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The perturbation response of small-scale shear layers in turbulence is investigated with
direct numerical simulations (DNS). The analysis of shear layers in isotropic turbulence
suggests that the typical layer thickness is about four times the Kolmogorov scale η.
Response for sinusoidal perturbations is investigated for an isolated shear layer, which
models a mean flow around the shear layers in turbulence. The vortex formation in the
shear layer is optimally promoted by the perturbation whose wavelength divided by the
layer thickness is about 7. These results indicate that the small-scale shear instability in
turbulence is efficiently promoted by velocity fluctuations with a wavelength of about 30η.
Furthermore, DNS are carried out for decaying turbulence initialised by the artificially
modified velocity field of isotropic turbulence. The vortex formation from shear layers is
accelerated under the influence of external perturbations with the efficient wavelength to
promote the instability. When velocity fluctuations with this wavelength are eliminated
by a band-cut filter, the shear layers tend to persist for a long time without producing
vortices. These behaviours affect the number of vortices in turbulence, which increases
and decreases when velocity perturbations with the unstable wavelength of the instability
are artificially amplified and damped, respectively. The increase in the number of vortices
results in the enhancement of kinetic energy dissipation, enstrophy production and strain
self-amplification. These results indicate that the perturbation response of shear layers
is important in the small-scale dynamics of turbulence as well as the modulation of
small-scale turbulent motions by external disturbance.
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1. Introduction

Turbulent flows are characterised by fluid motions with a wide range of length scales.
Large-scale turbulent motions possess a large part of kinetic energy, which is transferred
to small scales by inertial processes and eventually dissipated by viscous effects
(Kolmogorov 1941; Pope 2000; Davidson 2004). The scale dependence of turbulence has
been studied extensively in previous studies. The characteristics of large-scale turbulent
motions depend strongly on the process by which turbulence is generated. On the other
hand, small-scale motions are considered to have universal statistical properties which
hardly depend on flows (Monin & Yaglom 1975; Sreenivasan & Antonia 1997). Turbulence
is also studied in terms of flow structures, which are often identified as coherent patterns
in flow visualisation. As also found for the statistical properties, large-scale structures are
flow-dependent whereas small-scale structures are more universal (Brown & Roshko 1974;
Yule 1978; Jiménez et al. 1993; da Silva, Dos Reis & Pereira 2011; Philip & Marusic 2012).

Small-scale properties of turbulence are often studied with a velocity gradient tensor
∇u, whose component is denoted by ∂ui/∂xj. Hereafter, a component of vectors and
matrices is denoted by subscripts, e.g. (∇u)ij = ∂ui/∂xj. The decomposition of ∇u
into symmetric and antisymmetric parts as (∇u)ij = Sij + ij is widely used to study
incompressible turbulence, where Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the rate-of-strain tensor
and ij = (∂ui/∂xj − ∂uj/∂xi)/2 is the rate-of-rotation tensor. One of the most famous
small-scale structures in turbulence is a vortex tube with rotating motion. The radius
of vortices is about four to six times the Kolmogorov scale in various turbulent flows
(Jiménez et al. 1993; Jiménez & Wray 1998; Kida & Miura 1998; Tanahashi, Iwase
& Miyauchi 2001; Kang, Tanahashi & Miyauchi 2007; Mouri, Hori & Kawashima
2007; Ganapathisubramani, Lakshminarasimhan & Clemens 2008; da Silva et al. 2011;
Jahanbakhshi, Vaghefi & Madnia 2015; Ghira, Elsinga & da Silva 2022). Another
small-scale structure observed in turbulence is a vortex sheet. The vortex sheet is a thin
layer with intense shear. Therefore, the vortex sheets are also called shear layers in recent
studies because the structures are identified with shear intensity or shear vorticity (Eisma
et al. 2015; Nagata et al. 2020). The small-scale shear layers were originally identified in
turbulence as regions with moderately large enstrophy ω2/2 = ijij when the enstrophy
field was visualised to detect vortical structures (Jiménez et al. 1993). Because of a strong
correlation between vorticity and strain in shear layers, they are also identified with an
eigenvalue of the second-order velocity gradient tensor Aij = Sikkj + Sjkki (Horiuti &
Takagi 2005). The eigenvalue of Aij is useful in identifying the location of shear layers
and is used to investigate the flow statistics in the regions occupied by the shear layers,
which are shown to be dynamically important structures related to the budget of turbulent
kinetic energy and enstrophy (Buxton & Ganapathisubramani 2010; Pirozzoli, Bernardini
& Grasso 2010; Nakamura, Watanabe & Nagata 2023).

Both vortex tubes and shear layers are perceivable in an enstrophy profile because
both motions of rigid-body rotation and shear contribute to a vorticity vector ω = ∇ × u.
Recent studies of vortex identification schemes have developed new decompositions of ∇u
by which the contribution of shearing motion is extracted from ∇u or ω. Such examples
are the triple decomposition and the Rortex-based decomposition (Kolář 2007; Liu et al.
2018). To distinguish vortex tubes and shear layers, the triple decomposition extracts a
component of shearing motion, ∇uS, from ∇u. The vorticity vector defined with the
residual component ∇u − ∇uS contains only rigid-body rotation. Thus, the magnitudes
of vorticity vectors defined for ∇uS and ∇u − ∇uS can identify shear layers and vortex
tubes, respectively. The details of the triple decomposition can be found in Kolář (2007),
which is briefly explained in § 2.2. The shear-layer identification in turbulent flows has

963 A31-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.316


Response of small-scale shear layers to perturbations

been reported with criteria based on the norm or vorticity of ∇uS (Eisma et al. 2015;
Watanabe, Tanaka & Nagata 2020; Fiscaletti, Buxton & Attili 2021). Gul, Elsinga &
Westerweel (2020) have compared shear layers detected with the triple decomposition and
the eigenvalue of Aij in a turbulent pipe flow and have found that the same flow regions
with intense shear can be identified with both quantities. However, unlike the eigenvalue of
Aij, the components of ∇uS provide the information of shear orientation in addition to the
location of shear layers. The mean flow field around shear layers in isotropic turbulence has
been assessed in the reference frame defined with the shear orientation, which is identified
with the triple decomposition (Watanabe & Nagata 2022). The shear layers in turbulence
are formed in a region of biaxial strain. The shear layers are small-scale structures whose
mean length scales are characterised by the Kolmogorov scale in isotropic turbulence and
turbulent free shear flows (Watanabe et al. 2020; Fiscaletti et al. 2021; Hayashi, Watanabe
& Nagata 2021a). The enstrophy production and strain self-amplification actively occur in
the shear layers because of the interaction between the shear and biaxial strain (Watanabe
et al. 2020; Hayashi et al. 2021a). Similar layer structures with intense shear have been
observed between uniform momentum zones in wall-bounded shear flows (Eisma et al.
2015; Fan et al. 2019; Gul et al. 2020; Chen, Chung & Wan 2021). An experimental
study on a turbulent boundary layer has shown that the thickness of these layers scales
with the Taylor microscale (Eisma et al. 2015) while the thickness of small-scale shear
layers found in isotropic turbulence, jets and mixing layers scales with the Kolmogorov
scale. Therefore, it is not clear at this moment if the shear layers that separate the uniform
momentum zones are the same as the small-scale shear layers found in turbulence far from
the wall although both layer structures are characterised by intense shear.

Flow visualisation has revealed that a roll-up of small-scale shear layers results in the
formation of a vortex tube by a similar process to Kelvin–Helmholtz instability (Vincent
& Meneguzzi 1994; Passot et al. 1995; Watanabe et al. 2020). The dynamics of the
roll-up process in a shear flow are often studied with an ideal model of a shear layer,
which is initially uniform in the flow direction. These studies mostly concern large-scale
shear flows, which are observed in plane mixing layers, jets and separated flows although
they might be relevant to the instability of small-scale shear layers in turbulence. The
instability of a parallel uniform shear flow has been studied with a linear stability theory,
which relies on a linearised equation for small pertubations (Miles 1961; Betchov &
Szewczyk 1963; Maslowe & Thompson 1971). Although the linear model of the shear
layer is usually applied to an early stage of the layer development, the predicted initial
growth rate of the instability is consistent with numerical simulations of Navier–Stokes
equations (Patnaik, Sherman & Corcos 1976). Other studies also consider a parallel shear
flow in a biaxial strain field, which is also known as Burgers’ vortex (Lin & Corcos 1984;
Beronov & Kida 1996). Both linear and nonlinear analyses of these uniform shear flows
have confirmed that the growth of the instability strongly depends on the wavelength of
perturbations. When the wavelength matches the most unstable mode of the instability,
the perturbed shear layer rapidly develops and results in a fast roll-up. This wavelength
dependence is often taken into account in numerical simulations of turbulent shear flows,
which rapidly develop from a laminar state with the perturbations of the most unstable
mode (Moser & Rogers 1991; Caulfield & Peltier 1994; Vreman, Geurts & Kuerten 1995;
Abraham & Magi 1997; Le Ribault, Sarkar & Stanley 1999; Okong’o & Bellan 2002;
Stanley, Sarkar & Mellado 2002). The dependence of the instability on the perturbation
wavelength has also proved useful in flow control, by which a flow is forced by actuators
or passive objects. The flow is often efficiently modulated when an external disturbance
matches the frequency band of instabilities (Crow & Champagne 1971; Oster &
Wygnanski 1982). The application of this flow control strategy has been reported for

963 A31-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.316


T. Watanabe and K. Nagata

various turbulent shear flows, which include canonical free shear flows and more practical
flows such as a flow over an airfoil (Ghoniem & Ng 1987; Gutmark, Schadow & Yu 1995;
Soteriou & Ghoniem 1995; Brehm, Gross & Fasel 2013; Samimy, Webb & Crawley 2018)

One of the interesting questions is whether small-scale shear layers in turbulence also
have a wavenumber dependence in the response to perturbations, as also observed for
uniform shear layers considered as numerical and analytical models and large-scale shear
layers in laboratory experiments. Considering the application of the results of stability
analysis in active flow control of large-scale shear flows, one may expect that the response
of small-scale shear layers to perturbations will be important in the studies of modulation
of turbulence. For example, small-scale perturbations can be introduced in particle-laden
flows by the interaction between small particles and turbulence (Maxey 2017). As also
considered for active flow control of turbulent shear flows, the perturbation response of
small-scale shear layers can be important in establishing the strategy of active flow control
of small-scale turbulent motions (Buzzicotti, Biferale & Toschi 2020; Cazaubiel et al.
2021). In addition, it can also be important in understanding the interaction of turbulent
motions with different scales. The roll-up of the shear layers may be understood as the
interaction between small-scale shearing motion and velocity fluctuations at larger scales.
The interaction between different scales of motions is often investigated in wavenumber
space (Yeung & Brasseur 1991; Ohkitani & Kida 1992; Aluie & Eyink 2009). However,
some turbulent structures are difficult to identify in wavenumber space because the
structures are not defined solely by their scales. For this reason, a large number of
publications have been devoted to the investigation of turbulent structures in physical
space. It is sometimes considered that the structural approach to turbulence is less
rigorous than the statistical approach because the former mostly relies on flow visualisation
and thresholds applied to flow variables. However, both approaches are important in
understanding turbulence from different aspects as discussed in Tsinober (2009). For
example, small-scale intermittency can be discussed with the scaling exponents for
structure functions (Kholmyansky, Tsinober & Yorish 2001) while the spatiotemporal
distributions of variables defined with a velocity gradient tensor often explain these
statistical behaviour from the viewpoint of turbulent structures (Siggia 1981; Jiménez et al.
1993). The perturbation response of small-scale shear layers observed in physical space
may shed light on a physical process that underlies the interaction of different scales in
wavenumber space.

Most fundamental studies on shear instability assume a uniform shear layer, whose
thickness is much smaller than the length scale in the other directions. However,
visualisation of shear layers in turbulence has suggested that this assumption is not
valid as they have a pancake or ribbon shape with a finite aspect ratio (Buxton &
Ganapathisubramani 2010; Bhatt & Tsuji 2021; Fiscaletti et al. 2021; Hayashi et al. 2021a).
For this reason, it is not clear how the stability analysis of shear flows with an infinite
aspect ratio is related to the evolution of small-scale shear layers in turbulence. This might
be because early studies of small-scale shear layers have relied on flow visualisation, which
does not provide important parameters in the stability analysis, such as the probability
distribution of thickness and velocity jump of the shear layers. However, recent studies
have overcome these difficulties with the new statistical analysis of small-scale shear layers
based on the conditional averaging procedure in a local reference frame defined for each
shear layer (Eisma et al. 2015; Fiscaletti et al. 2021; Watanabe et al. 2020).

This study aims to investigate the response of small-scale shear layers in turbulence
to perturbations, which may be relevant to vortex formation due to the instability in
turbulence. Three kinds of numerical simulations are carried out for this purpose.
First, the characteristics of shear layers are investigated with direct numerical simulations
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(DNS) of statistical steady homogeneous isotropic turbulence to reveal the variations of
length and velocity scales and shear Reynolds number among shear layers. The analysis
of shear layers in homogeneous isotropic turbulence is presented in § 2. Based on the
results for isotropic turbulence, numerical simulations for an isolated shear layer with
a finite aspect ratio subject to a biaxial strain are performed in § 3 to examine the
development of the perturbed shear layer. The model follows Burgers’ vortex layer except
for the aspect ratio and approximates a mean flow observed around the shear layers in
turbulence. Furthermore, § 4 presents DNS of decaying turbulence which is initialised
with an artificially modified velocity field of isotropic turbulence. The DNS is carried out
to investigate the response of shear layers to external perturbations or velocity fluctuations
that internally exist in turbulence. For the former case, the initial field of DNS is obtained
by superimposing perturbations with a certain length scale on isotropic turbulence. The
latter considers decaying turbulence initialised with a band-cut filtered velocity field of
isotropic turbulence. The length scale of the perturbations and filter is determined based
on the other two simulations carried out to examine the shear layer characteristics and the
response of the isolated shear layer to perturbations. These simulations are compared with
decaying turbulence of original isotropic turbulence to confirm whether vortex formation
in turbulence can be promoted by velocity fluctuations with a wavelength within the shear
instability band. Finally, the paper is summarised in § 5.

2. Characteristics of small-scale shear layers in turbulence

2.1. DNS of statistically steady homogeneous isotropic turbulence
DNS databases of statistically steady homogeneous isotropic turbulence are analysed to
relate the small-scale shear layers in turbulence to a model of an isolated shear layer in § 3,
where some parameters are determined based on the results presented in this section. The
DNS databases are the same as those used in our previous studies (Watanabe et al. 2020;
Watanabe, Tanaka & Nagata 2021; Watanabe & Nagata 2022). Turbulence is sustained at
a statistically steady state with a linear forcing scheme (Carroll & Blanquart 2013) The
governing equations are the Navier–Stokes equations for an incompressible fluid, which
are written as

∂uj

∂xj
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂x2
j

+ fi, (2.2)

where ui is the velocity vector, p is the pressure, ρ is the constant density, ν is the kinematic
viscosity and fi is the forcing term (Carroll & Blanquart 2013). The DNS code is based on
the fractional step method and employs a fourth-order fully conservative finite-difference
scheme for spatial discretisation (Morinishi et al. 1998) and a third-order and low-storage
Runge–Kutta method for temporal advancement (Spalart, Moser & Rogers 1991). The
Poisson equation for pressure is solved with the biconjugate gradient stabilised method.

Table 1 summarises the parameters of DNS databases. Here, the statistics are defined
with volume averages in the computational domain and ensemble averages of different
time instances. An average of a variable f is denoted by 〈 f 〉. The spatial resolution Δ

is about 0.8 times the Kolmogorov scale η = (ν3/ε0)
1/4, where ε0 = 〈2νSijSij〉 is the

averaged kinetic energy dissipation rate. Table 1 includes the Reynolds numbers based
on the integral scale and Taylor microscale, which are defined as ReL = u0L0/ν and
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Case NS1 NS2 NS3 NS4

N3 2563 5123 10243 20483

Δ/η 0.83 0.82 0.84 0.82
ReL 122 361 1092 2709
Reλ 43 72 128 202

Table 1. Parameters of DNS of statistically steady homogeneous isotropic turbulence: the number of grid
points N3, the spatial resolution Δ/η and Reynolds numbers based on the integral scale and Taylor microscale
(ReL and Reλ).

Reλ = u0λ/ν, respectively. When the linear forcing scheme is used, the integral scale is
often evaluated as L0 = u3

0/ε0 with the root-mean-squared (r.m.s.) velocity fluctuations
u0 =

√
(〈u2〉 + 〈v2〉 + 〈w2〉)/3 because L0 normalised by the domain size is determined

as the property of the forcing scheme (Rosales & Meneveau 2005; Carroll & Blanquart
2013; Watanabe et al. 2021). On the other hand, the Taylor microscale is evaluated as

λ =
√

15νu2
0/ε0. For the present DNS databases, Reλ ranges from 43 to 202.

2.2. Analysis of small-scale shear layers in turbulence
The small-scale shear layers in isotropic turbulence are analysed by detecting the shear
layers with the triple decomposition of a velocity gradient tensor, as also reported in
previous studies of shear layers in turbulent flows (Eisma et al. 2015; Watanabe et al.
2020; Fiscaletti et al. 2021). The DNS databases are analysed with the procedures briefly
described below. Previous studies can be referred to for further details of the algorithms
of the triple decomposition (Kolář 2007; Nagata et al. 2020; Fiscaletti et al. 2021) and the
shear layer analysis (Watanabe & Nagata 2022) .

The shear layers are detected with the triple decomposition (Kolář 2007), which
considers three local fluid motions: shear, rigid-body rotation and elongation (irrotational
strain). The velocity gradient tensor ∇u is decomposed into the components associated
with these motions as ∇u = ∇uS + ∇uR + ∇uE, where the subscripts, S, R and E,
represent shear, rotation and elongation, respectively. The triple decomposition has to be
applied in a so-called basic reference frame, which is different depending on position and
time. The basic reference frame is the reference frame where the decomposition formula
can most effectively extract the shear contribution from ∇u among all the reference
frames. The basic reference frame can be specified from reference frames defined with
three sequential rotational transformations Q(θ1, θ2, θ3) with 0◦ ≤ θ1 ≤ 180◦, 0◦ ≤ θ2 ≤
180◦ and 0◦ ≤ θ3 ≤ 90◦. The rotational transformation tensor Q(θ1, θ2, θ3) is written as

Q =
⎛
⎝ cos θ1 cos θ2 cos θ3 − sin θ1 sin θ3 sin θ1 cos θ2 cos θ3 + cos θ1 sin θ3 − sin θ2 cos θ3

− cos θ1 cos θ2 sin θ3 − sin θ1 cos θ3 − sin θ1 cos θ2 sin θ3 + cos θ1 cos θ3 sin θ2 sin θ3
cos θ1 sin θ2 sin θ1 sin θ2 cos θ2

⎞
⎠ .

(2.3)

The velocity gradient tensor in a rotated reference frame is calculated as (∇u)∗ =
Q(∇u)QT , where ∗ represents a quantity evaluated in the rotated reference frame. The
basic reference frame can be identified with a quantity called an interaction scalar, I∗ =
|∗

12S∗
12| + |∗

23S∗
23| + |∗

31S∗
31|. The basic reference frame assumes that I∗ has the largest

value among all reference frames defined with Q for 0◦ ≤ θ1 ≤ 180◦, 0◦ ≤ θ2 ≤ 180◦ and
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80η

240η

240η

Figure 1. Visualisation of shear layers and vortices, which are identified with the isosurfaces of IS = 2〈IS〉
(white) and IR = 4〈IR〉 (orange), respectively (NS2). Only a small part of the computational domain is shown
here.

0◦ ≤ θ3 ≤ 90◦. By discretely changing the angles, I∗ is calculated for many reference
frames. Then, (θ1, θ2, θ3) which gives the largest I∗

S is used to define the basic reference
frame. The angles are changed by 5◦, for which the basic reference frame is accurately
determined (Nagata et al. 2020; Fiscaletti et al. 2021). In the basic reference frame, the
following decomposition is applied to extract (∇uS)

∗:

(∇uRES)
∗
ij = sgn[(∇u)∗ij] min[|(∇u)∗ij|, |(∇u)∗ji|], (2.4)

(∇uS)
∗
ij = (∇u)∗ij − (∇uRES)

∗
ij, (2.5)

for i, j = 1, 2 and 3 and sgn is a sign function. In addition, (∇uRES)
∗ is further decomposed

into the components of rotation and elongation as (∇uR)∗ij = [(∇uRES)
∗
ij − (∇uRES)

∗
ji]/2

and (∇uE)∗ij = [(∇uRES)
∗
ij + (∇uRES)

∗
ji]/2. Finally, (∇uS), (∇uR) and (∇uE) in the

original coordinate are obtained by applying the inverse transformation of Q to (∇uS)
∗,

(∇uR)∗ and (∇uE)∗. The intensities of motions of shear and rotation are defined as
IS = √

2(∇uS)ij(∇uS)ij and IR = √
2(∇uR)ij(∇uR)ij. Figure 1 visualises the isosurfaces

of IR and IS in NS2. These quantities are often used to detect vortices and shear layers
in a three-dimensional flow. The shear layers identified with IS (white) have a flat shape
whereas vortex tubes are detected with IR (orange).

The small-scale shear layers in turbulence can be identified as flow regions with large
shear intensity IS. Therefore, following Watanabe et al. (2020), the present study examines
a flow field around the local maxima of IS. Here, the Hessian matrix of IS, ∂2IS/∂xi∂xj,
uniquely determines the locations of the local maxima without thresholds (Hayashi,
Watanabe & Nagata 2021b). For each detected local maximum, a local shear coordinate
(ζ1, ζ2, ζ3) is introduced to observe the flow in a reference frame associated with shearing
motion. The velocity vector in the shear coordinate is denoted by (u1, u2, u3). The shear
coordinate assumes that the shear is expressed with ∂u3/∂ζ2. In this case, the shear
contributes to the vorticity in the ζ1 direction. Therefore, the ζ1 direction is given by the
unit vorticity vector of ∇uS, ωS/|ωS|, where (ωS)i = εijk(∇uS)jk is a component of shear
vorticity ωS and εijk is the Levi-Civita symbol. Then, ζ2 and ζ3 are determined such that
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Figure 2. A local flow field around a shear layer in (a) the coordinate used in DNS and (b) the shear coordinate.
The local maximum of IS is located at the centre of each figure. A colour contour of shear intensity IS
normalised by the Kolmogorov time scale τη = (ν/ε0)

1/2 and two-dimensional velocity vectors relative to
the fluid motion at ( y, z) = (0, 0) or (ζ2, ζ3) = (0, 0) are shown on the two-dimensional planes. The length of
the arrows represents the vector magnitude. (c) Variations of IS and velocity in the ζ3 direction, u3, across the
shear layer visualised in (b) along the ζ2 axis at (ζ1, ζ3) = (0, 0).

shearing motion is expressed with ∂u3/∂ζ2. The identification of ζ2 and ζ3 is based on a
similar algorithm used to identify the basic reference frame. A large number of different
reference frames are examined to identify the reference frame in which (∇uS)32 becomes
the largest among all the reference frames under the condition that the ζ1 direction is given
by ωS/|ωS|. The numerical algorithm to find the shear coordinate is described in detail in
Watanabe et al. (2020) and Hayashi et al. (2021a).

Once the shear coordinate is identified for a location of a local maximum of IS, flow
variables on the DNS grid, namely f (x, y, z), are interpolated onto the shear coordinate
with a third-order polynomial interpolation, providing f (ζ1, ζ2, ζ3). Here, the shear
coordinate is also discretised with a spacing smaller than the Kolmogorov scale. The
interpolation on the shear coordinate is applied for all local maxima of IS. Figure 2(a,b)
visualise one of the detected shear layers in NS2 in the reference frame of DNS (x, y, z)
and in the shear coordinate (ζ1, ζ2, ζ3). The shear intensity IS and the velocity vectors with
respect to the velocity at the centre are shown on the two-dimensional planes. As the shear
layers have no preference in the alignment with (x, y, z), a shear flow is not always observed
in the reference frame of DNS in figure 2(a). The shearing motion in the shear coordinate
is represented by the flows in the ±ζ3 directions. In figure 2(b), these parallel flows in
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Figure 3. Fractions of shear layers with positive and negative enstrophy production Pω = ωiSijωj, FPω>0 and

FPω<0, as functions of the turbulent Reynolds number Reλ.

opposite directions are observed on the sides of the thin shear layer. Therefore, the velocity
in the ζ3 direction, u3, significantly varies across the shear layer. The characteristics of each
shear layer are assessed with the profiles of u3 and IS along the ζ2 axis at (ζ1, ζ3) = (0, 0).
Figure 2(c) presents the plots of u3 and IS across the shear layer visualised in figure 2(b).
The Kolmogorov length and velocity scales, η and uη = (νε0)

1/4, are used to normalise ζ2
and u3, respectively, whereas IS is normalised by the shear intensity at ζ2 = 0, IS,max. As
the shear layer is thin in the ζ2 direction, IS(ζ2) decreases rapidly with ζ2 from the peak at
ζ2 = 0. The layer thickness δS is evaluated as the half-width of IS on the ζ2 axis, namely
the distance between two locations with IS(ζ2)/IS,max = 0.5 for ζ2 > 0 and ζ2 < 0. In
addition, the velocity jump across the shear layer, uS, is calculated with ∂u3/∂ζ2 at ζ2 = 0
as uS = (∂u3/∂ζ2)δS. These length and velocity scales are also shown in figure 2(c). Then,
the shear Reynolds number is defined as ReS = uSδS/ν. These definitions of uS, δS and
ReS are applied for an instantaneous flow field around each shear layer whereas the length
and velocity scales estimated from a mean flow field around the shear layers have been
discussed in previous studies (Watanabe et al. 2020; Fiscaletti et al. 2021; Hayashi et al.
2021a).

The mean velocity profile around shear layers has shown that the shear layer appears
in a biaxial strain field. The enstrophy production Pω = ωiSijωj actively occurs in the
shear layers because of the interaction between the shear and biaxial strain (Buxton &
Ganapathisubramani 2010; Elsinga & Marusic 2010; Eisma et al. 2015; Elsinga et al. 2017;
Watanabe et al. 2020). However, some shear layers may have negative Pω. The number of
the identified local maxima of IS is evaluated separately for Pω > 0 and Pω < 0, for which
the numbers are denoted by NPω>0 and NPω<0, respectively. The fractions of shear layers
with Pω > 0 and Pω < 0 are given by FPω>0 = NPω>0/NSH and FPω<0 = NPω<0/NSH
with NSH = NPω>0 + NPω<0. Figure 3 plots FPω>0 and FPω<0 as functions of Reλ. For all
cases, FPω>0 ≈ 0.94 and FPω<0 ≈ 0.06 are obtained regardless of the Reynolds number.
Almost all shear layers have positive enstrophy production. The primary interest of this
paper is in the characteristics of strained shear layers with Pω > 0 for comparisons with
Burgers’ vortex layer and numerical simulations of an isolated shear layer in a biaxial
strain field, both of which also have Pω > 0. Therefore, the statistics of uS, δS and ReS are
calculated with ensemble averages of the shear layers with Pω > 0.
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Figure 4. Probability density functions of (a) thickness δS and (b) velocity jump uS of shear layers. The
thickness and velocity jump are normalised by the Kolmogorov length and velocity scales, η and uη,
respectively.

2.3. Thickness, velocity jump and Reynolds number of small-scale shear layers
Variations of the shear layer characteristics are examined with the probability density
functions (p.d.f.s) of δS, uS and ReS. Figure 4 shows the p.d.f.s of δS and uS, which
are normalised by the Kolmogorov length and velocity scales (η and uη), respectively.
The p.d.f.s hardly depend on Reλ. Because of uηη/ν = 1, ReS can be written as ReS =
(uS/uη)(δS/η). Therefore, the p.d.f.s of δS/η and uS/uη suggest that ReS hardly depends on
Reλ and the behaviour of typical small-scale shear layers in turbulence can be insensitive to
the flow Reynolds number. However, the Reynolds number dependence can be important
for intense shear layers because an extremely large velocity gradient tends to be observed
at a very high Reynolds number (Elsinga et al. 2017; Buaria et al. 2019; Das & Girimaji
2020; Ghira et al. 2022).

The ReS dependence of δS and uS is examined with the joint p.d.f.s of (δS/η, ReS) and
(uS/uη, ReS) in figure 5(a,b), respectively. Here, the results for NS2 are presented because
the Reλ dependence is weak when the Kolmogorov scales are used for normalisation.
The Reynolds number ReS is positively correlated with δS and uS, as expected from the
definition of ReS = uSδS/ν. The highest probability is observed for (δS/η, ReS) ≈ (4, 20)

and (uS/uη, ReS) ≈ (5, 20), suggesting that the shear layers in turbulence typically have
(δS/η, uS/η, ReS) ≈ (4, 5, 20) although variations from these values are confirmed from
the distributions of the joint p.d.f.s. Specifically, the shear Reynolds number ReS ranges
approximately between 10 and 70.

The relation between the shear layer and the nearby strain field in turbulence agrees with
Burgers’ vortex layer (Watanabe et al. 2020), which is one of the exact steady solutions
of Navier–Stokes equations for a uniform shear layer subject to a biaxial strain (Burgers
1948; Davidson 2004). In both shear layers in turbulence and Burgers’ vortex layer, a
compressive strain acts in the normal direction of the shear layer while an extensive strain
acts in the vorticity direction of the shear. For Burgers’ vortex layer, the half-width of IS
is related to the strain rate α as δBV = 1.67

√
2ν/α. The strain rate acting on vortices is

often estimated as α = ωiSijωj/ωkωk, for which the diameter of Burgers’ vortex has been
compared with the actual diameter of vortex tubes (Jiménez & Wray 1998; da Silva et al.
2011; Jahanbakhshi et al. 2015; Watanabe et al. 2017b; Ghira et al. 2022). Similarly, δBV
is evaluated with α at (ζ1, ζ2, ζ3) = (0, 0, 0) for each shear layer and is compared with
the half-width of IS, δS. Here, the ReS dependence of the relation between δS and δBV is
examined with the present DNS database, whereas a general comparison between δS and
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Figure 5. Joint probability density functions of (a) (δS/η, ReS), (b) (uS/uη, ReS) and (c) (δS/δBV , ReS) of shear
layers in NS2. Here, the shear layer thickness δS is normalised with the Kolmogorov scale η or the thickness of
Burgers’ vortex layer δBV = 1.67

√
2ν/α calculated with the strain rate α = ωiSijωj/ωkωk while the velocity

jump uS is normalised by the Kolmogorov velocity scale uη.

δBV has been provided for isotropic turbulence and planar jets in Watanabe et al. (2020)
and Hayashi et al. (2021a). Figure 5(c) shows the joint p.d.f. between δS/δBV and ReS.
For the typical shear Reynolds number ReS ≈ 20, the joint p.d.f. reaches the maximum
for δS/δBV ≈ 1, implying that the relation between the layer thickness and the strain rate
is consistent with Burgers’ vortex layer. The p.d.f. also shows that δS/δBV is positively
correlated with ReS. Thus, the layer thickness tends to be larger than that of Burgers’
vortex layer at large ReS, and vice versa. An unsteady analysis of Burgers’ vortex layer
predicts that the layer thickness asymptotically approaches δBV with time when the initial
thickness differs from δBV (Davidson 2004). Therefore, the shear layers with large ReS are
possibly being flattened with time due to the compressible strain while those with small
ReS are thickened via the viscous effect. In addition, the p.d.f. is distributed for 0.5 �
δS/δBV � 1.5 and most shear layers in isotropic turbulence are close to an equilibrium
state in terms of the relation between the thickness and the strain rate.

These probability distributions of length and velocity scales are consistent with previous
studies of a mean flow in a reference frame defined with the eigenvectors of the
rate-of-strain tensor (Elsinga & Marusic 2010; Elsinga et al. 2017). This reference frame
is often referred to as a strain eigenframe. These studies introduce the strain eigenframe at
each point of the flow and take averages of various quantities as functions of the position
in the strain eigenframe. This approach is similar to the present method, which relies
on the local reference frame defined with ∇uS. Even though the averages in the strain
eigenframe are not taken for shear layers, a mean flow profile in the strain eigenframe
also exhibits a shear-layer pattern (Elsinga & Marusic 2010), which is similar to the mean
flow around the shear layers (Watanabe & Nagata 2022). The p.d.f. of shear intensity IS
in isotropic turbulence and turbulent jets indicates that shearing motions appear anywhere
in turbulence (Nagata et al. 2020; Hayashi et al. 2021a). For this reason, the statistics of
turbulence can be strongly influenced by shearing motions, and therefore, the averages in
the strain eigenframe taken for an entire turbulent region is consistent with those taken
solely for shear layers. The present study examines the length and velocity scales of each
shear layer with their probability distribution and confirms that the most typical values
of the half-width and velocity jump of the shear layers are δS/η ≈ 4 and uS/uη ≈ 5,
respectively. Similarly, the shear layer of the mean flow in the strain eigenframe has a
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Figure 6. An isolated shear layer with a finite aspect ratio in a biaxial strain field.

full width of about 10η and a velocity jump of about 6uη. The p.d.f. in figure 4 confirms
that some shear layers have different velocity and length scales from the typical values.
However, the mean flow in the strain eigenframe is strongly dominated by the most typical
shear layers with δS/η ≈ 4 and uS/uη ≈ 5.

3. Numerical simulations of an isolated shear layer in a biaxial strain field

3.1. The model of an isolated shear layer
Numerical simulations are performed for an isolated shear layer in a biaxial strain field
illustrated in figure 6. This simple model is an approximation of the mean-flow pattern
observed around the small-scale shear layers in turbulence (Watanabe et al. 2020; Hayashi
et al. 2021a; Watanabe & Nagata 2022), which also resembles the shear-layer pattern
observed in a mean flow with a strain eigenframe taken regardless of the presence of shear
layers (Elsinga & Marusic 2010; Elsinga et al. 2017). The model assumes that the aspect
ratio of the length scales in the x and y directions is finite. The simulations are carried out
to investigate the response of the shear layer to perturbations. Some physical parameters
are determined based on the shear layer characteristics in isotropic turbulence presented in
§ 2 to relate the behaviour of the isolated shear layer to that of small-scale shear layers in
turbulence. The shear coordinates, ζ1, ζ2 and ζ3, used in § 2 are respectively related to z,
y and x in figure 6. The model follows the numerical study of a row of alternating vortex
sheets in a biaxial strain field (Lin & Corcos 1984) although the present study considers
a single isolated shear layer. In this section, a dimensional variable is denoted with a
symbol with a tilde, e.g. f̃ , whose non-dimensional counterpart is f . The model assumes an
incompressible fluid. The transverse and vorticity directions of the shear layer are denoted
by ỹ and z̃, respectively. The shear layer is initially parallel to the x̃ direction. The shear
layer is subject to a biaxial strain with compression in the ỹ direction and stretching in the
z̃ direction. The velocity components in the x̃, ỹ and z̃ directions are denoted by ũ, ṽ and w̃,
respectively. The origin of the coordinate system is located at the centre of the shear layer.

The initial velocity field ũ = (ũ, ṽ, w̃) can be decomposed into the components of a
base flow and perturbations as ũ = ũB + ũ′. In addition, the base flow, ũB, is further
decomposed into the components associated with the strain and vorticity as ũB = ũS + ũV ,
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Response of small-scale shear layers to perturbations

the latter of which can be defined with the vorticity profile. The present model assumes
that an initial profile of vorticity is given by

ω̃x(x̃, ỹ, z̃) = 0; ω̃y(x̃, ỹ, z̃) = 0; ω̃z(x̃, ỹ, z̃) = ω0 exp
(

− ỹ2

δ2

)
exp

[
− x̃2

(ARδ)2

]
.

(3.1a–c)

Here, ω0 is the peak vorticity at the centre of the shear layer, AR is the aspect ratio and δ is
the shear layer thickness. The velocity components for the time-independent biaxial strain,
ũS = (ũS, ṽS, w̃S), are given by

ũS(x̃, ỹ, z̃) = 0, ṽS(x̃, ỹ, z̃) = −γ ỹ, w̃S(x̃, ỹ, z̃) = γ z̃ (3.2a–c)

with a constant strain rate γ , which is assumed to satisfy the equilibrium relation
γ = 2ν/δ2 of Burgers’ vortex layer. The DNS results in § 2 have suggested that the
majority of shear layers in turbulence approximately satisfy this relation. For the vorticity
profile of (3.1a–c), wV = 0 is satisfied anywhere. The remaining components (ũV , ṽV)

are determined as (ũV , ṽV) = (−∂φ̃/∂ ỹ, ∂φ̃/∂ x̃) with a vector potential φ̃ which satisfies
ω̃z = ∇2φ̃. For AR → ∞, (3.1a–c) and (3.2a–c) express Burgers’ vortex layer, which is
infinitely long in the x direction. A similar vorticity profile was also used in Lin & Corcos
(1984), where a cosine function was used instead of exp[−x̃2/(ARδ)2] to model the row
of shear layers with positive and negative spanwise vorticities. Their model allows the
interaction between adjacent shear layers, which is observed in the development of a plane
mixing layer, whereas this interaction does not occur in the present model of the isolated
shear layer because the simulations are designed to investigate the development of a single
shear layer under perturbations.

The perturbations ũ′ are defined based on the spanwise-vorticity perturbations ω̃′
z,

whose profile is given by

ω̃′
z(x̃, ỹ, z̃) = ω′

0sin
[

2π

(
x̃
Λ

+ ϕx

)]
sin

[
2π

(
ỹ
Λ

+ ϕy

)]
G(x̃, ỹ), (3.3)

G(x̃, ỹ) =
[

1
2

+ 1
2

tanh
(

Lxf − 2|x̃|
12δ

)] [
1
2

+ 1
2

tanh
(

Lyf − 2|ỹ|
12δ

)]
, (3.4)

where Λ and ω′
0 are the wavelength and amplitude, respectively, whereas ϕx and ϕy are

the phases of the perturbations. The top-hat function G(x̃, ỹ) is equal to 1 near the shear
layer and becomes 0 in the far field. Therefore, the sinusoidal perturbations exist only for
|x̃| � Lxf /2 and |ỹ| � Lyf /2. Once the profile of the vorticity perturbations is determined,
(ũ′, ṽ′, w̃′) = (−∂φ̃′/∂ ỹ, ∂φ̃′/∂ x̃, 0) is calculated with a vector potential φ̃′ which satisfies
ω̃′

z = ∇2φ̃′. The profile of (ũ′, ṽ′) exhibits fluctuations around (ũ′, ṽ′) = (0, 0), where the
maximum amplitude is denoted by u′

0. Because ω′
0 is directly related to u′

0, the numerical
parameter is determined by specifying u′

0. This can be done by generating (ũ′, ṽ′) from
(3.3) and (3.4) with given values of Λ and ω′

0. Then, (ũ′, ṽ′) are normalised such that the
maximum value of ũ′ is equal to u′

0.
Numerical simulations are performed with governing equations non-dimensionalised

with reference velocity and length scales, ur and lr, e.g. u = ũ/ur and ωz = ω̃z/(ur/lr).
Time t̃ can also be non-dimensionalised as t = t̃/tr with the reference time scale tr = lr/ur.
Here, ur and lr are given by ur = √

πω0δ and lr = δ. The choice of ur is based on Burgers’
vortex layer, where the velocity jump across the layer is given by

√
πω0δ.
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3.2. Governing equations, numerical methods and parameters
The present model assumes that the initial profiles of u and v are independent of z. In
this case, u and v remain independent of z even after the shear layer development (Lin
& Corcos 1984). Therefore, the continuity and momentum equations non-dimensionalised
by ur and lr are written as

∂u
∂x

+ ∂v

∂y
= − 2

Re
, (3.5)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ 1
Re

(
∂2u
∂x2 + ∂2u

∂y2

)
, (3.6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ 1

Re

(
∂2v

∂x2 + ∂2v

∂y2

)
, (3.7)

∂w
∂t

= 0, (3.8)

with the Reynolds number Re = urlr/ν = √
πω0δ

2/ν. Here, 2/Re on the right-hand side
of (3.5) is obtained from ∂w/∂z = γ /(ur/lr) with γ = 2ν/δ2.

Solving these equations yields the temporal evolution of the shear layer initialised
with the velocity profile explained above. As u and v are independent of z
and w remains unchanged with time, the simulations can be conducted in a
two-dimensional computational domain. The governing equations are solved with an
in-house finite-difference code, which is developed by reducing the dimension of our DNS
code from three to two. The original DNS code was used for various turbulent flows in
our previous studies, where the code was validated by comparisons with experiments and
other numerical simulations (e.g. Watanabe & Nagata 2018; Watanabe, Zhang & Nagata
2019; Katagiri, Watanabe & Nagata 2021; Watanabe, Zheng & Nagata 2022). The code is
the same as that used for isotropic turbulence except for spatial discretisation, for which
a second-order fully conservative finite-difference scheme is employed (Morinishi et al.
1998).

The isolated shear layer is simulated in a rectangular domain with a size of (Lx, Ly) =
(250δ, 250δ), which is much larger than the shear layer. Therefore, the boundary
conditions assume the far-field condition of the base flow. Here, u = 0 is applied at all
boundaries. The zero-gradient condition is applied to v at the boundaries in the x direction
while ṽ = −γ ỹ is used for the y direction. The computational domain is discretised with
(Nx × Ny) = (300 × 300) grid points. A non-uniform grid is employed to achieve a high
spatial resolution near the shear layer. Here, x and y positions of the grid are determined
with integers i and j by the following mapping functions:

x̃(i) = − Lx

2αx
atanh

[
(tanh αx)

(
1 − 2i

Nx

)]
with i = 0, . . . , Nx, (3.9)

ỹ( j) = − Ly

2αy
atanh

[(
tanh αy

) (
1 − 2j

Ny

)]
with j = 0, . . . , Ny, (3.10)

with αx = αy = 3.5. The grid size becomes large as being away from the centre of the
domain. The distribution of the grid size for these functions can be found in Watanabe
et al. (2018). A non-dimensional time increment is �t = 0.025, and time is advanced until
t = 50 in each simulation.

The numerical simulations are performed for various sets of the Reynolds number Re,
the aspect ratio AR and the perturbation wavelength Λ. Table 2 summarises Re and AR
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Re AR δS/δ uS/ur ReS

15 10 1.68 0.85 22
15 30 1.69 0.91 23
30 10 1.68 0.85 43
30 30 1.69 0.91 46
45 10 1.68 0.85 65
45 30 1.69 0.91 69

Table 2. Parameters of numerical simulations of an isolated shear layer in a biaxial strain field: the Reynolds
number Re = urlr/ν defined with reference scales of the simulations, the aspect ratio of the shear layer AR,
the ratio between the half-width of IS and the layer thickness δS/δ, the velocity scale ratio uS/ur and the shear
Reynolds number ReS = uSδS/ν.

considered in this study. Here, these simulations consider ϕx = ϕy = 0 while the influence
of the phases is investigated with additional simulations, as explained below. The Reynolds
number is determined based on the DNS data while AR = 10 and 30 are chosen to discuss
two different types of the evolution of the shear layer. In turbulent flows, AR differs for
each shear layer as confirmed from visualisations of shear layers in figure 1 and previous
studies (Nagata et al. 2020; Fiscaletti et al. 2021; Hayashi et al. 2021b). We have noticed
that it is difficult to quantify the aspect ratio which can be directly compared with AR
of the ideal numerical model because of the curved shape of shear layers in turbulence.
In figure 2(b), the shear layer extends approximately from ζ3/η = −15 to 30 whereas
the thickness is about 4η. Thus, the aspect ratio is close to 10. Visualisation of shear
intensity IS or shear vorticity |ωS| in isotropic turbulence and turbulent free shear flows
has suggested that the aspect ratio of some shear layers is close to or smaller than about
10 (Fiscaletti et al. 2021; Hayashi et al. 2021a; Watanabe & Nagata 2022). However, these
studies have also observed shear layers with a larger aspect ratio than 10. A long shear
layer is broken during the roll-up and generates more than one shear layer with small AR
around a vortex tube (Horiuti & Takagi 2005; Watanabe et al. 2020). This might be the
reason why the shear layers with a wide range of AR are observed in turbulence. Therefore,
instead of matching the aspect ratio, two cases of AR = 10 and 30 are considered because
the shear layer behaves differently for large and small AR. In the numerical simulations
of the isolated shear layer, Re is defined with the layer thickness δ in (3.1a–c) and the
velocity difference ur = √

πω0δ across the layer. On the other hand, the DNS results of
isotropic turbulence have been examined with the shear Reynolds number ReS defined
with the half-width of the shear intensity, δS, and the velocity jump uS defined with δS
and the local velocity gradient in the shear layer. Table 2 also lists δS/δ, uS/ur and the
shear Reynolds number ReS evaluated with the same definitions of δS and uS as in the
DNS of isotropic turbulence. The present simulations consider 20 � ReS � 70, which is
determined from the p.d.f. of ReS in the isotropic turbulence. For each set of (Re, AR),
the simulations are performed for the perturbation wavelength Λ/δ = 8, 12, . . . or 40 to
examine the wavelength dependence. The amplitude of velocity fluctuations is fixed in all
simulations as u′

0/ur = 0.1, for which the results are compared with unperturbed cases
(u′

0 = 0). For G(x, y) in (3.4), Lxf = 125δ and Lyf = 100δ are used for the perturbations
to cover a large area around the shear layer.

A uniform shear layer with AR = ∞ is also investigated for a comparison with the finite
AR cases. The initial vorticity profile is (3.1a–c) with AR → ∞. The periodic boundary
condition is applied in the x direction. The region of the perturbations is given by (3.4)
with Lxf → ∞. The uniform shear layer is simulated for Re = 30 with perturbations with
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Figure 7. Temporal evolutions of an isolated shear layer in a biaxial strain field with the aspect ratio AR = 10
and the Reynolds number Re = 30: (a) unperturbed case (u′

0 = 0); perturbed cases with (b) u′
0/ur = 0.1 and

Λ/δ = 16 and (c) u′
0/ur = 0.1 and Λ/δ = 32. From top to bottom, time increases as t = 0, 5, 10, 20, 30 and

40. Only a small part of the computational domain is shown here.

u′
0/ur = 0.1 and Λ/δ = 8, 12, . . . or 40. As the perturbations should also be periodic in

the x direction, the domain size is determined with Λ as (Lx, Ly) = (4Λ, 250δ). The grid
spacing in the x direction is uniform, and Nx is determined such that the spacing is 0.2δ.
Other parameters and conditions are the same for both infinite- and finite-AR cases.

3.3. Temporal development of an isolated shear layer
Figure 7 shows the profiles of vorticity ωz to visualise the temporal evolution of a shear
layer with a low aspect ratio (AR = 10). The unperturbed case with u′

0 = 0 is shown
in figure 7(a) while the perturbed cases with the wavelength of Λ/δ = 16 and 32 are
shown in figure 7(b,c). In all cases, the initially flat shear layer is distorted with time and
forms a circular region with large vorticity. The formation of the vortex occurs even in
the unperturbed case. This is caused by the self-induced velocity of the shear layer with
the low aspect ratio. The sheet-like distribution of vorticity accompanies the upward and
downward velocities on the right and left of the shear layer, respectively (Lin & Corcos
1984). Consequently, the shear layer is distorted by itself and generates the vortex centred
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Figure 8. Temporal evolution of an unperturbed isolated shear layer in a biaxial strain field with the aspect
ratio AR = 30, the Reynolds number Re = 30 and u′

0/ur = 0. From top to bottom, time increases as t = 0, 5,
10, 20, 30 and 40. Only a small part of the computational domain is shown here.

at (x, y) = (0, 0). A similar formation of the vortex is also observed in the perturbed cases
in figure 7(b,c). However, the time required for the vortex formation is different among the
three cases. At t = 40, the value of ωz in the vortex for the unperturbed case is smaller and
larger than those for the perturbed cases with Λ/δ = 16 and 32, respectively. In addition,
as the vortex forms at t = 30 and 40, the shape of the large-ωz region changes from an
ellipse to a circular shape. Compared with the unperturbed case, the vortex formation is
accelerated for the perturbations with Λ/δ = 16 whereas it is delayed for Λ/δ = 32.

Figure 8 shows the temporal evolution of a shear layer with a high aspect ratio (AR = 30)
without perturbations whereas the perturbed cases with Λ/δ = 16 and 32 are visualised in
figures 9 and 10, respectively. Unlike the shear layer with small AR, the vortex formation
does not occur for the unperturbed case with large AR in figure 8. The vortices form in the
shear layer with perturbations with Λ/δ = 16 in figure 9, where three vortices can be found
at t = 40. However, the perturbations with a twice-as-large wavelength, Λ/δ = 32, are not
effective to trigger the formation of vortices, as shown in figure 10. The vortex formation
for Λ/δ = 16 is initiated with the distortion of the shear layer by the perturbations, and its
process is more similar to Kelvin–Helmholtz instability (Patnaik et al. 1976) than that for
the low AR case in figure 7.
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Figure 9. The same as figure 8 but for a perturbed case with u′
0/ur = 0.1 and Λ/δ = 16.

When the vortices are successfully formed in the shear layer, the maximum vorticity
ωmax in the shear layer increases with time. Figure 11 shows the temporal variation of
ωmax of the shear layers with Re = 30 for different Λ and AR. The results are not shown
for all values of Λ for visibility of the figure while Λ dependence is examined in detail at
several time instances below. For the low aspect ratio with AR = 10 in figure 11(a), ωmax
increases for both unperturbed and perturbed cases with all wavelengths because of the
vortex formation. The growth of ωmax occurs rapidly by the perturbations for AR/δ = 12
and 16 whereas it is delayed for larger wavelengths. For the high aspect ratio in figure 11(b),
ωmax without perturbations does not vary until t ≈ 30 and then begins to decrease. The
increase of ωmax can be seen for the perturbed case with Λ/δ = 12, 16 and 24. The
perturbations with larger Λ do not cause a continuous increase of ωmax and result in the
decay at a late time for Λ/δ = 32 and 40. For both aspect ratios, the perturbations with
Λ/δ = 12 and 16 are effective to promote the vortex formation, which does not occur or
is delayed for larger Λ.

The above results are obtained for Re = 30 whereas the Reynolds number dependence is
examined in figures 12 and 13, where the vorticity ratio ωr between ωmax(t) and its initial
value is plotted as a function of Λ/δ for three Reynolds numbers at t = 20, 30 and 50.
When the vortex formation occurs in the shear layer and the spanwise vorticity is amplified,
ωr increases with time. On the other hand, the increase of ωr does not occur when the shear
layer is simply distorted without vortex formation. The results for AR = 10 at t = 20, 30
and 50 are shown in figures 12(a), 12(b) and 12(c), respectively. For comparison, ωr for the
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Figure 10. The same as figure 8 but for a perturbed case with u′
0/ur = 0.1 and Λ/δ = 32.
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Figure 11. Temporal variations of the maximum vorticity ωmax of the isolated shear layer with Re = 30 and
(a) AR = 10 and (b) AR = 30.

unperturbed case is plotted at Λ = 0. As the vortex formation occurs without perturbations
for AR = 10, ωr gradually increases with time even without perturbations. However, the
rapid growth of ωr is observed for the perturbations with Λ/δ ≈ 12, for which ωr tends
to be large compared with other values of Λ/δ. At each time instance, ωr decreases from
the peak of ωr at Λ/δ = 8–16 as Λ/δ increases. In addition, ωr for Λ/δ = 8 is smaller
than those for Λ/δ = 12 at t = 30 and 50 in figure 12(b,c) except for Re = 45 at t = 30.
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Figure 12. Wavenumber dependence of maximum vorticity normalised by its initial value, ωr =
ωmax(t)/ωmax(t = 0) for the aspect ratio AR = 10. The results taken at (a) t = 20, (b) t = 30 and (c) t = 50
are plotted as functions of the perturbation wavelength Λ/δ.
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Figure 13. The same as figure 12 but for AR = 30: (a) t = 20, (b) t = 30 and (c) t = 50. The results for the
uniform shear layer (AR → ∞) with Re = 30 are also shown for comparison.

Therefore, the perturbations with Λ/δ ≈ 12 more effectively cause the amplification of
vorticity than those with larger or smaller Λ/δ. This wavelength dependence is similar
for all Re. Figure 13 shows the results for AR = 30, for which perturbations are necessary
for the vortex formation. The results for the uniform shear layer (AR → ∞) with Re = 30
are also shown for comparison. For Re = 30, the Λ dependence of ωr is similar for the
isolated shear layer with AR = 30 and the uniform shear layer. Therefore, the effects of the
finite aspect ratio are not significant for AR = 30, except for a late time. The wavelength
dependence of the growth of ωr for AR = 30 is stronger than that for AR = 10, especially
at t = 50. As also found for AR = 10, ωr is large for Λ/δ ≈ 12, and the perturbations with
larger or smaller Λ/δ do not cause the rapid increase of ωr. A different trend is observed
for Re = 15, for which ωr decreases with time for the unperturbed case shown at Λ/δ = 0.
In figure 11(b), ωmax for u′

0 = 0 does not vary with time until t = 30 and decreases for a
later time. This decrease is also observed for Re = 15, resulting in ωr < 1 in figure 13.
However, we note that the vortex formation with the amplification of ωz occurs for the
perturbed cases with 12 ≤ Λ/δ ≤ 20 and Re = 15. Therefore, ωr for 12 ≤ Λ/δ ≤ 20 is
larger than those for the unperturbed case and for larger or smaller Λ/δ. In summary,
the perturbations with Λ/δ ≈ 12 tend to amplify the spanwise vorticity for all Re and AR
considered here. This wavelength of Λ/δ = 12 corresponds to Λ/δS ≈ 7.2, where δS is

963 A31-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.316


Response of small-scale shear layers to perturbations

10 20 30 40 500

0.5

1.0

10 20 30 40 500

0.5

1.0

ω
m

ax
(a) (b)

t t

u′
0 = 0

ϕx, ϕy
(0, 0)
(0.25, 0)
(0.25, 0.25)
(0, 0.5)

Figure 14. The effects of the phases of perturbations on the shear layer development for (a) AR = 10 and
(b) AR = 30.

the half-width of shear intensity used in the shear layer analysis for isotropic turbulence
and is related to δ as presented in table 2.

Simulations with (ϕx, ϕy) /=(0, 0) are also performed for the shear layer with Re = 30
and AR = 10 or 30 and the perturbations with Λ/δ = 12. All computational parameters
except the phases are the same as in the other simulations. Figure 14 shows the temporal
variations of the maximum vorticity ωmax for various values of ϕx and ϕy. The result for
the unperturbed case (u′

0 = 0) is also shown for comparison. For ϕy = 0.25, the spanwise
vorticity of the perturbations is not zero at the centre of the shear layer and affects the
initial value of ωmax. Except for (ϕx, ϕy) = (0, 0.5) and AR = 10, ωmax in the perturbed
cases increases with time. For AR = 10, the perturbations with (ϕx, ϕy) = (0, 0.5) result
in a slow growth of ωmax. The formation of the vortex is initially caused by the self-induced
velocity of the shear layer with the low aspect ratio. The perturbations given with
(ϕx, ϕy) = (0, 0.5) negate the self-induced velocity associated with a positive spanwise
vorticity because of the matched phase of velocity distribution. Therefore, the self-induced
velocity does not effectively distort the shear layer. The growth of ωmax for AR = 30 is
observed regardless of the phases because the vortex formation begins with the distortion
of the shear layer by the perturbations rather than the self-induced velocity.

The wavenumber dependence of the isolated shear layer with a finite aspect ratio AR
agrees with previous studies of a parallel shear flow with AR → ∞. A comparison between
parallel shear flows with and without a biaxial strain suggests that the most unstable mode
of the shear instability is hardly influenced by the strain in Burgers’ vortex layer (Lin &
Corcos 1984). The non-dimensional wavenumber in the linear stability analysis is often
written as α = 2πδ/Λ. The maximum initial growth rate of the instability of Burgers’
vortex layer was found for α ≈ 0.40–0.43, which slightly increases with the Reynolds
number (Lin & Corcos 1984). These values of α correspond to Λ/δ ≈ 15, which is close to
the wavelength for which the vorticity in the isolated shear layer rapidly grows (Λ/δ ≈ 12)
in figures 12 and 13. Therefore, the wavelength dependence observed for the shear layer
with a finite AR can be related to the instability of the uniform shear layer with AR → ∞.
One of the important differences is the vortex formation due to the self-induced velocity
observed for the shear layer with low AR. However, the present results have confirmed that
the vortex formation by this mechanism is also promoted by perturbations with Λ/δ ≈ 12.

4. The response of small-scale shear layers to velocity perturbations in turbulence

Turbulence contains many small-scale shear layers with a finite aspect ratio that are
subject to a biaxial strain. Therefore, the wavelength dependence of the perturbed isolated

963 A31-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.316


T. Watanabe and K. Nagata

shear layer may be relevant to the evolution of shear layers in turbulence. Here, DNS is
carried out for decaying turbulence to investigate the response of small-scale shear layers
to velocity fluctuations with the efficient wavelength to promote shear instability. The
results in § 3 suggest that the vortex formation from small-scale shear layers is promoted
when they are subject to perturbations with Λ/δ ≈ 12 (Λ/δS ≈ 7.2). The visualisations
of shear layers in turbulence indicate that the aspect ratio AR is different for each shear
layer (Nagata et al. 2020; Fiscaletti et al. 2021; Hayashi et al. 2021a). However, the
rapid growth of spanwise vorticity by perturbations with Λ/δ ≈ 12 is observed for both
large and small AR in § 3. Furthermore, the p.d.f. of the layer thickness has a peak
at δS ≈ 4η. Therefore, perturbations with a wavelength determined with δS ≈ 4η and
Λ/δ ≈ 12 (Λ/δS ≈ 7.2) are expected to affect the development of many shear layers in
turbulence. This hypothesis is examined by simulating decaying turbulence initialised with
an artificially modified velocity field of isotropic turbulence. Here, velocity fluctuations
with the unstable wavelength for shear layers with a thickness of about 4η are artificially
amplified or damped in isotropic turbulence. The response of shear layers to velocity
fluctuations with a certain length scale is examined by comparing decaying turbulence
initialised by the modified and original velocity profiles of isotropic turbulence.

4.1. Decaying turbulence with artificial velocity perturbations
DNS of decaying turbulence with artificial velocity perturbations is carried out to
investigate the effects of external perturbations on the shear layers. The boundary
conditions are the same as in the DNS of isotropic turbulence in § 2. The
governing equations are (2.1) and (2.2) without external forcing, namely fi = 0.
Non-dimensionalisation considered in § 3 is not adapted for DNS of isotropic turbulence,
and appropriate normalisation is applied when the results are presented. The DNS code is
also the same as in § 2. The initial velocity field is generated by superimposing solenoidal
velocity perturbations uP(x, y, z) on an instantaneous flow field uHIT(x, y, z) of forced
homogeneous isotropic turbulence. Two types of perturbations are tested here. One is
defined in a deterministic way with a sinusoidal function whereas another is given by
a random velocity field with a prescribed energy spectrum. Both velocity fields are
divergence-free and are characterised by a single length scale. For the sinusoidal velocity
perturbations, uP(x, y, z) is given by

uP(x, y, z) = (
uf sin(2πy/λf ), uf sin(2πz/λf ), uf sin(2πx/λf )

)
, (4.1)

where the amplitude uf and wavelength λf are the computational parameters. As the
velocity and length scales of small-scale shear layers in turbulence are characterised by
the Kolmogorov scales, uf and λf are determined in terms of uη and η.

Random velocity perturbations are generated by applying the inverse Fourier transform
to velocity vectors in wavenumber space, ûP(kx, ky, kz), whose three-dimensional energy
spectrum E(k) is given by a Gaussian function as

E(k) = AE exp

[
−(log k − log kp)

2

2δ2
E

]
, (4.2)

with k =
√

k2
x + k2

y + k2
z . The spectrum has a peak at k = kp = 2π/λf whereas the width

of the distribution is δE = Cη log kη with kη = 2π/η and Cη = 0.005. With two uniform
random numbers that determine the phases, ûP(kx, ky, kz) can be calculated with (4.2) and
the divergence-free condition in the wavenumber space following Johnsen et al. (2010).
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Figure 15. Random velocity perturbations used for the initial condition of D3L30R: (a) the energy spectrum
E(k) and (b) velocity in the x direction, uP, with λf /η ≈ 30. In (a), E(k) is normalised for the peak to be 1.

Case uHIT uP Reλ N3 NS uf /uη λf /η �urms/urms0

D1 NS1 — 43 2563 10 0 — —
D1L30 NS1 Sin 43 2563 10 1.0 30.7 2.4 %
D1L30u1 NS1 Sin 43 2563 10 1.2 30.7 3.5 %
D1L30u2 NS1 Sin 43 2563 10 1.4 30.7 4.7 %
D1L30R NS1 Random 43 2563 10 — 30.7 2.4 %
D1L70 NS1 Sin 43 2563 10 1.0 71.7 2.4 %
D2 NS2 — 72 5123 5 0 — —
D2L30 NS2 Sin 72 5123 5 1.0 32.4 1.4 %
D3 NS3 — 128 10243 3 0 — —
D3L30 NS3 Sin 128 10243 3 1.0 32.4 0.66 %
D3L30R NS3 Random 128 10243 3 — 32.4 0.66 %

Table 3. Parameters of DNS of decaying turbulence with and without initial perturbations: the turbulent
Reynolds number Reλ of the original isotropic turbulence used for the initial condition, the number of grid
points N3, the number of simulations repeated for ensemble averages, NS, the amplitude uf and wavelength
λf of the perturbations and the increase in r.m.s. velocity fluctuations due to the perturbations normalised by
r.m.s. velocity fluctuations of the original isotropic turbulence, �urms/urms0.

Then, the inverse Fourier transform of ûP(kx, ky, kz) yields uP(x, y, z). The solenoidal
velocity vector generated in this method has random phases in the wavenumber space and
the energy spectrum with a single peak for kp = 2π/λf . The constant AE is determined
such that the increment of r.m.s. velocity fluctuations due to the perturbations is equal to
�urms, which is a parameter of the simulation. Figure 15 shows E(k) and uP used in one of
the simulations with λf /η = 30. A large peak appears at a wavenumber of kp. The length
corresponding to kp characterises the profile of uP, which does not have coherent patterns
because of the random phases.

Table 3 summarises the parameters of DNS. For statistical analyses, DNS for each case
is repeated NS times with different initial velocity profiles of uHIT , which are obtained from
different time instances of statistically steady homogeneous isotropic turbulence. Here,
NS is larger for a lower Reynolds number because the number of small-scale structures
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contained in the computational domain decreases as the Reynolds number becomes small
and more simulations have to be carried out for statistical convergence (Hayashi et al.
2021a). The perturbations are generated with sinusoidal functions (4.1) for ‘Sin’ and
random velocity for ‘Random’. The results of NS1, NS2 and NS3 in § 2 are used as
the initial conditions. Therefore, the computational domain size and the number of grid
points N3 in the DNS of decaying turbulence are the same as those for the statistically
steady isotropic turbulence. The table also includes the initial turbulent Reynolds number
Reλ. Cases D1, D2 and D3 consider decaying turbulence without perturbations, namely
uf = 0. Cases DnLm apply sinusoidal perturbations with λf /η ≈ m to the velocity profile
taken from NSn whereas cases DnLmR adapt random velocity perturbations. As the
periodic boundary conditions are applied in the DNS, λf is chosen such that uP of
(4.1) also satisfies the periodic boundary conditions. DNS is performed for λf /η ≈ 30
and 70, which are determined with the shear layer thickness examined in § 2 and the
wavenumber dependence of the isolated shear layer in § 3 as explained below. In each
of the NS simulations, the initial value of η is slightly different because different instances
of isotropic turbulence are used in the initialisation. Therefore, the average of λf /η taken
for NS simulations is listed in table 3 whereas the r.m.s. fluctuations of λf /η among NS
simulations are less than 1 % of the averages. For all Reynolds numbers, uf /uη = 0 or 1.0
is assumed for the initial perturbations. In addition, the simulations are also performed
with uf /uη = 1.2 and 1.4 (cases D1L30u1 and D1L30u2) for the series of D1, which
examine the influence of the perturbation amplitude. For random velocity in DnLmR, AE
in (4.2) is determined for �urms/urms0 to match the corresponding cases with sinusoidal
perturbations, DnLm. The unperturbed and perturbed cases, Dn and DnL30, are compared
for each Reynolds number. Time is advanced until t = 15τη0, where τη0 is the Kolmogorov
time scale at t = 0.

The parameters of the perturbations are compared with the characteristics of shear
layers in § 2 and the isolated shear layer in § 3. For isotropic turbulence, the typical
thickness of shear layers is δS/η ≈ 4, which is estimated from the peak of the joint
p.d.f. in figure 5(a). The numerical simulations in § 3 suggest that the vortex formation
is effectively promoted by perturbations with a wavelength of Λ/δ ≈ 12, which is
equivalent to Λ/δS ≈ 7.2 because of δS/δ = 1.67. Thus, Λ/δ ≈ 12 corresponds to
Λ/η = (Λ/δS)(δS/η) ≈ 29 for small-scale shear layers in isotropic turbulence. The
wavelength of the perturbations is close to Λ/η ≈ 29 in cases DnL30, for which the
perturbations are expected to have significant influences on the evolution of the shear
layers. In addition, case D1L70 considers the perturbations with Λ/η = 71.7, which
corresponds to Λ/δ ≈ 30. The results in § 3 suggest that the perturbations with this
wavelength are not as conducive to the vortex formation as those with Λ/η ≈ 30
(Λ/δ ≈ 12).

The typical velocity jump across the shear layers in turbulence is about uS/uη = 5,
which is estimated from the joint p.d.f. in figure 5(b). The velocity jump uS is related to the
reference velocity scale ur used in the simulations of the isolated shear layer by uS/ur ≈
0.9. Thus, uf /uη = 1, 1.2 and 1.4 used for the perturbations of decaying turbulence are
equivalent to uf /ur = 0.18, 0.22 and 0.25, respectively. These amplitudes are larger than
those considered for the isolated shear layer in § 3, and the perturbations are expected to be
strong enough to affect the shear layer development in turbulence. The artificial velocity
fluctuations affect the initial r.m.s. velocity fluctuations. The increase of the r.m.s. velocity
fluctuations, �urms, normalised by the original r.m.s. velocity fluctuations of isotropic
turbulence, urms0, is also listed in table 3. For all cases, �urms/urms0 is smaller than
5 %. Because the amplitude of perturbations is determined with the Kolmogorov velocity
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Response of small-scale shear layers to perturbations

scale, �urms/urms0 decreases with the Reynolds number. For the highest Re case, D3L30,
�urms/urms0 is less than 1 %. These small values confirm that the perturbations are much
weaker than the velocity fluctuations of isotropic turbulence.

The perturbations with a length of λf cause a spike in an energy spectrum. Turbulence
with a spectral spike has also been considered in other studies. These studies mostly
concern a fully developed state of turbulence with a spectral spike, whose effects are
already felt throughout turbulent motions of all length scales. Yeung & Brasseur (1991)
investigated turbulence generated by anisotropic vortical forcing, which also causes
a spectral spike for a wavelength of forced vortices. Their analysis concerns fully
developed turbulence generated by vortical forcing, by which large-scale anisotropy affects
small-scale turbulent motions. Similar anisotropic turbulence with a spectral spike was
also studied in Goto & Vassilicos (2016). Another example is a study of a turbulent
mixing layer in Takamure et al. (2019), where large-scale coherent vortices cause spikes
in the energy spectrum. They have shown the relevance of the spectral spikes to the
non-equilibrium scaling of the energy dissipation rate. These studies have discussed the
influences of spectral spikes on the statistics of turbulence. The perturbation response of
small-scale shear layers in the present DNS can be interpreted as the transient regime of
the interaction between the spectral spike and small-scale velocity fluctuations of isotropic
turbulence, where the influence of the perturbations gradually prevails. In addition, the
present study mainly discusses small-scale vortices and shear layers, which are usually
difficult to identify in wavenumber space. However, the influence of the perturbations
observed for shear layers in physical space should affect the flow evolution in wavenumber
space, and the insight from the present analysis can be useful for future studies of the
scale-by-scale analysis in wavenumber space.

4.2. Decaying turbulence initialised with a band-cut filtered velocity field
Fluid motions with the efficient wavelength to promote small-scale shear instability also
exist in turbulence because this length, namely about 30η, is greater than the Kolmogorov
scale. The role of velocity fluctuations of turbulence in the shear layer development is also
investigated with DNS of decaying turbulence. Although the interaction between turbulent
motions with a length scale of about 30η and small-scale shear layers may be understood as
the interaction of different scales studied with Fourier analysis, it is difficult to explicitly
examine the influence of velocity fluctuations at a particular length scale on the shear
layers because the shear layers cannot be identified in wavenumber space. Therefore, the
present study takes an alternative approach to examine the response of shear layers to
velocity fluctuations of turbulence. The DNS of decaying turbulence is initialised with
a velocity field which is obtained by applying a band-cut filter to a three-dimensional
velocity field of isotropic turbulence. The filter damps velocity fluctuations of a certain
length scale. Then, flow evolution is compared for the initial conditions given by the
filtered and original velocity profiles to determine whether or not the velocity fluctuations
damped by the filter are important in the shear layer development. A similar approach was
used in Cimbala, Nagib & Roshko (1988), Jiménez & Moin (1991) and Jiménez (2018),
where large-scale turbulent structures or vorticity fluctuations within a region of interest
were artificially damped or eliminated to examine their influences on flow evolution.

Following Leung, Swaminathan & Davidson (2012) and Doan, Swaminathan &
Chakraborty (2017), the filter is applied in wavenumber space. First, the three-dimensional
Fourier transform is applied to the velocity field of isotropic turbulence to obtain the
velocity vector in the wavenumber space, û(kx, ky, kz). Then, û is multiplied by the
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Figure 16. (a) Energy spectrum of v, Ev , calculated for the wavenumber in the x direction, kx, in D3L30.
(b) The decay of r.m.s. velocity fluctuations urms in D3 and D3L30. The results are non-dimensionalised
with the r.m.s. velocity fluctuations urms0, integral scale L0 and the Kolmogorov time scale τη0 of statistically
stationary homogeneous isotropic turbulence used for the initial condition.

following band-cut filter T(k) defined with k =
√

k2
x + k2

y + k2
z :

T(k) = 1 − exp

[
−(log k − log kp)

2

2δ2
E

]
. (4.3)

This function is similar to the energy spectrum in (4.2), and T(k) ≈ 0 for k ≈ kp and
T(k) = 1 otherwise. Then, the band-cut filtered velocity field is obtained by the inverse
Fourier transform applied to Tû and is used as an initial condition of DNS of decaying
turbulence. The wavelength kp is determined as kp = 2π/λf while δE is δE = Cη log kη

with Cη = 0.005, as also assumed for the perturbations given by (4.2). The filter damps
velocity fluctuations with a length scale of λf . We have also tested different filters, such
as a band-cut filter defined with a top-hat band-pass filter in Fourier space (Cao, Chen &
Doolen 1999; Baerenzung et al. 2010; Goto, Saito & Kawahara 2017; Hirota et al. 2017),
and have confirmed that the results are not sensitive to the choice of filters.

Filtered velocity fields for the initial condition are prepared with the results of NS3. The
same snapshots of NS3 have been used in D3, D3L30 and D3L30R presented above. The
cutoff wavelength of the filter, kp = 2π/λf in (4.3), is given by λf = 30η or 140η. The filter
with λf = 140η damps large-scale velocity fluctuations because 140η corresponds to 0.6
times the integral scale. On the other hand, velocity fluctuations of the unstable wavelength
for shear layers are damped by the filter with λf = 30η. Cases with the filters of λf = 30η

and 140η are referred to as D3L30F and D3L140F, respectively. Computational parameters
other than the initial conditions are the same as in D3. The results are compared for D3,
D3L30F and D3L140F to reveal the role of the filtered velocity component in the shear
layer development.

4.3. Results and discussion
The results of DNS with artificial perturbations in § 4.1 are presented first whereas the
role of internal velocity fluctuations in turbulence is discussed later. Figure 16(a) shows
the temporal evolution of a one-dimensional energy spectrum of v, Ev , for a wavenumber
in the x direction, kx, in D3L30. The results are shown from t/τη0 = 0 to 6. The initial
perturbations for v are given in a form of sin(x), which contributes to the peak in
Ev(kx). This peak decays with time and is no longer identified after t/τη0 = 4.8. As the
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perturbations added to the initial field is weak, it hardly influences the overall spectral
shape. Figure 16(b) presents a comparison between D3 and D3L30 for the decay of
r.m.s. velocity fluctuations normalised by the value of isotropic turbulence. At t = 0,
the perturbations in D3L30 cause urms to increase by about 0.6 % compared with the
unperturbed case (D3). This increase is not large enough to significantly alter the decay
rate of urms. However, urms in D3L30 seems to gradually approach that in D3, implying a
larger energy dissipation rate in D3L30.

The number of vortices (vortex tubes) is compared for decaying turbulence with and
without initial perturbations. As also done in previous studies (Jiménez & Wray 1998), the
vortices are detected by thresholding a quantity related to rotating motion. The intensity
of rotating motion IR defined with the triple decomposition of a velocity gradient tensor is
used in the vortex identification in this study. The vortices identified with IR are visualised
in figure 1 for isotropic turbulence while those in other flows, such as wakes, jets and
boundary layers, can be found in Kolář & Šístek (2014) and Hayashi et al. (2021a). Vortices
in turbulence can also be detected with so-called Q and λ2 criteria (Chong, Perry &
Cantwell 1990; Jeong & Hussain 1995). Vortices identified with IR were compared with
those with Q and λ2 criteria in Šístek et al. (2012) and Kolář & Šístek (2014), where the
difference among these identification methods was shown to be small for various flows,
such as a transitional boundary layer and a turbulent wake of a flat plate. This is because
positive Q is strongly correlated with IR in turbulence (Nagata et al. 2020). The results
presented in this paper do not change even if the vortices are identified with the Q criterion,
as shown below.

The algorithm to identify vortices with IR is the same as that used with enstrophy for
various turbulent flows (Jiménez et al. 1993; Jiménez & Wray 1998; da Silva et al. 2011;
Jahanbakhshi et al. 2015; Ghira et al. 2022) although the enstrophy is not used in this study
because it cannot distinguish between vortex tubes and shear layers. The computational
grid points that belong to vortices are identified with a given threshold IRth as points with
IR > IRth. Then, the connectivity of the vortex points is examined to define the vortices
as connected points with IR > IRth, which belong to the same vortex. Then, the number of
points belonging to each vortex is counted. Following Jiménez & Wray (1998) and da Silva
et al. (2011), the vortices for which less than 30 points are assigned are discarded from the
subsequent analysis because these vortices have IR close to the threshold and appear as
noise-like patterns rather than coherent structures. Finally, the number of vortices detected
with IR, NIR , is counted. As each simulation is repeated NS times, NIR is averaged for NS
simulations.

The number of detected vortices NIR depends on the choice of the threshold IRth. Instead
of using a specific threshold, NIR is evaluated for a wide range of IRth. Figure 17 plots NIR
with the normalised threshold IRth/〈IR〉 at t/τη0 = 0, 2 and 6 for D1, D1L30 and D1L70.
Here, 〈IR〉 is used for normalisation because 〈IR〉 decreases with time and becomes large
with the Reynolds number. Except for very small IRth/〈IR〉, NIR decreases with an increase
of IRth/〈IR〉 because the vortices with moderately large IR are not identified with a large
threshold. However, NIR also decreases as IRth/〈IR〉 becomes small for IRth/〈IR〉 � 1.5.
Vortex regions identified with a very small threshold are connected even if these regions
belong to different vortices. Therefore, the threshold should be chosen from the range
where NIR decreases with increasing IRth, namely IRth/〈IR〉 � 1.5, for which the effects of
the initial perturbations are discussed by comparing D1 with D1L30 and D1L70. At t = 0
in figure 17(a), NIR hardly differs for the three cases, and the perturbations do not alter the
initial distribution of vortices. However, a difference in NIR between D1L30 and the others
becomes clearer with time. For all thresholds, NIR for D1L30 is larger than those for D1
and D1L70 at t/τη0 = 2 and 6, and more vortices are found in the flow when the initial
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Figure 17. Threshold dependence of the number of vortices, NIR , in D1, D1L30 and D1L70 at (a) t = 0,
(b) t/τη0 = 2 and (c) t/τη0 = 6. The vortices are detected by the intensity of rotating motion IR with a threshold
IRth. NIR is plotted as a function of IRth normalised by the average of IR, 〈IR〉.
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Figure 18. Temporal variations of the number of detected vortices NIR in D1, D1L30 and D1L70. The vortices
are detected with the intensity of rotating motion IR with (a) the threshold that yields the maximum number
of vortices at each time step and (b) those determined with the average of IR as Cth〈IR〉 with Cth = 2, 3 and 4
whereas the results obtained with the Q criterion are presented in (c), where the threshold is determined such
that the number of detected vortices is the maximum at each time step. Panel (a) also presents the number of
shear layers, NIS , detected with IS, for which the threshold is determined based on the threshold dependence of
NIS .

velocity profile is perturbed by velocity fluctuations with λf /η ≈ 30. The perturbations
are also added in D1L70, and the increase of initial urms caused by the perturbations is the
same for D1L30 and D1L70. However, the increase in the number of vortices due to the
perturbations does not occur for D1L70. These results are qualitatively the same for all
thresholds.

The temporal variations of NIR are examined with several thresholds for D1, D1L30 and
D1L70. As the threshold increases, NIR decreases because the vortices with moderately
strong rotation are disregarded for a large threshold. However, as discussed above, a very
small threshold results in a decrease of NIR because multiple vortices are identified as one
large structure. These tendencies suggest that the threshold corresponding to the maximum
NIR is appropriate to detect vortices with both large and small IR without the problem
of vortex connection caused by a small threshold. For this case, the threshold value
normalised by 〈IR〉 also varies with time. Figure 18(a) plots the temporal variations of NIR
calculated with the threshold corresponding to the maximum NIR . When the perturbations
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are not added to the initial velocity field (D1), NIR monotonically decreases with time.
However, NIR increases until t/τη0 ≈ 4 in D1L30, for which more vortices exist in the
flow compared with the unperturbed case. This influence of the perturbations is observed
only for D1L30, where the perturbation wavelength matches the anticipated unstable
wavelength of typical small-scale shear layers. When the perturbations have a wavelength
of λf /η ≈ 70 (D1L70), the temporal variation of NIR hardly differs from the unperturbed
case (D1) even though the perturbations imposed in D1L30 and D1L70 have the same
turbulent kinetic energy as confirmed from the same value of �urms/urms0 in table 3.

Shear layers can be detected with the same method used for vortices by using IS instead
of IR. The threshold ISth is also determined by the same method as IRth based on the ISth
dependence of the number of detected shear layers. Figure 18(a) shows the number of shear
layers, NIS , for the three simulations. Both NIS and NIR in D1L30 are larger than those in
D1 and D1L70, and the perturbations in D1L30 result in the increase of both vortices and
shear layers. The kinetic energy budget around shear layers suggests that the energetic flow
that contributes to the shear is generated and sustained by vortices (Watanabe & Nagata
2022). Furthermore, when the roll-up of a shear layer occurs, it splits into more than one
shear layer around the generated vortex (Corcos & Lin 1984). Therefore, more shear layers
appear when the number of vortices is increased by the influence of perturbations.

Figure 18(b) presents NIR obtained with the threshold determined with the average of IR
as IRth = Cth〈IR〉. The temporal variations of NIR in D1, D1L30 and D1L70 are compared
for three thresholds of Cth = 2, 3 and 4. Although NIR varies with Cth, the temporal
variations of NIR are qualitatively similar for all Cth. Therefore, the increase in the number
of vortices due to the perturbations in D1L30 can be observed regardless of the threshold.
Finally, the effects of the perturbations are also examined for the vortices detected with
the second invariant of ∇u, Q = (ijij − SijSij)/2, for which the region of Q > Qth is
identified as vortices. Here, Qth is determined such that the number of detected vortices,
NQ, is the maximum. Figure 18(c) plots NQ with time. As also found for the vortices
identified with IR, more vortices appear in D1L30 whereas the number of vortices is not
influenced by the perturbations in D1L70. These results confirm that the increase in the
number of vortices in D1L30 is a physically meaningful result and is not an artefact due
to the vortex identification methods.

Figure 19 visualises the evolution of one of the shear layers. The shear layers (white)
and vortices (orange) are visualised with the isosurfaces of IS and IR, respectively.
Figures 19(a–d) and 19(e–h) show the results of D1 and D1L30, respectively. A large shear
layer is observed at t = 0 in both cases (figure 19a,e). As this shear layer evolves with time,
vortex A appears in D1L30 in figure 19(g). The shear layer which generates vortex A is
disappearing in figure 19(h). However, this shear layer keeps its flat shape for a long time
in D1, where no perturbations are added to the initial velocity. In figure 19(d,h), vortex B
also fully develops from the shear layer in D1L30 whereas this vortex is still developing
in the shear layer in D1. A comparison between figures 19(c,d) and 19(g,h) suggests that
the lifetime of the shear layers is shortened by the perturbations. The vortex formation
from the shear layers naturally occurs in turbulence (Vincent & Meneguzzi 1994; Passot
et al. 1995; Watanabe et al. 2020). This process visualised in Watanabe et al. (2020) looks
similar to the evolution of the shear layers and vortices in figure 19(e–h). Therefore, the
perturbations in D1L30 do not directly destroy the shear layers at t = 0 but promote the
vortex formation from the shear layers.

Figure 20(a) shows the variations of the number of vortices identified with IR for D2,
D3, D2L30 and D3L30. Here, the threshold is determined as IRth = Cth〈IR〉 with Cth = 3.
Because the vortices are small-scale structures characterised by the Kolmogorov scale,
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Figure 19. Temporal evolutions of shear layers and vortices, which are visualised with the isosurfaces of
IS/〈IS〉 = 2 (white) and IR/〈IR〉 = 6 (orange), respectively. The colour contour of IS is shown on the surface of
the visualised domain. (a–d) Unperturbed case D1 and (e–h) perturbed case D1L30. Time increases from left
to right as (a,e) t/τη0 = 0, (b, f ) t/τη0 = 2, (c,g) t/τη0 = 4 and (d,h) t/τη0 = 6.
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Figure 20. Temporal variations of (a) the number of vortices, NIR , in D2, D2L30, D3 and D3L30 and (b) a
ratio of NIR between the perturbed and unperturbed cases.

which becomes small with increasing Reλ, NIR increases from D1 to D3. However, the
effect of the initial perturbations is similar for all Reynolds numbers, and NIR in the
perturbed cases with λf /η ≈ 30 becomes large compared with the unperturbed cases.

Figure 20(b) shows the variations of the ratio of NIR between the perturbed and
unperturbed cases. The results for sinusoidal and random perturbations are also compared
in the figure. For both perturbations, the ratio exceeds 1 for λf /η ≈ 30 (DnL30 and
DnL30R), and the increase in the number of vortices is observed for this wavelength
regardless of the Reynolds number and the types of perturbations. Because the shear
layers are located almost randomly in the flow, the relative positions of the shear layers to
the peak of sinusoidal perturbations are not constant. Therefore, the effects of sinusoidal
perturbations are similar to those of random velocity perturbations. As the number of
vortices increases, the ratio reaches a peak at t/τη0 ≈ 7 and then decays with time.
The time corresponding to the peak hardly depends on the Reynolds number when
the Kolmogorov time scale is used for normalisation. Therefore, how the perturbations
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Figure 21. (a) The number of vortices NIR in decaying turbulence initialised with a band-cut filtered velocity
field and an original velocity field of isotropic turbulence. The ratio of NIR between the filtered and original
cases is also shown for comparison. The vortices are detected as regions of IR � Cth〈IR〉 with Cth = 3, where
〈IR〉 is evaluated with D3. Visualisation of shear layers (white) and vortices (orange) at t/τη0 = 6 in (b) D3 and
(c) D3L30F. The isosurface values are the same as in figure 19.

affect the shear layers is a small-scale process whose time scale is characterised by
the Kolmogorov time scale. Visualisation of the temporal evolution of small-scale shear
layers in isotropic turbulence has shown that the natural roll-up of the shear layer is also
completed within about five times the Kolmogorov time scale (Watanabe et al. 2020).
This time scale of the roll-up is close to t/τη0 ≈ 7, at which the ratio of NIR reaches
the peak in figure 20(b). The peak value at t/τη0 ≈ 7 is about 1.07 for D1L30, D2L30
and D3L30 despite the difference in the Reynolds number. For these cases, the amplitude
of perturbations, uf , is determined based on the Kolmogorov velocity scale uη as 1.0uη

whereas uη/urms decreases with the Reynolds number. Therefore, the increment in the
number of vortices for a given wavelength depends on uf /uη. Because uη decreases with
the Reynolds number, less turbulent kinetic energy is required for the perturbations to
cause an increase in the number of vortices at a higher Reynolds number. A comparison
among the series of D1 suggests that NIR increases as uf /uη becomes large. For uf /uη =
1.4 in D1L30u2, NIR increases by more than 10 % from the unperturbed case. The increase
in the number of vortices does not occur in D1L70, for which the ratio stays around 1.
These results are consistent with the response of the isolated shear layer to perturbations in
§ 3: the vortex formation rapidly occurs with the perturbations with λf /η ≈ 30 estimated
with λf /δS ≈ 7.2 and δS/η ≈ 4 while those with a larger wavelength are not efficient in
promoting the vortex formation.

The above results have shown that the external perturbations with a wavelength of
30η promote the vortex formation from shear layers. The results for decaying turbulence
initialised with a filtered velocity field explained in § 4.2 are presented to examine
whether the shear instability in turbulence is promoted by internal velocity fluctuations
with this wavelength. Figure 21 compares the variations of the number of vortices NIR
for D3, D3L30F and D3L140F, together with the ratio of NIR between the filtered and
original cases. The initial velocity fields of D3L30F and D3L140F do not contain velocity
fluctuations with wavelengths of 30η and 140η, respectively. A comparison of three cases
shows that NIR in D3L30F is smaller than those in the other cases, suggesting that fewer
vortices are generated by the shear instability when the velocity fluctuations with a length
of 30η are damped by the filter. The reduction of NIR is not significant in D3L140F.
Figures 21(b) and 21(c) visualise one of the shear layers and nearby vortices in D3 and
D3L30F, respectively. Both figures visualise the same region of the computational domain
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Figure 22. A mean flow field around shear layers in the initial velocity field of D3L30F, which is generated by
applying the band-cut filter with the cutoff length of λf = 30η to isotropic turbulence. (a) Mean shear intensity
IS and mean velocity vectors and (b) mean intensity of rotating motion IR on the ζ2–ζ3 plane at the centre of
shear layers (ζ1 = 0).

at t/τη0 = 6, at which the reduction of the number of vortices is observed in D3L30F. The
shear layer in figure 21(b) is being broken and a vortex has been generated at the centre of
the shear layer. This shear layer has a flat shape in D3L30F without generating the vortex.
Thus, the shear layer can survive a long time when the velocity fluctuations with 30η are
damped in the initial field. These results confirm that turbulent motions with a length of
30η play a dynamically important role in vortex formation by small-scale shear instability.

The flow field around shear layers in the initial filtered velocity field of D3L30F is
investigated by taking conditional averages around the shear layers. For each shear layer
detected by the method described in § 2, variables on the DNS grid are interpolated on
the shear coordinate (ζ1, ζ2, ζ3). Then, the ensemble averages of many shear layers are
calculated as functions of (ζ1, ζ2, ζ3). This average is denoted by an overline, e.g. IS.
Figure 22 shows the mean intensities of shear and rotation, IS and IR, around the shear
layers in the initial field of D3L30F. The averages are shown on the ζ2–ζ3 plane at ζ1 = 0.
Figure 22(a) also shows the mean velocity vectors. The results for original isotropic
turbulence were presented in Watanabe & Nagata (2022). The shear is associated with
the mean flows in ±ζ3 directions on the sides of the shear layer with large IS centred
at (ζ2, ζ3) = (0, 0). In figure 22(b), four approximately circular regions with large IR are
found around (ζ2, ζ3) = (0, 0). Two of them are located within the shear layer on ζ2 = 0
whereas the others appear on the sides of the shear layer. Similar rotating motions were
also identified in the mean flow pattern in the strain eigenframe (Elsinga & Marusic
2010). The profiles of IS, IR and mean velocity hardly differ from isotropic turbulence
(Watanabe & Nagata 2022) even though the present results are obtained for the filtered
velocity field, for which the instability of shear layers is inhibited. It is implied that rotating
motions around the shear layers are not related to the velocity fluctuations which promote
small-scale shear instability.

The effects of the increase or decrease in the number of vortices are examined for
the kinetic energy dissipation rate ε = 2νSijSij. Figure 23(a) compares the temporal
variation of the averaged dissipation rate 〈ε〉 for D3, D3L30 and D3L30F. The shear
instability is promoted and inhibited in D3L30 and D3L30F, respectively. For t/τη0 ≤ 10,
the dissipation rates in D3L30 and D3L30F are larger and smaller than that of the original
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Figure 23. (a) Temporal variations of averaged kinetic energy dissipation rate 〈ε〉 normalised by the initial
value ε0 in D3, D3L30 and D3L30F. (b, c) Probability density function of ε at t/τη0 = 5.

case, D3. Thus, when the initial velocity field is modified such that the shear instability
is promoted, the dissipation rate also increases whereas the opposite effect is found
when the instability is inhibited. The increase in the number of vortices results in more
small-scale shear layers. Although for the local fluid motions considered in the triple
decomposition, both shear and elongation contribute to the rate-of-strain tensor, the shear
has a greater contribution to SijSij than the elongation (Nagata et al. 2020). Therefore, a
large dissipation rate in D3L30 can be explained by the increased number of shear layers.
For t/τη0 � 10, an opposite trend for 〈ε〉 is observed: 〈ε〉 for the perturbed and filtered
cases is smaller and larger than that for the original case. The enhanced dissipation in the
perturbed case results in a rapid decay of turbulent kinetic energy at small scales. Then,
there is less kinetic energy to be dissipated at a late time when the perturbations are added,
and therefore 〈ε〉 can be small. Figure 23(b,c) compare the p.d.f. of ε at t/τη0 = 5 for the
three cases. In figure 23(b), a logarithmic scale for ε is used to compare the probability
distribution for small ε. The p.d.f. suggests that small ε is less frequently observed when
the perturbations are added in D3L30. The peak of the p.d.f. for the filtered velocity in
D3L30F is larger than that in D3, and the probability to observe small ε increases in
D3L30F. The p.d.f. for relatively large ε is shown in figure 23(c). The probability to
observe large ε increases and decreases when the velocity fluctuations with a length of
30η are added and damped, respectively.

Figure 24 shows the p.d.f. of the production rates of enstrophy and strain at t/τη0 = 5
in D3, D3L30 and D3L30F. The enstrophy production and strain self-amplification are
written as Pω = ωiSijωj and PS = −SijSjkSki, respectively. The overall distribution of the
p.d.f. is similar for all cases. However, the profile becomes slightly wider and narrower for
D3L30 and D3L30F, respectively, than for D3. The insets confirm that the p.d.f. for large
Pω and PS increases when the shear instability is promoted by the perturbations whereas
the opposite effect is found when the instability is inhibited. Consequently, the averages
of Pω and PS increase by 20 % by the perturbations in D3L30 and decrease by 4 % by the
filter in D3L30F. Shearing motions have dominant contributions to Pω and PS (Watanabe
et al. 2020). The increases of 〈Pω〉 and 〈PS〉 by the perturbations are also explained by the
increased number of shear layers, which can be generated by vortices.

5. Conclusions

The response of small-scale shear layers to velocity perturbations has been studied
with the analysis of shear layers in isotropic turbulence, numerical simulations of a
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Figure 24. Probability density functions of (a) enstrophy production Pω = ωiSijωj and (b) strain
self-amplification PS = −SijSjkSki at t/τη0 = 5 in D3, D3L30 and D3F30F. The production rates, Pω and
PS, are normalised by their initial mean values denoted by Pω0 and PS0.

perturbed isolated shear layer in a biaxial strain field and DNS of decaying turbulence.
As summarised below, vortex formation from the shear layers in turbulence is efficiently
promoted by velocity fluctuations with a wavelength of approximately 30η, which is the
most unstable wavelength for the instability of small-scale shear layers.

The thickness δS and velocity jump uS of each shear layer have been examined with
DNS of isotropic turbulence. The typical shear layers have δS/η ≈ 4 and uS/uη ≈ 5
regardless of Reλ. Many shear layers have the shear Reynolds number of ReS = δSuS/ν ≈
20 although ReS ranges approximately from 10 to 70. Furthermore, the equilibrium relation
between a strain rate and the layer thickness of Burgers’ vortex layer is valid for most shear
layers with ReS ≈ 20.

Numerical simulations have been carried out to investigate the development of an
isolated shear layer with a finite aspect ratio AR. The model considers a shear layer
subject to a biaxial strain, which is observed in the mean flow field around shear layers
in turbulence (Watanabe et al. 2020; Hayashi et al. 2021a). When the aspect ratio is small,
the self-induced velocity of the shear layer causes the roll-up of the layer and generates a
vortex. On the other hand, the shear layer with large AR is simply distorted without vortex
formation if no perturbations are added. Perturbations can trigger the vortex formation
in the large-AR shear layer, as also observed for a parallel shear flow with AR → ∞ in
previous studies. For both cases of large and small AR, the vortex formation is promoted
by the perturbations whose wavelength Λ divided by the layer thickness δS is Λ/δS ≈ 7,
where δS is the half-width of shear intensity. The perturbations with smaller or larger
wavelengths are not efficient in promoting the instability and sometimes delay or inhibit
the vortex formation.

Many small-scale shear layers in turbulence are expected to be significantly influenced
by perturbations with a wavelength of about 30η, which is estimated from the typical
thickness of small-scale shear layers in turbulence and the perturbation wavelength which
is efficient in promoting vortex formation of the isolated shear layer. The response of
turbulence to artificial velocity perturbations has been investigated with DNS of decaying
turbulence initialised by superimposing solenoidal velocity perturbations with a length
scale of λf on isotropic turbulence. The number of vortices increases under the influence
of perturbations with λf /η ≈ 30, which promote the vortex formation from shear layers
while the shear layers can survive for a longer time without the perturbations. The number
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of vortices remains unchanged for perturbations with λf /η ≈ 70. How the perturbations
affect shear layer development is a small-scale process whose time scale is given by the
Kolmogorov time scale. These results are consistent with numerical simulations of the
isolated shear layer, where perturbations only with a certain wavelength can promote
vortex formation. The amplitude of velocity perturbations uf affects the increment in the
number of vortices, which is more relevant to the ratio of uf to uη rather than that to urms.
As uη/urms decreases with a Reynolds number, less turbulent kinetic energy is required
for the perturbations to cause an increase in the number of vortices at a higher Reynolds
number. For the present DNS, the number of vortices increases by more than 10 % when
uf is 1.4uη. The shear layers are generated or sustained by energetic motions induced by
the vortices (Watanabe & Nagata 2022). In addition, shear layer is split into more than one
shear layer during the roll-up (Passot et al. 1995; Watanabe et al. 2020). Therefore, more
shear layers appear in turbulence when the perturbations increase the number of vortices.
The external perturbations which promote the shear instability also enhance the kinetic
energy dissipation, enstrophy production and strain self-amplification because these are
significantly enhanced by shearing motion.

DNS of decaying turbulence has also been carried out with an initial condition obtained
by applying a band-cut filter to isotropic turbulence. When the velocity fluctuations with a
wavelength of 30η are eliminated, the shear layers tend to persist for a long time, resulting
in fewer vortices. The reduction in the number of vortices does not occur when the filter
is applied to an energy-containing length scale. Thus, turbulent motions with a length of
30η play a dynamically important role in vortex formation by small-scale shear instability.
Vortices frequently appear near and within shear layers (Horiuti & Takagi 2005; Elsinga &
Marusic 2010; Watanabe & Nagata 2022; Nakamura et al. 2023). However, the filter that
leads to the suppression of the shear instability does not affect these vortices. Therefore,
rotating motions observed around the shear layers are not directly related to the velocity
fluctuations which efficiently promote the shear instability.

The present study has confirmed that perturbations with the unstable wavelength of
small-scale shear instability can efficiently modulate small-scale turbulent structures. The
effects observed for the number of vortices can be important in many phenomena related to
vortices in turbulence. One of the examples is turbulent entrainment in intermittent flows
such as jets, mixing layers and boundary layers, where a turbulent/non-turbulent interface
appears between turbulent and outer non-turbulent regions (da Silva et al. 2014). Previous
studies of the interface have revealed that small-scale vortices near the interface are
relevant to the local entrainment of non-turbulent fluids (Mathew & Basu 2002; Holzner
& Lüthi 2011; Taveira & da Silva 2014; Watanabe et al. 2016, 2017a; Neamtu-Halic et al.
2021). The increase in the number of vortices by perturbations will be possibly important
in the enhancement of entrainment by external disturbance. Further investigations are
required for future applications of small-scale shear instability to turbulence modulation.
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