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OF MINKOWSKI'S SECOND INEQUALITY
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1. Introduction

Let K be an open convex domain in #-dimensional Euclidean space,
symmetric abcut the origin O, and of finite Jordan content (volume) V.
With K are associated # positive constants 4;, 4,, - - -, 4, the ‘successive
minima of K’ and # linearly independent lattice points (points with integer
coordinates) Py, P,, - - -, P, (not necessarily unique) such that all lattice
points in the body A,K are linearly dependent on Py, P,, -+, P,_,. The
points Py, .-, P, lie in AK provided that A > ;. For § =1 this means
that 4,K contains no lattice point other than the origin. Obviously

0<Ah=EAh=---<14,
The inequality of Minkowski which we are going to prove is
Mg 2,V < 2m

This is best possible, e.g. when K is a paralielopiped with sides parallel
to the coordinate axes. Apart from its intrinsic interest this inequality
provides a powerful tool for obtaining upper bounds for the number of
solutions of Diophantine inequalities (see [3]). Apart from Minkowski’s
difficult proof [5] there are proofs by Davenport [2] and Weyl [4] the latter
being also difficult and long. Davenport’s proof is very short but contains
difficulties which are discussed in [6]. On the other hand Minkowski’s
‘first inequality’ which is a special case of the second has been proved in a
very simple way by Minkowski and in a particularly elegant way by Mordell
[1]. We combine here the basic ideas of Davenport and Mordell to give an
elementary and self-contained proof.

2. Preliminaries

For a large positive integer / let N (/) denote the number of lattice points
(#y,  « -, u,) for which the point
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lies in A4, K. From the definition of Jordan content it follows almost at once

that
N2t
lim Nz A = content of 4, K = ATV
toco Vg A
so that
N(
}im —lg = 2""MAy 4, V.

Minkowski’s second inequality is therefore equivalent to the lemma
proved below.

3. Lemma
N() = I"(140(1)) as I — co.

Proor. Since Py, - - -, P, are linearly independent lattice points there
is an integral unimodular matrix 4 such that 4 (P, - - -, P,) is an upper
triangular matrix i.e. all its elements below the principal diagonal are zero.
The body AK is again symmetric in the origin, convex and open. Since 4
transforms the integral lattice into itself, the successive minima of AK
are again 4, - -+, 4,. By considering the number of points

"y %,
(l > ’ T)

which lie in K or in AK it follows that K and AK have the same content
and we may thus interpret N(I) as being the number of points

( 20, Ay 2u, )

>

1A, 1

which lie in ;4AK. We therefore denote AK by K in the following. As a
consequence, if (#,, + - -, #,) is a lattice point such that

(g, -+, u,) €A, K  then

Up = Upyy =+ ° = Uy = 0.

(1)

We now divide the points contributing to N (/) into two types, the good and
the bad points. Put
A y)
¢, = ( r+1 __1) o,

A y

For any , 1 =7 =<n—1 for which ¢, % 0 and integers v, -+, v, let
s(vy, * * *, v,) be the hypercube

2v,

_*
¢!

2(v,+1)

c,!

IA

z; (f=1,---, n).

A
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We call this hypercube bad if it has at least one point in };K and at least
one point not in 4, K. From the definition of Jordan content it follows that
if M, () is the number of bad hypercubes s,(v,, * - - v,) then

2) lim (-2—)"M,(1) = 0.

I-00 crl

We call the point

(2%1 A 2u, A 2un\)
1 7A 1 Al
bad if it lies in some bad hypercube s,, for some 7. The number of such
points in a particular hypercube is obviously O(1) and the total number of
bad points is therefore

2 O(M, () = o(*) by (2).

r<n

We shall show that the number of good (= not bad) points is at most /?,
from which the lemma follows. Let

be any good point of 1, K.
The vector consisting of the last »—7 coordinates of X, we denote by

X} .. Since X; is a good point it is contained in a good hypercube
s,(vy, + * +, v,) for each 7 for which ¢, =% 0. This hypercube s, therefore lies
in 4, K and hence the point

20, 2v

2 )

(c,l ¢}’
is in 4, K. We can therefore assign to every X}, an integral vector
V,= (V,, -+, V,) such that

2v,
® (57, x2) enk

r

and if ¢, = 0 we take V,= (0,0, ---0). It is important to note that V,
depends only on #,,,,---, #,. If X and Y are two points of L, K (r < n)

then
(4) X+ (lzl -1) Yei, K.
By (3)

j_: (?CYZ- X,"_‘H) e K.
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Starting with X we define a point X, of 4,K inductively by the formula

A A (2V,
X1'+1 = Xr+ (_'H-_1 —1) = ( f’ X:H)

A, A \ed
(5)
) 2V, *
Le. Xr+1 = r+ (T’ CrXr+1)
which by (4) lies in 4,,, K, even if ¢, = 0. Since
-
C,-:- r+1 2.,.
A
it follows by induction from (5) that
2u 2u, A, 2u A, 2u =12
6) X, — (... 2 _+_1__n) 2w, o0
©) " (l b Ay A, 1 +,~§l(’)

from which it can be seen that

( 2u, A, 24, 2, 2un)
H] » » }.n l *

(7) X, =

2

l j'r+1 l
For given integers k,, - - -, &, satisfying 0 < k; </ we consider those good
points X, which satisfy

l

> X, = (R, Ry, -+ -, k,) (mod/).

This has a meaning since (//2)X, is a lattice point and every point X,
satisfies such a congruence. We shall show that there is at most one such
point X,. If

is another such point, then dencting corresponding quantities by using
accents, we have

(8)

Putting

l L,
— X, ==X
2 2

n

(mod 1).

we have that X € 1,K, by the convexity and symmetry of 4,K, and by (8)
X is a lattice point. Since the #’th coordinate of X is (u,—u,)/! and all
coordinates are integers it follows from (1) that %, = u,,. Since V,,_, depends
only on u, it follows that V,_, = V,_,. Suppose we have already proved
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that u; = u; for § = n, - - -, 4 1. This implies V, = Vforj = n—1, - -, 7.
Hence, by (6),
X = L(X,—X) e ,K

which by (7) and (1) implies %, = u,. Thus corresponding to given &y, * - -, &,
there is at most one point X, and since there are /" sets (k,, - - -, k,) there
are at most /* points X, and the lemma follcws.
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