COUNTEREXAMPLE TO A CONJECTURE OF GREENLEAF

BY PAUL MILNES

Greenleaf states the following conjecture in [1, p. 69]. Let G be a (connected, separable) amenable locally compact group with left Haar measure, μ , and let U be a compact symmetric neighbourhood of the unit. Then the sets, $\{U^m\}$, have the following property: given $\varepsilon > 0$ and compact $K \subset G$, $\exists m_0 = m_0(\varepsilon, K)$ such that

$$|\mu(xU^m \cap U^m)/\mu(U^m)-1| < \varepsilon \quad \forall m \ge m_0 \quad \text{and} \quad \forall x \in K.$$

In this paper we exhibit a counterexample to this conjecture, the group G of pairs $\{(x, y) \mid x, y \in R, x > 0\}$ with multiplication, $(x_1, y_1)(x_2, y_2) = (x_1x_2, x_1y_2 + y_1)$, and the polygon, U, whose sides connect, in order, the points, (1/n, n), (1, n), (n, n^2) , $(n, -n^2)$, (1, -n), (1/n, -n) and back to (1/n, n), where $n \ge 2$. U us a compact symmetric neighbourhood of the unit (1, 0). We prove that

$$\mu((a, 0)U^m \cap U^m)/\mu(U^m) \le 1 - (1 - 1/a)/8 \quad \forall m = 1, 2, 3, \dots, \text{ if } n \ge 2 \text{ and } a > 1.$$

The group G can be regarded as a subset of the plane. It is easy to check by induction that:

- (i) each U^m is symmetric about the x-axis.
- (ii) max $\{y \mid (x, y) \in U^m\} = \sum_{i=2}^{m+1} n^i \le 2n^{m+1}$ ($n \ge 2$, always).
- (iii) U^m is contained between the lines $x = 1/n^m$ and $x = n^m$.
- (iv) each U^m is convex in the y-variable; that is, if $(x, y_1), (x, y_2) \in U^m$ and $0 \le b \le 1$, then $(x, by_1 + (1-b)y_2) \in U^m$.

Left Haar measure, μ , on G is given by $d\mu = x^{-2} dy dx$, so $\mu(U^m \cap \{(x, y) \mid x \ge 1\})$ $\leq \int_1^{n^m} 4n^{m+1}x^{-2} dx \leq 4n^{m+1}$. From (iv) we deduce that the upper part of the boundary of U^m is given by $\{(x, y) \in U^m \mid y = \max\{y_1 \mid (x, y_1) \in U^m\}\}$.

LEMMA. $U^m \cap \{(x, y) \mid x \le 1\}, m \ge 2$, is bounded above by the lines

$$y = x \left(\sum_{n=1}^{\infty} n^{i}\right) + n \qquad from \ x = 1/n^{m} \qquad to \quad x = 1/n^{m-1}$$
$$y = x \left(\sum_{n=1}^{\infty} n^{i} + n^{m}\right) \qquad x = 1/n^{m-1} \qquad x = 1/n^{m-2}$$
$$y = x \left(\sum_{n=1}^{\infty} n^{i}\right) + n^{2} + n^{2} \qquad x = 1/n^{m-2} \qquad x = 1/n^{m-3}$$

Received by the editors January 20, 1970.

497

PAUL MILNES

$$y = x \left(\sum_{2}^{m-1} n^{i} + n^{m-1} \right) + n^{2} \qquad x = 1/n^{m-3} \qquad x = 1/n^{m-4}$$

$$y = x \left(\sum_{2}^{m-2} n^{i} \right) + n^{3} + \sum_{2}^{3} n^{i} \qquad x = 1/n^{m-4} \qquad x = 1/n^{m-5}$$

$$y = x \left(\sum_{2}^{m-2} n^{i} + n^{m-2} \right) + \sum_{2}^{3} n^{i} \qquad x = 1/n^{m-5} \qquad x = 1/n^{m-6}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$y = x \left(\sum_{2}^{m-k} n^{i} \right) + n^{k+1} + \sum_{2}^{k+1} n^{i} \qquad x = 1/n^{m-2k} \qquad x = 1/n^{m-2k-1}$$

$$y = x \left(\sum_{2}^{m-k} n^{i} + n^{m-k} \right) + \sum_{2}^{k+1} n^{i} \qquad x = 1/n^{m-2k-1} \qquad x = 1/n^{m-2k-2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Proof. We give an indication of the proof of the induction step. Suppose the formulae are true for m. Since U^{m+1} is convex in the y-variable, we calculate

$$\max \{ y \mid (x_0, y) \in U^{m+1} \} = y_0 \text{ for each } x_0 \in [1/n^{m+1}, 1].$$

Now, if $(x_0, y) \in U^{m+1}$,

$$(x_0, y) = (x_1, y_1)(x_2, y_2) = (x_1x_2, x_1y_2 + y_1),$$

where $(x_1, y_1) \in U$ and $(x_2, y_2) \in U^m$. The way to get the maximum value of $x_1y_2 + y_1$ is to choose $x_1 \in [1/n, n]$ as large as is compatible with $x_1x_2 = x_0$ and $x_2 \in [1/n^m, n^m]$, then choose $y_1(y_2)$ as large as possible keeping $(x_1, y_1) \in U$ $((x_0/x_1, y_2) \in U^m)$.

The result of these instructions is that the upper boundary of U^{m+1} between $x=1/n^{j}$ and $x=1/n^{j-1}$ is:

- (i) the left translate by (n, n²) of the upper boundary of U^m between x = 1/n^{j+1} and x=1/n^j if j≤m-1;
- (ii) the right translate by (1/n^m, ∑¹_{-m+2} nⁱ) of the upper boundary of U between x=1 and x=n if j=m;
- (iii) the right translate by $(1/n^m, \sum_{-m+2}^{1} n^i)$ of the upper boundary of U between x=1/n and x=1 if j=m+1.

Using (ii) and (iii), the induction formulae are easily verified for m=2 (only two lines apply). We verify the formula for the boundary of U^{m+1} between $x=1/n^{m+1-2k}$ and $x=1/n^{m-2k}$, where $m+1-2k \le m-1$, namely, k > 0.

Since

$$(n, n^2)\left(x, x \sum_{2}^{m-k+1} n^i + n^k + \sum_{2}^{k} n^i\right) = \left(nx, n\left(x \sum_{2}^{m-k+1} n^i + n^k + \sum_{2}^{k} n^i\right) + n^2\right)$$

which lies on the line, $y = x \sum_{2}^{(m+1)-k} n^{i} + n^{k+1} + \sum_{2}^{k+1} n^{i}$, we are finished. The other formulae can be verified similarly.

If a > 1,

$$\mu(U^{m} \setminus (a, 0) U^{m}) \geq \int_{1/n^{m}}^{a/n^{m}} 2nx^{-2} dx \geq 2n^{m+1}(1-1/a),$$

since all the line segments bounding U^m above lie above the line, y=n. It remains to show $\mu(U^m) \le 16n^{m+1}$. We have $\mu(U^m \cap \{(x, y) \mid x \ge 1\}) \le 4n^{m+1}$ already, and use frequently the fact that $\sum_{i=1}^{n} n^i \le 2n^i$.

Computing an upper bound for $\mu(U^m \cap \{(x, y) \mid x \le 1\})$, we must sum some series of terms having powers of *n* ranging from *m* (or *m*+1) down to *m*/2 or (m-1)/2, depending whether *m* is even or odd. We add in all the powers down to zero to facilitate computation.

$$\int_{1/n^m}^{1/n^{m-2}} 4n^m x x^{-2} \, dx + \int_{1/n^{m-2}}^{1/n^{m-4}} 4n^{m-2} x x^{-2} \, dx + \dots = 8n^m \log n + 8n^{m-2} \log n + \dots \le 16n^m \log n$$

$$\int_{1/n^{m-2}}^{1/n^{m-2}} 2n^m x x^{-2} dx + \int_{1/n^{m-3}}^{1/n^{m-4}} 2n^{m-1} x x^{-2} dx + \dots = 2n^m \log n + 2n^{m-1} \log n + \dots \le 4n^m \log n.$$

$$\int_{1/n^m}^{1/n^{m-1}} 2nx^{-2} dx + \int_{1/n^{m-2}}^{1/n^{m-3}} 2n^2 x^{-2} dx + \dots = 2(n^{m+1} - n^m) + 2(n^m - n^{m-1}) + \dots \le 2n^{m+1}.$$

$$\int_{1/n^{m-2}}^{1} 2n^2 x^{-2} dx + \int_{1/n^{m-4}}^{1} 2n^3 x^{-2} dx + \cdots \leq 2n^m + 2n^{m-1} + \cdots \leq 4n^m.$$

Adding up, we have

19701

$$\mu(U^m) \le 4n^{m+1} + 16n^m \log n + 4n^m \log n + 2n^{m+1} + 4n^m \le 16n^{m+1},$$

since $(\log n)/n \le 2/5$ when $n \ge 2$.

Among the terms calculated when evaluating an upper bound for $\mu(U^m)$, the only one that has not been grossly overestimated and becomes dominant, as $n \to \infty$, is the second last one calculated, $2n^{m+1}$. Thus, by choosing *n* and *a* large, one could have $\mu((a, 0)U^m \cap U^m)/\mu(U^m) < \epsilon$, $\forall m=1, 2, 3, \ldots$, for any given $\epsilon > 0$

REFERENCE

1. F. P. Greenleaf, *Invariant means on topological groups and their applications*, Van Nostrand Mathematical Studies No. 16, Van Nostrand, Princeton, N.J., 1969.

University of Toronto, Toronto, Ontario