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1. Introduction

Let K be an open convex domain in ^-dimensional Euclidean space,
symmetric abcut the origin 0, and of finite Jordan content (volume) V.
With K are associated n positive constants Xx, X2, • • •, Xn, the 'successive
minima of K' and n linearly independent lattice points (points with integer
coordinates) Px> P2, • • •, Pn (not necessarily unique) such that all lattice
points in the body X5K are linearly dependent on Plt P2, • • •, Ps-x- The
points P1, • • •, Pj lie in XK provided that X > Xr For / = 1 this means
that XXK contains no lattice point other than the origin. Obviously

0<X1^X2^--- ^Xn.

The inequality of Minkowski which we are going to prove is

V 2 • • • K V ^ 2n.

This is best possible, e.g. when K is a parallelopiped with sides parallel
to the coordinate axes. Apart from its intrinsic interest this inequality
provides a powerful tool for obtaining upper bounds for the number of
solutions of Diophantine inequalities (see [3]). Apart from Minkowski's
difficult proof [5] there are proofs by Davenport [2] and Weyl [4] the latter
being also difficult and long. Davenport's proof is very short but contains
difficulties which are discussed in [6]. On the other hand Minkowski's
'first inequality' which is a special case of the second has been proved in a
very simple way by Minkowski and in a particularly elegant way by Mordell
[1]. We combine here the basic ideas of Davenport and Mordell to give an
elementary and self-contained proof.

2. Preliminaries

For a large positive integer I let iV (I) denote the number of lattice points
(u1: • • •, un) for which the point

/2ux Xt 2M2 AJ 2un\

\T' I2~T' '"'xn~rj
177

https://doi.org/10.1017/S1446788700007023 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007023


178 I. Danicic [2]

lies in XXK. From the definition of Jordan content it follows almost at once
that

Um -±1 ! _ = content of XXK = X\V
I->oo lnX% * • • / „

so that

I->oo

Minkowski's second inequality is therefore equivalent to the lemma
proved below.

3. Lemma

as l ^ oo.

PROOF. Since Px, • • •, Pn are linearly independent lattice points there
is an integral unimodular matrix A such that A (P1( • • •, Pn) is an upper
triangular matrix i.e. all its elements below the principal diagonal are zero.
The body AK is again symmetric in the origin, convex and open. Since A
transforms the integral lattice into itself, the successive minima of AK
are again Alt • • •, Xn. By considering the number of points

\l ' '

which lie in K or in AK it follows that K and AK have the same content
and we may thus interpret N(l) as being the number of points

( 2ux Xx 2u2

~T ' I2 T'
which lie in tAK. We therefore denote AK by K in the following. As a
consequence, if (ut, • • •, un) is a lattice point such that

(«! ,-•• , un)eXrK then
ur = uT+1 = • • • = un = 0.

We now divide the points contributing to N(l) into two types, the good and
the bad points. Put

For any r, 1 5S r 5S M— 1 for which cr =£ 0 and integers vx, • • •, vn let
sr(vi> ' ' "» vn) be the hypercube
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We call this hypercube bad if it has at least one point in X±K and at least
one point not in XXK. From the definition of Jordan content it follows that
if Mr(l) is the number of bad hypercubes s ^ , • • • vn) then

(2) lim (-)"Mr(l) = 0.
l->oo \Crl<l

We call the point

(2wx X1 2M2 Xt 2un\

!T'x2T''"'Tn~T)
bad if it lies in some bad hypercube sr, for some r. The number of such
points in a particular hypercube is obviously 0(1) and the total number of
bad points is therefore

2O(Mr(l))=o(n by (2).
r<n

We shall show that the number of good (= not bad) points is at most /",
from which the lemma follows. Let

tt Xx 2 M 2 X1 %

' K I ''"' KK
be any good point of XXK.

The vector consisting of the last w—r coordinates of Xx we denote by
X*+1. Since X1 is a good point it is contained in a good hypercube
sr(vlt • • •, vn) for each r for which cr ^ 0. This hypercube sr therefore lies
in XXK and hence the point

is in X^K. We can therefore assign to every X*+1 an integral vector
Vr = {Vlt • • -, Vr) such that

(3)

and if cr = 0 we take VT = (0, 0, • • • 0). It is important to note that Vr

depends only on ur+1, • • -,un. If X and Y are two points of XrK (r < n)
then

(4)

By (3)
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Starting with Xx we define a point Xr of XrK inductively by the formula

(5)
-2Vr( IV-f>crX*

which by (4) lies in A.r+1K, even if cr = 0. Since

c, =

it follows by induction from (5) that

X I ln I ] j = 1 I

from which it can be seen that

I 2ur Xr 2ur+i Ar 2un\
\') Ar — I > ~j~' 5 I ' ' •) 7 7

For given integers klt • • •, kn satisfying 0 ^ kt < I we consider those good
points Xx which satisfy

V ^ —= (h b • • • i> i i m cif\ J\

This has a meaning since {lj2)Xn is a lattice point and every point Xn

satisfies such a congruence. We shall show that there is at most one such
point Xx. If

I2u\ A, 2u'\
1 ~ \T''"'Tn ~T)

is another such point, then denoting corresponding quantities by using
accents, we have

(8) jXn = jX'n (modi).

Putting
Xn-X'n

2

we have that X e &nK, by the convexity and symmetry of XnK, and by (8)
A!" is a lattice point. Since the n'th coordinate of X is (un—u'n)ll and all
coordinates are integers it follows from (1) that un = u'n. Since Vn_x depends
only on un it follows that Vn_± = V'n_x. Suppose we have already proved
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that ut = u\ for / = n, • • •, r+l. This implies V,- = V] for / = n—l, • • -, r.
Hence, by (6),

X = \{Xr-X'r) e 1TK

which by (7) and (1) implies uT = u'r. Thus corresponding to given klt • • •, kn

there is at most one point Xx and since there are ln sets (k1, • • •, kn) there
are at most /" points Xt, and the lemma follows.
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