Rightarrow \tau(b)\subseteq \tau(a)$, and the intersection of the boundaries of $\tau(a)$ and $\tau(b)$ is $a\cap b$ unless a and b have an endpoint in common. The proof of (4) is as follows. Let $a \sim (\lambda, \alpha)$, $b \sim (\rho, \beta)$, $\tau(a) = A_1A_2A_4A_3$, $\tau(b) = B_1B_2B_4B_3$, $b\subseteq a$. The point C_1 such that

$$C_1B_1 \perp X_1X_2, \qquad l(B_1C_1) = 2\beta(\beta + \beta^{\frac{1}{2}})^{-1}$$

is collinear with B_3B_4 and lies inside $\tau(a)$. If A_1A_3 and B_4B_3 intersect in D_1 , then D_1 and B_3 lie on the same side of C_1B_1 and

$$\begin{split} l(D_1C_1) &- l(B_3C_1) = l(A_1B_1) \\ &+ l(C_1B_1) \, (\text{cotangent angle} \, A_1A_3A_4) - l(B_3C_1) \\ &= l(A_1B_1) + \lambda(1-\alpha)\beta(\beta+\beta^{\frac{1}{2}})^{-1} - \rho(\beta^{\frac{1}{2}}-\beta) \\ &= l(A_1B_1) + \beta(\beta+\beta^{\frac{1}{2}})^{-1}[\lambda(1-\alpha) - \rho(1-\beta)] \\ &= l(A_1B_1)[1-\beta(\beta+\beta^{\frac{1}{2}})^{-1}] \geq 0. \end{split}$$

Similarly, if $C_2B_2 \perp X_1X_2$, $l(C_2B_2) = 2\beta(\beta + \beta^{\frac{1}{2}})$, and C_2B_4 intersects A_2A_4 in D_2 , then $l(C_2D_2) - l(C_2B_4) \ge 0$. Hence, the segment B_3B_4 is contained in the segment D_1D_2 . We are now in a position to state the following fact.

(5) For s segments a_1, a_2, \ldots, a_s in X_1X_2 with non-void intersection,

Area
$$[\tau(a_1) \cap \tau(a_2) \cap \ldots \cap \tau(a_s)] \ge \text{Area}[\tau(a_1 \cap a_2 \cap \ldots \cap a_s)]$$

= $l(a_1 \cap a_2 \cap \ldots \cap a_s).$

Theorem 2. There exists a compact Hausdorff space E such that $C^+(E)$ contains a proper closed non-pseudo-subordinate subsemi-algebra.

Construction. Let E be the square $X_1X_2X_3X_4$ of area 1, Y_1 the set of functions in $C^+(E)$ which vanish on side X_1X_2 , and Y_2 the set of functions f in $C^+(E)$ such that for each $\gamma \in [0, ||f||]$,

$$\{\eta: f(\eta) \ge \gamma\} = \tau(a)$$

for some segment a contained in X_1X_2 . Let Z be the closed semi-algebra generated by the set $Y_1 \cup Y_2$; this is the required semi-algebra.

Proof that $Z_u = C^+(E)$. It will be shown that the set $Y_1 \cup Y_2 \subseteq Z$ contains a function which peaks exactly at any prescribed point of E, so that the corollary of Theorem 1 can be applied. If $\xi \in E \setminus X_1 \setminus X_2$, then, clearly, Y_1 contains a function whose maximum value is attained only at ξ . Now let $\xi \in \operatorname{side} X_1 X_2$. If $\xi \neq X_1$ or X_2 , then Y_2 contains a function which, when restricted to $X_1 X_2$, vanishes at X_1 , increases linearly to the value 1 at ξ , and decreases linearly to the value 0 at X_2 ; if ξ is either X_1 or X_2 , then Y_2 contains a function which is linear on $X_1 X_2$, takes the value 1 at ξ , and vanishes at the other endpoint.

Proof that Z is proper. Let μ_1 be the two-dimensional Lebesgue measure on the square E and μ_2 the linear Lebesgue measure on the side X_1X_2 ; let $\mu \equiv \mu_1 - \mu_2$. Then $\mu \notin M^+(E)$. It will be shown that if g is a finite product of elements in $Y_1 \cup Y_2$, then $\int g \, d\mu \geq 0$, so that μ belongs to the dual cone of the closed convex cone generated by such products, i.e., the semi-algebra Z. Suppose then that $g = f_1 f_2 \dots f_s$. If any of the f_i belong to Y_1 , then clearly $\int g \, d\mu \geq 0$. Assume now that each of the f_i is a member of Y_2 . For integers i, m, and n with $1 \leq i \leq s$, $1 \leq n$, $1 \leq m \leq 2^n - 1$, define segments $a_{i,m,n}$ such that

$$\tau(a_{i,m,n}) \equiv \{\eta: f_i(\eta) \geq m \ 2^{-n} ||f_i||\}$$

and let

$$f_i^{(n)} = 2^{-n} \sum_{m=1}^{2^{n-1}} k(a_{i,m,n}),$$

where k(a) denotes the characteristic function of the trapezoid $\tau(a)$. Since $\prod k(a_i)$ is the characteristic function of $\bigcap \tau(a_i)$ (a set whose intersection with the side X_1X_2 is $\bigcap a_i$), it is a consequence of the Beppo Levi theorem and the fact stated in (5) above that

$$\int f_1 f_2 \dots f_s \, d\mu = \lim_{n \to \infty} \int f_1^{(n)} f_2^{(n)} \dots f_s^{(n)} \, d\mu$$
$$= \lim_{n \to \infty} 2^{-sn} \sum_{(m_i)} \int \prod_{i=1}^s k(a_{i,m_i,n}) \, d\mu \ge 0.$$

The proof of Theorem 2 is now complete. The reason for making the conjecture originally was to permit us to state that each finitely generated closed semi-algebra is subordinate if it is proper; this result may indeed still hold. It will be indicated in Theorem 3 that it suffices to prove this with the property 'subordinate' replaced by the weaker property 'pseudo-subordinate'.

Theorem 3. Let A be a closed subsemi-algebra of $C^+(E)$ generated by a finite set. Then A is subordinate if and only if A is pseudo-subordinate.

Proof. Let A be the closed semi-algebra generated by f_1, f_2, \ldots, f_n , and suppose that A is pseudo-subordinate. A_1 is defined to be the least closed semi-algebra containing A and all positive powers of the function f_1 ; for $i=2,3,\ldots,n$, A_i is defined to be the least closed semi-algebra containing A_{i-1} and all positive powers of the function f_i . The semi-algebra A_n is the closed semi-algebra generated by all positive real powers of the functions f_1, f_2, \ldots, f_n , so that A_n is generated by a power-closed set.

Since A is pseudo-subordinate, there exists a point ξ in E, and a positive measure μ on E with $\mu(\{\xi\}) = 0$ and $f(\xi) \leq \int f d\mu$ ($\forall f \in A$). If $f_1(\xi) = 0$, then for $\lambda_i > 0$, $g_i \in A$, and k a positive integer, we have that

$$\left(g_0 + \sum_{i=1}^k g_i f_1^{\lambda_i}\right)(\xi) = g_0(\xi) \le \int g_0 d\mu \le \int \left(g_0 + \sum_{i=1}^k g_i f_1^{\lambda_i}\right) d\mu$$

so that $\mu - \delta_{\xi} \in A_1$. On the other hand, if $f_1(\xi) \neq 0$, then, as in the proof of Proposition 5 in (1), we have that

$$(f_1(\xi))^{-1}\mu - \delta_{\xi} = f_1(\xi)^{-1}(\mu - f_1 \cdot \delta_{\xi}) \in A_1'.$$

In either case, by (1, Theorem 5, Corollary), A_1 is pseudo-subordinate. Continuing in the same manner, one proves inductively that A_2, \ldots, A_n are all pseudo-subordinate. But A_n is generated by a power-closed set, and hence, by (1, Theorem 7), is subordinate. This implies that A, being contained in A_n , is subordinate. Since the reverse implication is trivial, the theorem is proved.

REFERENCES

- E. J. Barbeau, Subordinate and pseudo-subordinate semi-algebras, Can. J. Math. 19 (1967), 212-224.
- 2. R. R. Phelps, Lectures on Choquet's theorem (Van Nostrand, Princeton, 1966).

Yale University, New Haven, Connecticut; University of Toronto, Toronto, Ontario