SUBORDINATE AND PSEUDO-SUBORDINATE
SEMI-ALGEBRAS. II

EDWARD J. BARBEAU

1. Introduction. This paper is a sequel to (1), to which the reader is
referred for definitions and known results. As before, E is a compact Hausdorff
space and C*(E) is the semi-algebra of all continuous non-negative functions
defined on E. Recall that, for a uniformly closed subsemi-algebra A of C*(E),
the semi-algebra 4, is the uniform closure of the set {f1 \U fs \U ... \Ufi: f, € 4,
k a positive integer} where \U denotes the pointwise supremum operation; the
semi-algebra A4 is pseudo-subordinate if and only if 4, # Ct(E). It was con-
jectured in (1) that every proper closed subsemi-algebra of C+(E) is pseudo-
subordinate. My aim in this note is to provide a counter-example for the
conjecture. In addition, two other results are proved: one giving a peak point
characterization of pseudo-subordinate semi-algebras, the second showing that
for finitely generated closed semi-algebras the property of being pseudo-
subordinate is equivalent to the property of being subordinate (i.e., contained
in a maximal closed subsemi-algebra of C*+(E)). The latter result is a small
step towards discovering whether every proper finitely generated closed
subsemi-algebra is subordinate; cf. (1, Theorem 8).

2. A characterization of pseudo-subordinate semi-algebras. The
proof of one of the implications in the following theorem is due essentially to
Bishop and de Leeuw. Following (2, p. 49), we say that the semi-algebra
A C CH(E) satisfies Condition 11 at the point ¢ € E if and only if, given any
Gs-set S containing &, there exists a function f € 4 such that f(&) = ||f]| (the
uniform norm) and f attains its maximum value only within S.

THEOREM 1. Let A be a uniformly closed subsemi-algebra of CH(E). Then
Ay, = CH(E) if and only if A satisfies Condition 11 at each point ¢ of E.

Proof. If A, # C*+(E), then by (1, Theorem 5, Corollary), there exists a
point £ of E and a positive measure u on E with no mass at ¢ such that
F(&) = [fdu (Vf € A). Choose an open neighbourhood U of & such that
p(U) < %. Then, for any function g € 4 with 1 = g(¢) = ||¢g||, & € 4 and

1<i+[\vgdu n=172"...),

whence one deduces that ¢ must attain its maximum on \ U. Hence Condition
I1 is sufficient for a semi-algebra to be non-pseudo-subordinate.
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Suppose that 4, = CT(E).For0 < e < 1,¢ € E,and U an open neighbour-
hood of & choose g € C*(E) such that ||g|| = 1, g(¢) = 1, and g(\U) = {0}.
Since g € 4, there exist f; € 4 with [[g — /1 U2 U ... US| < €2 — )L
One of these functions, f1 say, satisfies f1(§) > 1 — €(2 — €)= This function
must also satisfy |[f1]] < 2(2 — €)~! and f;(\U) C [0, €]. Taking

J =32 = of,

we see that Condition I (2, p. 49) holds for 4. Hence Condition II holds,
since the proof given in (2, p. 51), involves only operations permissible in a
semi-algebra.

CoroLLARY. If E is a metric space, then A, = Ct(E) if and only if every
point of E is a peak point for A.

3. The counter-example. Let X;X,X;X, be a square of area 1 in the
Euclidean plane, and ¢ = 4,4, a segment of length « € [0, 1] contained in
the side X 1414 :X,. The pinnacle of a is the unique point 4, on XX such that
Xide: AoXo: :A1Ag: ApAs; let N = [(X14y), the length of the segment X4 ,.
Each segment a is characterized by the pair (\, @) € [0, 1] X [0, 1]. A trapezoid
7(a) is associated with the segment a as follows: choose 4 ; inside the square
such that 4¢d; L X1X» and [(4od;) = 2a(a + a)~1; then choose A;, A,
such that

1(A345) = NX%, A3A5H1‘11A2,

I(A:45) = (1 — Na?,  Ad;||414..

7(a) is the trapezoid A:4:4.4; (Note that if « = 0, all the A, are taken to
be coincident.) Observe that: (1) the area of 7(a) is equal to the length of «;
(2) I(Ao¢ds) is a strictly increasing function of @ mapping [0, 1] onto [0, 1];
(3) cotangent angle 414345 = IN(1 — a); (4) if e and b are two segments con-
tained in XX, then b € a = 7(b) C r(a), and the intersection of the boun-
daries of 7(«¢) and 7(b) is @ M b unless ¢ and b have an endpoint in common.
The proof of (4) is as follows. Let a ~ (\, @), b ~ (p, B), 7(a) = A14:4 .45,
7(b) = B1ByB4Bj3, b C a. The point C; such that
C1B; 1 X1X,, I(B:C1) = 28(8 + ﬁ%)_l

is collinear with B3B, and lies inside 7(a). If 4,43 and B.B; intersect in Dy,
then D; and B; lie on the same side of C1B; and

I(D:C1) — U(B5Cy) = I(A1By)
+ I(CyB,) (cotangent angle 4:4;4,) — 1(B;Cy)
= 1(4:1B1) + M1 — )B(8 + 1) — p(8* — B)
= I(4:B1) + B(B + BH N1 — &) — p(1 — B)]
= 1(4:B1)[1 — B(B + 65)'] 2 0.
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Similarly, if CoBy 1 XX, 1(C3Bs) = 28(8 + B%), and C:B, intersects 4.4, in
D, then I(C2Ds) — I(C3B4) = 0. Hence, the segment B;B, is contained in the
segment DiD,. We are now in a position to state the following fact.

(5) For s segmenits ay, as, ..., a; in X1X. with non-void intersection,

Area[r(ay) MN7(az) N ... N7(ay)] = Area[r(a; Nas M ... N ay)]
= I(as MNas M ... N ay).

THEOREM 2. There exists a compact Hausdorff space E such that Ct(E)
contains a proper closed non-pseudo-subordinate subsemi-algebra.

Construction. Let E be the square X XX ;X s0f area 1, V; the set of functions
in C*(E) which vanish on side X1X5, and Y, the set of functions f in C*(E)
such that for each v € [0, ||f]]],

{n: f(n) = v} =7(a)

for some segment @ contained in XX, Let Z be the closed semi-algebra
generated by the set V; \U V,; this is the required semi-algebra.

Proof that Z,, = C*+(E). It will be shown that the set Y1 U ¥, C Z contains
a function which peaks exactly at any prescribed point of E, so that the
corollary of Theorem 1 can be applied. If ¢ € E\side XX, then, clearly, ¥,
contains a function whose maximum value is attained only at £ Now let
£ € side X1X,. If £ # X, or X, then Y, contains a function which, when
restricted to XX, vanishes at X3, increases linearly to the value 1 at £, and
decreases linearly to the value 0 at X,;if £ is either X; or X, then ¥, contains a
function which is linear on XX, takes the value 1 at &, and vanishes at the
other endpoint.

Proof that Z is proper. Let u1 be the two-dimensional Lebesgue measure on
the square E and p. the linear Lebesgue measure on the side X X»; let u = u; —
uo. Then p ¢ M+(E). It will be shown thatif g is a finite product of elements
in Y; U V,, then fg du = 0, so that u belongs to the dual cone of the closed
convex cone generated by such products, i.e., the semi-algebra Z. Suppose
then that ¢ = f1f2...fs If any of the f; belong to Y;, then clearly fg dp = 0.
Assume now that each of the f; is a member of V,. For integers 7, m, and =
with1 =72=<s5, 1= 1=m=2"—1, define segments a; ., such that

T(@ima) = {n: fi(n) = m 27"[[f [}

2n—1

f’l(n) =2 Z k(ai,m,n)’
m=1

and let

where k(a) denotes the characteristic function of the trapezoid 7(a). Since
II%(a,) is the characteristic function of MN7(a;) (a set whose intersection
with the side XX, is Ma;), it is a consequence of the Beppo Levi theorem
and the fact stated in (5) above that
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ff1f2 o frdu = lim ffl(n)f2(n) £

n->c0

=1im2 Y, | []k@imin) du = 0.
n->c0 i=1

(mq)

The proof of Theorem 2 is now complete. The reason for making the con-
jecture originally was to permit us to state that each finitely generated closed
semi-algebra is subordinate if it is proper; this result may indeed still hold.
I't will be indicated in Theorem 3 that it suffices to prove this with the property
‘subordinate’ replaced by the weaker property ‘pseudo-subordinate’.

THEOREM 3. Let A be a closed subsemi-algebra of Ct(E) generated by a finite
set. Then A is subordinate if and only if A is pseudo-subordinate.

Proof. Let A be the closed semi-algebra generated by fi, fo, ..., fs, and
suppose that 4 is pseudo-subordinate. 4; is defined to be the least closed
semi-algebra containing 4 and all positive powers of the function f;; for
1=2,3,...,n, 4, 1s defined to be the least closed semi-algebra containing
A ;1 and all positive powers of the function f;. The semi-algebra 4, is the
closed semi-algebra generated by all positive real powers of the functions
J1, f2s - - -y fuy sO that A4, is generated by a power-closed set.

Since A4 is pseudo-subordinate, there exists a point £ in E, and a positive
measure p on E with u({£}) = 0 and f(¢) < [fdu (Yf € A). If fi(¢) =0,
then for A; > 0, g, € A, and k a positive integer, we have that

<go + i@ﬁ“) &) = g = fgo du = f(go + ggifl)") du

so that u — 8: € Ay. On the other hand, if f1(¢) & 0, then, as in the proof
of Proposition 5 in (1), we have that

(f1E) 7w — 8: = f1()Hu — f1-8¢) € 44

In either case, by (1, Theorem 5, Corollary), A4; is pseudo-subordinate.
Continuing in the same manner, one proves inductively that 4,,..., 4, are
all pseudo-subordinate. But 4, is generated by a power-closed set, and hence,
by (1, Theorem 7), is subordinate. This implies that 4, being contained in 4,,
is subordinate. Since the reverse implication is trivial, the theorem is proved.
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