COUNTEREXAMPLE TO A CONJECTURE OF GREENLEAF

BY
PAUL MILNES

Greenleaf states the following conjecture in [1, p. 69]. Let G be a (connected, separable) amenable locally compact group with left Haar measure, μ, and let U be a compact symmetric neighbourhood of the unit. Then the sets, $\left\{U^{m}\right\}$, have the following property: given $\varepsilon>0$ and compact $K \subset G, \exists m_{0}=m_{0}(\varepsilon, K)$ such that

$$
\left|\mu\left(x U^{m} \cap U^{m}\right) / \mu\left(U^{m}\right)-1\right|<\varepsilon \quad \forall m \geq m_{0} \quad \text { and } \quad \forall x \in K .
$$

In this paper we exhibit a counterexample to this conjecture, the group G of pairs $\{(x, y) \mid x, y \in R, x>0\}$ with multiplication, $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, x_{1} y_{2}+y_{1}\right)$, and the polygon, U, whose sides connect, in order, the points, $(1 / n, n),(1, n)$, $\left(n, n^{2}\right),\left(n,-n^{2}\right),(1,-n),(1 / n,-n)$ and back to $(1 / n, n)$, where $n \geq 2 . U$ us a compact symmetric neighbourhood of the unit $(1,0)$. We prove that

$$
\mu\left((a, 0) U^{m} \cap U^{m}\right) / \mu\left(U^{m}\right) \leq 1-(1-1 / a) / 8 \quad \forall m=1,2,3, \ldots, \text { if } n \geq 2 \text { and } a>1 .
$$

The group G can be regarded as a subset of the plane. It is easy to check by induction that:
(i) each U^{m} is symmetric about the x-axis.
(ii) $\max \left\{y \mid(x, y) \in U^{m}\right\}=\sum_{i=2}^{m+1} n^{i} \leq 2 n^{m+1} \quad$ ($n \geq 2$, always).
(iii) U^{m} is contained between the lines $x=1 / n^{m}$ and $x=n^{m}$.
(iv) each U^{m} is convex in the y-variable; that is, if $\left(x, y_{1}\right),\left(x, y_{2}\right) \in U^{m}$ and $0 \leq b \leq 1$, then $\left(x, b y_{1}+(1-b) y_{2}\right) \in U^{m}$.

Left Haar measure, μ, on G is given by $d \mu=x^{-2} d y d x$, so $\mu\left(U^{m} \cap\{(x, y) \mid x \geq 1\}\right)$ $\leq \int_{1}^{n^{m}} 4 n^{m+1} x^{-2} d x \leq 4 n^{m+1}$. From (iv) we deduce that the upper part of the boundary of U^{m} is given by $\left\{(x, y) \in U^{m} \mid y=\max \left\{y_{1} \mid\left(x, y_{1}\right) \in U^{m}\right\}\right\}$.

Lemma. $U^{m} \cap\{(x, y) \mid x \leq 1\}, m \geq 2$, is bounded above by the lines

$$
\begin{aligned}
& y=x\left(\sum_{2}^{m} n^{i}\right)+n \\
& \text { from } x=1 / n^{m} \quad \text { to } \quad x=1 / n^{m-1} \\
& y=x\left(\sum_{2}^{m} n^{i}+n^{m}\right) \\
& x=1 / n^{m-1} \quad x=1 / n^{m-2} \\
& y=x\left(\sum_{2}^{m-1} n^{i}\right)+n^{2}+n^{2} \quad x=1 / n^{m-2} \quad x=1 / n^{m-3}
\end{aligned}
$$

Received by the editors January 20, 1970.

$$
\begin{array}{lll}
y=x\left(\sum_{2}^{m-1} n^{i}+n^{m-1}\right)+n^{2} & x=1 / n^{m-3} & x=1 / n^{m-4} \\
y=x\left(\sum_{2}^{m-2} n^{i}\right)+n^{3}+\sum_{2}^{3} n^{i} & x=1 / n^{m-4} & x=1 / n^{m-5} \\
y=x\left(\sum_{2}^{m-2} n^{i}+n^{m-2}\right)+\sum_{2}^{3} n^{i} & x=1 / n^{m-5} & x=1 / n^{m-6} \\
\vdots & \vdots & \vdots \\
y=x\left(\sum_{2}^{m-k} n^{i}\right)+n^{k+1}+\sum_{2}^{k+1} n^{i} & x=1 / n^{m-2 k} & x=1 / n^{m-2 k-1} \\
y=x\left(\sum_{2}^{m-k} n^{i}+n^{m-k}\right)+\sum_{2}^{k+1} n^{i} & x=1 / n^{m-2 k-1} & x=1 / n^{m-2 k-2} \\
\vdots & \vdots & \vdots
\end{array}
$$

Proof. We give an indication of the proof of the induction step. Suppose the formulae are true for m. Since U^{m+1} is convex in the y-variable, we calculate

$$
\max \left\{y \mid\left(x_{0}, y\right) \in U^{m+1}\right\}=y_{0} \quad \text { for each } x_{0} \in\left[1 / n^{m+1}, 1\right] .
$$

Now, if $\left(x_{0}, y\right) \in U^{m+1}$,

$$
\left(x_{0}, y\right)=\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, x_{1} y_{2}+y_{1}\right),
$$

where $\left(x_{1}, y_{1}\right) \in U$ and $\left(x_{2}, y_{2}\right) \in U^{m}$. The way to get the maximum value of $x_{1} y_{2}+y_{1}$ is to choose $x_{1} \in[1 / n, n]$ as large as is compatible with $x_{1} x_{2}=x_{0}$ and $x_{2} \in\left[1 / n^{m}, n^{m}\right]$, then choose $y_{1}\left(y_{2}\right)$ as large as possible keeping $\left(x_{1}, y_{1}\right) \in U\left(\left(x_{0} / x_{1}, y_{2}\right) \in U^{m}\right)$.

The result of these instructions is that the upper boundary of U^{m+1} between $x=1 / n^{j}$ and $x=1 / n^{j-1}$ is:
(i) the left translate by (n, n^{2}) of the upper boundary of U^{m} between $x=1 / n^{j+1}$ and $x=1 / n^{j}$ if $j \leq m-1$;
(ii) the right translate by $\left(1 / n^{m}, \sum_{-m+2}^{1} n^{i}\right)$ of the upper boundary of U between $x=1$ and $x=n$ if $j=m$;
(iii) the right translate by $\left(1 / n^{m}, \sum_{-m+2}^{1} n^{i}\right)$ of the upper boundary of U between $x=1 / n$ and $x=1$ if $j=m+1$.

Using (ii) and (iii), the induction formulae are easily verified for $m=2$ (only two lines apply). We verify the formula for the boundary of U^{m+1} between $x=1 / n^{m+1-2 k}$ and $x=1 / n^{m-2 k}$, where $m+1-2 k \leq m-1$, namely, $k>0$.

Since

$$
\left(n, n^{2}\right)\left(x, x \sum_{2}^{m-k+1} n^{i}+n^{k}+\sum_{2}^{k} n^{i}\right)=\left(n x, n\left(x \sum_{2}^{m-k+1} n^{i}+n^{k}+\sum_{2}^{k} n^{i}\right)+n^{2}\right)
$$

which lies on the line, $y=x \sum_{2}^{(m+1)-k} n^{i}+n^{k+1}+\sum_{2}^{k+1} n^{i}$, we are finished. The other formulae can be verified similarly.

If $a>1$,

$$
\mu\left(U^{m} \backslash(a, 0) U^{m}\right) \geq \int_{1 / n^{m}}^{a / n^{m}} 2 n x^{-2} d x \geq 2 n^{m+1}(1-1 / a)
$$

since all the line segments bounding U^{m} above lie above the line, $y=n$. It remains to show $\mu\left(U^{m}\right) \leq 16 n^{m+1}$. We have $\mu\left(U^{m} \cap\{(x, y) \mid x \geq 1\}\right) \leq 4 n^{m+1}$ already, and use frequently the fact that $\sum_{o}^{j} n^{i} \leq 2 n^{j}$.

Computing an upper bound for $\mu\left(U^{m} \cap\{(x, y) \mid x \leq 1\}\right)$, we must sum some series of terms having powers of n ranging from m (or $m+1$) down to $m / 2$ or $(m-1) / 2$, depending whether m is even or odd. We add in all the powers down to zero to facilitate computation.

$$
\begin{aligned}
& \int_{1 / n^{m}}^{1 / n^{m-2}} 4 n^{m} x x^{-2} d x+\int_{1 / n^{m-2}}^{1 / n^{m-4}} 4 n^{m-2} x x^{-2} d x+\cdots=8 n^{m} \log n \\
& +8 n^{m-2} \log n+\cdots \leq 16 n^{m} \log n . \\
& \int_{1 / n^{m-1}}^{1 / n^{m-2}} 2 n^{m} x x^{-2} d x+\int_{1 / n^{m-3}}^{1 / n^{m-4}} 2 n^{m-1} x x^{-2} d x+\cdots=2 n^{m} \log n \\
& +2 n^{m-1} \log n+\cdots \leq 4 n^{m} \log n .
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1 / n^{m}}^{1 / n^{m-1}} 2 n x^{-2} d x+\int_{1 / n^{m-2}}^{1 / n^{m-3}} 2 n^{2} x^{-2} d x+\cdots=2\left(n^{m+1}-n^{m}\right) \\
& \\
& +2\left(n^{m}-n^{m-1}\right)+\cdots \leq 2 n^{m+1} . \\
& \int_{1 / n^{m-2}}^{1} 2 n^{2} x^{-2} d x+\int_{1 / n^{m-4}}^{1} 2 n^{3} x^{-2} d x+\cdots \leq 2 n^{m}+2 n^{m-1}+\cdots \leq 4 n^{m} .
\end{aligned}
$$

Adding up, we have

$$
\mu\left(U^{m}\right) \leq 4 n^{m+1}+16 n^{m} \log n+4 n^{m} \log n+2 n^{m+1}+4 n^{m} \leq 16 n^{m+1},
$$

since $(\log n) / n \leq 2 / 5$ when $n \geq 2$.
Among the terms calculated when evaluating an upper bound for $\mu\left(U^{m}\right)$, the only one that has not been grossly overestimated and becomes dominant, as $n \rightarrow \infty$, is the second last one calculated, $2 n^{m+1}$. Thus, by choosing n and a large, one could have $\mu\left((a, 0) U^{m} \cap U^{m}\right) / \mu\left(U^{m}\right)<\varepsilon, \quad \forall m=1,2,3, \ldots$, for any given $\varepsilon>0$

Reference

1. F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies No. 16, Van Nostrand, Princeton, N.J., 1969.

University of Toronto,
Toronto, Ontario

