
Canad. Math. Bull.Vol. 35 (1), 1992 pp. 46-55 

A PROBABILISTIC APPROACH TO GRADIENT ESTIMATES 

M. CRANSTON 

ABSTRACT. Suppose u is a harmonic function on a domain D and x, x! are in D. We 
estimate \u(x) — u(xf)\ using two Brownian motions started at x and xf and killed on 
exiting a cube Q C D. By selecting appropriate versions of the two Brownian motions, 
a classical gradient estimate for u is easily derived. 

0. Introduction. This note is motivated by an idea of Lindvall, Rogers [5] on the 
coupling of diffusion processes. The authors constructed two diffusions Xt and X't begun 
at x and x1, respectively, where X and X! share a common generator L. Their processes 
are coupled, i.e., Xt — X't for all t after T — inf {t > 0 : Xt = X't}. Those results were 
concerned with the construction of a successful coupling of two diffusion processes, i.e. 
one for which P(T < oo) = 1. Our work rests in estimating the probability of a coupling 
being unsuccessful. These probability estimates can yield gradient estimates for the har
monic functions for the diffusion in question. We treat the case of Brownian motion in 
Euclidean space and obtain well-known basic gradient estimates for classical harmonic 
functions. These gradient estimates are the starting point of the Schauder estimates. 

It is also quite easy to obtain gradient estimates when the Laplacian is perturbed by a 
linear first order term. For this method on manifolds, see Cranston [1] and for an appli
cation to the Schrôdinger equation, Cranston and Zhao [3]. 

The author would like to thank R. Durrett for the suggestion to consider coupling to 
obtain gradient estimates. Also, it is a pleasure to thank T. Liggett and N. Varoupolos for 
their encouragement and instruction. 

1. The Couplings. For our probability space we take Q>, the space of continuous 
functions with values in Kd. Given a generator L, ((X,X'),F*X^) will denote a pair of 
diffusions X and X' which have generator L under P^^ and P(x^\Xo — x, X'0 — x1) — 1. 
Furthermore, setting T = T(X,X') = inf {t > 0 : Xt = X't} we will set X't = Xt for 
t > T, i.e. X! will couple with X at T. For arbitrary couplings, T will not be a stopping 
time for X or X' but one nice feature of the coupling of Lindvall-Rogers is that T is a 
stopping time. We describe the Lindvall-Rogers coupling for diffusions on R d. For a an 
invertible, smooth, bounded d x ^-matrix valued function of (t,x) G [0, oo) x Kd and b 
an R ̂ -valued function on R^, Xt will satisfy the s.d.e. 

dXt = a(t,Xt)dBt + b(Xt)dt, XQ = x. 
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The idea now is to construct an 0(d)-valued process (0(d) = orthogonal d x d matrices) 
Ht = H(t,Xt,X't) and X't so that if dB't = HtdBt, then B' is, of course, a d-dimensional 
Brownian motion, BM(Kd), and X't solves 

dX!t = a(tX)dB!t + b(X't)du X'0 = J 

until T(X, X') after which X't is set equal to Xt. The process Ht is obtained by first setting 

y = y(x,xf) = x — x1 

u(t, x,x) — 
IcW-iy] 

and 
H(t,x,x!) — I-2u(t,x,x!)u(t,x,xf)T. 

Then //, = H(t,XuX!t). As remarked in Lindvall-Rogers, H is reflection in the plane 
orthogonal to a(t,x/)~ly. Our only use of this particular coupling will be in the cases 
o = I and at — e~tA where A is a constant d x d matrix. In the first case the coupling 
has the following simple description. Let P be the hyperplane perpendicular to the line 
through JC and x1 with ^f- £ P. Run Xt — Bt and then X't is simply Xt reflected in P. For 
this pair T(B, B') = op = inf {t > 0 : Bt E P} is obviously a stopping time. In the 
second instance, we will take ot = e~tA, start with 

dZt = e~tAdBt , ZQ=X 

and apply the above construction. It is interesting to observe that T = T(X,X') is a 
stopping time. Notice that since a is invertible 

dBt = a~l(Xt)dXt - a-l(Xt)b(Xt)dt. 

Thus B is recovered from X and a (Bs : s < t) = a(Xs : s < t) and a stopping time 
for one of X or B is a stopping time for the other. Since X, X1 and therefore H(X, X') are 
predictable functional of B, T(X,X') is a stopping time for a(Bs : s < t). Therefore, 
T(X, X') is a stopping for X and similarly for X'. 

2. Harmonic functions. This section is devoted to a probabilistic derivation of clas
sical gradient estimates for solutions of Poissons equation | A u = / in a Euclidean 
domain D. The estimates also almost trivially extend to constant coefficient elliptic op
erators. 

We begin with the coupling by reflection method of Lindvall, Rogers [5]. As in the 
previous paragraph, given two starting points JC, JC7 G R d and a Brownian motion B with 
Bo — x construct another BM(Kd)y B' with B0 = x! by reflecting B in the hyperplane 
normal to the segment between x and x! and half way between the two. Then with T — 
inf{t > 0 : Bt = B/

t} we have 7 = a>. Also for a subset Q Ç Kd define rg = inf {t > 
0:Bt^Q},r^ inf {r > 0 : B't <£ g } . For JC G D Ç R/ define^ = dist (x,Dc) and 
for a function defined on Q, osc w = sup u — inf w. 

Ô g <2 
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THEOREM 1 . Let u solve \Au = f on D. Then with 

Q={y: 5?x I**-#1 < -sx} 
\<i<d Z 

we have 

| V u(x)\ < T o s c u + T^JC OSC/. 
OJC ô 4 ô 

/ffr /s a vector field on D with \ b(x)\ < m and \ b{x) — b(y)\ < m\x — y\ for all x, y and 
\ Au(x) + b(x) • V u(x) = 0, x G D, then there is a constant c — c(m) such that 

\Vu(x)\ < 2(1+c/Sx) osc u. 

The next Corollary is a well-known consequence of the above and Harnack's inequal
ity. 

COROLLARY 2 . There is a positive constant c such that if^Au = 0 on D and u > 0 
then 

c 
| V W(JC)| < —u(x) . 

Ox 

PROOF (OF THEOREM 1 ) . Given JC, x/ e D with | x-x* \ < ^ , define the cube (slightly 
different from that in the Theorem but still denoted by Q) 

Q={y:vg*\y, — | < -}. 

Notice that TQ = T'Q. Using the Lindvall-Rogers coupling and Ito's formula 

\u(x) - u(x')\ < \&x^ [u(BTQ) - M(#T,)] | + \E^ j0
TQ(f(Bs) -f(B?s))ds\. 

In the first expectation on the right hand side, u(BTQ) — U(B'T, ) ^ 0 only on the set 

{ T > TQ} . Similarly, the integrand inside the second expectation is only nonzero on 
<j>:0< s< TA TQ}. Thus, 

|u(x) - u(x')\ < ( osc u\ P^\T > TQ) + ( osc/J ^ \ T A TQ] 

So it remains to prove the estimates 

a) PL*J\T > TQ) < ^ L 

b) &X^[TATQ]<\\X-J/\6X. 

These will be done by a reduction to a one-dimensional problem. Set Jc = ^- and 
define 

Q^{yeQ:(y-x)-(x-x)>0}y 

L={yedQ:(y-x)-(x-x) = 0} 

S={yedQ\L:\(y-x)^(^\<6f} 
\x — x\ 2 

U= dQ\(SU L) 
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the upper half of Q, its lower, side and upper boundary, respectively. Then 

P^\T > TQ) = P(xy\BTô £L). 

As a preparation for the case of general d, we proceed to estimate the latter probability 

in d = 2. For d = 2 then, put M = lyEQ: ' ^ j ^ 1 = ^r} ( t h e u n i o n o f t h e l i n e 

segments from x to the endpoints of U) and a M = inf {t > 0 : Bt G M}. Then 

and 

^\BTÙ #L) = p(xy\BTù eu) + P(X^\BTÙ G S) 

P{X^\BTÙ es) = P(xy) (PB^(BTÙ G S); aM < rô)) 

< p(xS) (p»oM{fir^ eU);aM< TÔ)) 

(which holds by symmetry) 
< / ^ (BTÙ G U) 

and so 
D(xy)(BTô #L) <2P{x^ P{x*\BTù £L)< 2P(x*\BTù G U). 

Next put 5; = { y G R 2 : 0 < (y - x) • j^f [ < | } , the smallest slab containing Q and 

y — J y £ 9s7 : (y — x) • T^5|- = ^ >. Then, in view of the previous inequality, 

P(xy\BTù <£L)< 2Pix^\B^ G V) 

_ 2\x-x'\ 

Sx 

since P^x,x>\BTsf G V) is the probability that a one-dimensional Brownian motion started 

at ^f- leaves [0, f ] at | . This proves a) for d = 2. For d > 3, set S' = {y G Rd : 

O 7 - •*)• ifzfr < f } and V = jy G 35' : (y — x) • 7^4- < ^ J. Assume, for convenience, 

that the axes are selected so that xt = JCJ for / = 2, • • •, d. Define A \ = { BTs> G V} and 

for 2 < / < d, Ai = { | (B — x)i\ exceeds 6X/ 2 before T&} . Then, proceeding as in the 

case d = 2, we have 

^)(Aj)<(liL_il)y^/2) j = 1,2,- • • ,d . 

Thus, 

/ = 1 "X 

and so 

^\T>rQ)<d^i^. 
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Turning to b), for any d > 3, 

^xy)[TATQ] = ^)[rô] 

<E<X^[TS>] 

I JC—y i ( tx \x—jj\ 
= 2 [~2 2~~ 

where again the penultimate quantity is the expected time for a one-dimensional Brow-
nian motion to exit [0, ̂ ] when started at ^-k That proves b). 

With a) and b) proved, 

ijc —yi r \ i r \ 
| u(x) — u(x)\ < d— osc u + -6x\x — x\ \ ose f 
1 ' ~ Sx V Q J 4 x] ' V Q J 

and consequently 
d 1 

V u(x)\ < T~ o s c u + 7 ^ OSC/. 
0X Q 4 Q 

We now show how the method also handles L = ^A+ £(•)• Take two diffusions X and 
X' with Xo = JC, XQ = x/ as described in Section 1. That is, take a — /, then 

dXt = dBt + /?(Xr)df 

dX't = dBf
t + Z?(X;)Jr, 

where {#'} is just {#,} reflected in the hyperplane P as in the case b = 0. A short 
calculation with Ito's formula shows that there is a BM(K), by such that 

d\Xt - X;| = 2dbt + 11^ I ^ | .HXt) - b(X^ dt, 

IXQ-X^I = \x-x'\ . 

Recall that we assume 

\b(x) — b(y)\ < m\x — y\, x,y G D and \b(x)\ < m , x £ D . 

Then, to obtain a gradient estimate for a solution Lw = 0 in D, we must estimate, with Q 
as in Theorem 1, 

P^\T(X,X') > TQ(X) A TQ(X')) . 

Notice first if a^ — mï{t > 0 : \Xt — X't\ — 6X}, then this probability is equal to 
P ^ ( r ( X , X ' ) > rQ(X) A TQ(X') A as). 

This probability is smaller than 

P(V)(7XX,X') > rô(X) A as) + P(xy\T(X,X') > rQ(Xf) A a6) . 

Focusing on the first term we use two one-dimensional comparison theorems applied to 
| X , - x ; | and|X,-JC| . Since 

d\Xt -x\= dwt + ^ r - rdt + —-—^rb(Xt)dt 
Z\At — X\ \At — X\ 

https://doi.org/10.4153/CMB-1992-007-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-007-6


PROBABILISTIC APPROACH TO GRADIENT ESTIMATES 51 

and in view of the equation for \Xt — X't\ we consider 

dpt = 2dbt + Imptdt, po = \x — xf\ 

dm — dwt + ——dt + mdt, 770 = 0 
2r]t 

where b and w are the same BM(R )s appearing in d\Xt — X't\ and d\Xt —x\, respectively. 
Then a.s. from one-dimensional comparison theorems 

\Xt-X
f
t\<pt, Vf, 

\Xt-x\ <Tit, Vr, 

Consequently, if a^(p) = inf{f > 0 : pt > 6X} then 

T(X,X') < inf{t > 0 : pt = 0} = CT0(P) 

TG(X) > inf{/ > 0 : 77, > Sx/2} = ^ / 2(iy) 

and 

crs(p)< as . 

Thus, 
/ ^ (TXX,* ' ) > rfi(X) A ^ ) < ^ V o ( p ) > a6/2(rj) A M p ) ) 

where we have used the superscript (po,0) to indicate the starting position for (pt,rjt). 
The probability on the right hand side is the probability that (p, 77) at time r = inf{ t > 
0 : pt & (0,6) or rit g (0,6/2)} is in the set A = {(p,rj) : 77 = 6/2,0 < ip < 
6}\j{(p,r]) : 0 < 77 < 6/2,p =6}. That is we need to estimate £^0'0)lA(pT,77T). 
Consider the function 

[ 1 , 0 < p <6,36/S< 77 <6/2, 

g(p,ri)= < 1(6 _ p )
1 + s i n ( ( ^ - D f ) + p U - i ; 0 < p<6,6/8< 77 < 36/S, 

[p, 0< p<6,0< rj <<5/8 . 

Then g(p,n)> lA(p, 77) so £^°'0)g(pT,rjT) > &p0>°hA(pT,r]T). By Ito's formula, writing 
ctdt — 2d < b, w >t, with \ct\ < 2, 

^0)g(pT,r]r) = 

g(po,0) + E<^Jo
T 

2gpp + 2mptgp + -gnn + 
1 

277 + ra gr, + Ctgpr, dt. 

But,^pp = 0,|gp | < 1 A ^ - M g , | <2f andg , -Ofo rO<77<^ /8 , and | g r 7 r / | ^ f £ , 
U,„| <ff.Thus, 

&PMg(Pr, TJr) < g(po, 0) + ^£«*'0V . 

An easy comparison shows £^° '0 )T < EPoas(p). Note w(0 = E?as(p) solves the 
boundary value problem 

2w + 2mtu = — 1 

w(0) = w(«) = 0 . 
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Thus 

1 rt -jnr^ \ çb - ^ 2 ÇU ^ f rè _ ^ A ~~ * rr mu2 I 

u(t) — - e 2 \ e 2 e 2 d s \ e 2 d u \ du — e 2 du\ dr 

so u(p) < \ • e~^~p6. Also, by definition g(p0,0) = po-
Thus, 

P^\T{X,X') > rQ(X) A as) < ( l + ^ ) p0 

and since po — |* — x7] 

P ( V ) (T(XJ ' ) > rQ(X) A TÔ(X')) < 2 (l + ^ |JC - y | . 

Thus, if ^ Aw + b(-) • V w = 0 in D 

| VW(JC)| < 2 | 1 + ^ - ] osc u. 

V <W Q 

This completes the proof. • 

REMARKS. (1) The constants d and \ in Theorem 1 appear to be the correct ones 
(compare with Gilbarg, Trudinger [4], p.37.) 

(2) Elliptic operators L — aij^g with constant coefficients can be easily handled 
with this method. If GOl = a for a constant matrix a, then the diffusion with generator 
L is Xt — oBt with B a BM(Kd). To couple X with another such diffusion X' just couple 
B and Bl and take X' = aB'. 

(3) Higher order derivatives might be handled by coupling many particles. We give a 
brief account of this for d2u/ dxf. Let 

e = — and observe that 
OXi 

yd
2u 

u(x + he) + u(x — he) — 2u(x) = h2zr^ + o(hz) . 
axf 

Take Q to be a cube with center x, diameter 5* and such that the line x + te intersects the 
boundary of Q in a right angle. 

Begin a BM(K d), X, at x-\-he and use the Lindvall, Rogers reflection to produce another 
BM(Rd),Z, beginning at x - he. For the third BM(Kd), Y, begun at x, we take (F, e) to 
be a £M(R ) independent of (X, e) and for (*?,/) - 0 take (7,/) = (X,/). Then with 

r = inf{f > 0 : X, g g or K, £ Q or Z, g g } 

w(x + he) + W(JC - he) - 2u(x) = E[u(XT) + M(Z,-) - 2w(yr); 7(X, Y) > r , 7(y,Z) > r ] 

+ £[w(Xr) - «(Z,); T(X, F) > r , 7(7, Z) < r ] 

+ E[u(Zr) - u(XT)\ T(X, Y)<T, T(Y,Z) > r ] . 
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It is not too difficult to show that 

P(T(X,Y)>T,T(Y9Z)>T)< 
ch2 

ii 

What is a little surprising is that by symmetry of Y in the e direction, the last terms cancel 
one another. Thus, 

i . h2 

I u(x + he) + u(x — he) — 2u(x)\ < c— supu 
sx Q 

and consequently, 
d2U 

< —r SUp U 
Ot n 

3. Operators with linear drift. In this section we derive gradient estimates for 
Ornstein-Uhlenbeck operators on R d. Let A be a d x d constant matrix with eigenvalues 
Xw -Xd which satisfy 

ReXi <ReX2 < <ReXd. 

Set L = \ A +Ax - V- The corresponding diffusion started at XQ — x is given by 

Xt = etA(x + J^e-sAdBs\ 

These operators were studied in Cranston-Orey-Rôssler [2] and March [6] and may have 
many bounded solutions Lu = 0. A coupled copy X't of Xt begun at x! is given by 

X't = e*(x' + £e-^s) 

Thus T(X,X') = T(Z,Zf) where Zt = x + % e~sAdBs, Z't = x1 + So e~sAdB's. 
We recall the Lindvall-Rogers method for coupling in this situation. Set 

The idea again is that the Brownian motion driving Z! will have increments which are an 
orthogonal transformation of the increments of the Brownian motion B which drives Z. 
The transformation at time t is given by 

Ht = I-2UtUj = H(Zt,Z't) 

so dtit = HtdBt. 

Now, (see Lindvall-Rogers for details) simple computation shows that with 

at = 2atUtUj 

then 

d{\Yt\) = aJVtdBt. 
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That is, \Yt\ is a martingale with 

d(\Y\)t= \aJVt\
2dt= A ^ du 

\°t *t\ 

Since crt
 l = etA, 

As a result, 

1 V | 2 wrYt 
\yt\

2 
<e 2Re\dt 

4e-2Re\dt < 
d(\Y\), 

dt 

With the intention of time-changing, consider rt defined by 

*=£d(\Y\), 

so that Wt = | Y\Tt is now Brownian motion started at | JC — x*\ up to £ = J^ J( | Y\ ) t . By 
the bound on d( \ Y\ )f, a.s. 

2 <c 
/teAd 

and the upper bound now gives us, 

P(V)(7XZ,Z') = oo) = P ( V ) (| Yt\ ± 0 for all t) 

= P ( x y ) (W, ^ 0 for all f < C IW0 = | * - x\ ) 

< pO^) (Wo for all r < 
/teAd 

W0 \X-A) 

= ^ ) \ sup Wr < \x-x\ \W0 = 0 
0 < K T 

= P ^ ( W_i_ < | JC - x'\ | W0 = o ] , by reflection principle 

= P u y ) ( | W, | < J ^ | x - x'\ I Wo = 0) by scaling 

< 
/teAw 

S N ^ - JC — JC i 

This leads us to 

THEOREM 2 . Suppose A is a constant dxd matrix with 0 < ReX^, À, the eigenvalues 
of A. Then ifLu(x) = \ A u(x)+Ax\7 «W = 0 for all x e Rd and u <E L°°(Kd) we have 

|V«WI < V^MMI 

https://doi.org/10.4153/CMB-1992-007-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-007-6


PROBABILISTIC APPROACH TO GRADIENT ESTIMATES 55 

PROOF . Given x take another x1 nearby and consider Xt = éAZt, X't = etAZ't with 
Zu 7!t as above. Then T(X, X') — T(Z, Z!) — T is a stopping time and applying the optional 
sampling theorem at T A t 

\u(x) 

on letting t —-> oo , | u(x) 

REMARK. Re\d gives the maximal rate of dispersion, so to speak, of the diffusion 
X. Thus the faster particles separate (with ReXd large) the bigger the gradients will be for 
the corresponding "harmonic" functions. 

REFERENCES 

1. M. Cranston, Gradient estimates on manifolds using coupling, Jour. Func. Anal. 
2. M. Cranston, S. Orey and U. Rosier, The Martin boundary of two-dimensional Ornstein-Uhlenbeck pro

cesses, Probability Statistics and Analysis. Kingman and Reuters, eds., London Math. Soc. Lect. Notes, 
79(1983), 63-78. 

3. M. Cranston and Z. Zhao, Some regularity results and eigenfunction estimates for the heat equation, to 
appear, Progress in Probability, Birkhàuser. 

4. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer- Verlag, 
New York (1977). 

5. T. Lindvall and L. Rogers, Coupling of multi-dimensional diffusions by reflection, Ann. Prob. 14(1986) 
860-872. 

6. P. March, Fatou's theorem for the harmonic functions of two-dimensional Ornstein-Uhlenbeck processes, 
Comm. Pure Appl. Math., 38 (1985), 473-497. 

Department of Mathematics 
Ray P. Hylan Building 
University of Rochester 
Rochester, New York 14627 
USA. 

- u{x')\ < \^\u(XTM) - u(X'TM))\ 

- u{x')\ < iWuWooP^iTiX^) = oo) 

< yJlReXdWuWoo. 
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