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Abstract

This paper considers the family of invariant measures of Markovian mean-field inter-
acting particle systems on a countably infinite state space and studies its large deviation
asymptotics. The Freidlin–Wentzell quasipotential is the usual candidate rate function
for the sequence of invariant measures indexed by the number of particles. The paper
provides two counterexamples where the quasipotential is not the rate function. The
quasipotential arises from finite-horizon considerations. However, there are certain bar-
riers that cannot be surmounted easily in any finite time horizon, but these barriers can
be crossed in the stationary regime. Consequently, the quasipotential is infinite at some
points where the rate function is finite. After highlighting this phenomenon, the paper
studies some sufficient conditions on a class of interacting particle systems under which
one can continue to assert that the Freidlin–Wentzell quasipotential is indeed the rate
function.
Keywords: Mean-field interaction; invariant measure; large deviations; static large
deviation; Freidlin–Wentzell quasipotential; relative entropy
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1. Introduction

For a broad class of Markov processes, such as small-noise diffusions, finite-state mean-
field models, simple exclusion processes, etc., it is well known that the Freidlin–Wentzell
quasipotential is the rate function that governs the large deviation principle (LDP) for the fam-
ily of invariant measures [7, 17, 18, 33]. The quasipotential is the minimum cost (arising from
the rate function for a process-level LDP) associated with trajectories of arbitrary but finite
duration, with fixed initial and terminal conditions. We begin this paper with two counterexam-
ples of independently evolving countable-state particle systems for which the quasipotential is
not the rate function for the family of invariant measures. The family of invariant measures for
each of these counterexamples satisfies the LDP with a suitable relative entropy as its rate func-
tion, and we show that the quasipotential is not the same as this relative entropy. Specifically,
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we show that there are points in the state space where the rate function is finite, but the quasipo-
tential is infinite. These points cannot be reached easily via trajectories of arbitrary but finite
time duration. The barriers to reaching these points are surmounted in the stationary regime.
There are, however, some sufficient conditions, at least on a family of such countable-state
interacting particle systems, where the Freidlin–Wentzell quasipotential is indeed the correct
rate function; this will be the main result of this paper. Intuitively, the sufficient conditions
cut down the speed of outward excursions and ensure that the insurmountable barriers for the
finite-horizon trajectories continue to be insurmountable in the stationary regime.

Before we describe the counterexamples and the main result, let us introduce some nota-
tion and describe the model of a countable-state mean-field interacting particle system. Let
Z denote the set of non-negative integers, and let (Z, E) denote a directed graph on Z . Let
M1(Z) denote the space of probability measures on Z equipped with the total variation met-
ric (which we denote by d). For each N ≥ 1, let MN

1 (Z) ⊂M1(Z) denote the set of probability
measures on Z that can arise as empirical measures of N-particle configurations on ZN . For
each N ≥ 1, we consider a Markov process with the infinitesimal generator acting on functions
f on MN

1 (Z) as follows:

L Nf (ξ ) :=
∑

(z,z′)∈E
Nξ (z)λz,z′ (ξ )

[
f

(
ξ + δz′

N
− δz

N

)
− f (ξ )

]
, ξ ∈MN

1 (Z); (1.1)

here λz,z′ : M1(Z) →R+, (z, z′) ∈ E , are given functions that describe the transition rates,
and δ denotes the Dirac measure. Such processes arise as the empirical measures of weakly
interacting Markovian mean-field particle systems where the evolution of the state of a par-
ticle depends on the states of the other particles only through the empirical measure of the
states of all the particles. Under suitable assumptions on the model, the martingale problem for
L N is well posed and the associated Markov process possesses a unique invariant probability
measure ℘N . This paper highlights certain nuances associated with the LDP for the sequence
{℘N,N ≥ 1} on M1(Z).

Fix T > 0 and let μN
νN

denote the Markov process with initial condition νN ∈MN
1 (Z) whose

infinitesimal generator is L N . Its sample paths are elements of D([0, T],MN
1 (Z)), the space of

MN
1 (Z)-valued functions on [0, T] that are right-continuous with left limits equipped with the

Skorokhod topology. Such processes have been well studied in the past. Under mild conditions
on the transition rates, when νN → ν in M1(Z) as N → ∞, it is well known that the family
{μN
νN
,N ≥ 1} converges in probability, in D([0, T],M1(Z)), as N → ∞ to the mean-field limit

(see McKean [25] in the context of interacting diffusions and Bordenave et al. [6] in the context
of countable-state mean-field models):

μ̇(t) =�∗
μ(t)μ(t), μ(0) = ν, t ∈ [0, T]. (1.2)

Here μ̇(t) denotes the derivative of μ at time t; �ξ , ξ ∈M1(Z), denotes the rate matrix
when the empirical measure is ξ (i.e., �ξ (z, z′) = λz,z′ (ξ ) when (z, z′) ∈ E , �ξ (z, z′) = 0 when
(z, z′) /∈ E , and �ξ (z, z) = −∑

z′ 	=z λz,z′ (ξ )); and �∗
ξ denotes the transpose of �ξ . The above

dynamical system on M1(Z) is called the McKean–Vlasov equation. This mean-field conver-
gence allows one to view the process μN

νN
as a small random perturbation of the dynamical

system (1.2). The starting point of our study of the asymptotics of {℘N,N ≥ 1} is the process-
level LDP for {μN

νN
, νN ∈MN

1 (Z),N ≥ 1}, whenever νN converges to ν in M1(Z). This LDP
was established by Léonard [21] when the initial conditions are fixed, and by Borkar and
Sundaresan [7] when the initial conditions converge in M1(Z). The rate function of this LDP
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FIGURE 1. Transition rates of an M/M/1 queue.

is governed by ‘costs’ associated with trajectories on [0, T] with initial condition ν, which we
denote by S[0,T](ϕ|ν), ϕ ∈ D([0, T],M1(Z)) (see (2.5) for its definition).

We assume that ξ∗ is the unique globally asymptotically stable equilibrium of (1.2). Define
the Freidlin–Wentzell quasipotential

V(ξ ) := inf{S[0,T](ϕ|ξ∗) : ϕ(0) = ξ∗, ϕ(T) = ξ, T > 0}, ξ ∈M1(Z). (1.3)

From the theory of large deviations of the invariant measure of Markov processes [7, 11, 18,
33], V is a natural candidate for the rate function of the family {℘N,N ≥ 1}.

1.1. Two counterexamples

We begin with two counterexamples for which V is not the rate function for the family of
invariant measures.

1.1.1. Non-interacting M/M/1 queues. Consider the graph (Z, EQ) whose edge set EQ consists
of forward edges {(z, z + 1), z ∈Z} and backward edges {(z, z − 1), z ∈Z \ {0}} (see Figure 1).
Let λf and λb be two positive numbers. Consider the generator LQ acting on functions f on
Z by

LQf (z) :=
∑

z′ : (z,z′)∈EQ

λz,z′ (f (z′) − f (z)), z ∈Z,

where λz,z+1 = λf for each z ∈Z and λz,z−1 = λb for each z ∈Z \ {0}. When λf <λb, the
invariant probability measure associated with this Markov process is

ξ∗
Q(z) :=

(
1 − λf

λb

)(
λf

λb

)z

, z ∈Z .

For each N ≥ 1, we consider N particles, each of which evolves independently as a Markov
process on Z with the infinitesimal generator LQ. That is, the particles are independent M/M/1
queues. It is easy to check that the empirical measure of the system of particles is also a Markov
process on the state space MN

1 (Z) and it possesses a unique invariant probability measure,
which we denote by ℘N

Q .

On one hand, it is straightforward to see that the family {℘N
Q ,N ≥ 1} satisfies the LDP on

M1(Z). Indeed, under stationarity, the state of each particle is distributed as ξ∗
Q. As a con-

sequence, ℘N
Q is the law of the random variable 1

N

∑N
n=1 δζn on M1(Z), where ζ1, . . . , ζN

are independent and identically distributed (i.i.d.) as ξ∗
Q. Therefore, by Sanov’s theorem

[13, Theorem 6.2.10], {℘N
Q ,N ≥ 1} satisfies the LDP with the rate function I(·‖ξ∗

Q), where
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I : M1(Z) ×M1(Z) → [0,∞] is the relative entropy defined by

I(ζ‖ν) :=

⎧⎪⎨⎪⎩
∑
z∈Z

ζ (z) log

(
ζ (z)

ν(z)

)
if ζ � ν,

∞ otherwise,

(1.4)

with the convention that 0 log 0 = 0. On the other hand, it is natural to conjecture that the
rate function for the family {℘N

Q ,N ≥ 1} is given by the quasipotential (1.3) with ξ∗ replaced
by ξ∗

Q. However, as discussed in the next paragraph, the quasipotential is not the same as
I(·‖ξ∗

Q). Hence, from the uniqueness of the large deviations rate function [13, Lemma 4.1.4],

the quasipotential does not govern the rate function for the family {℘N
Q ,N ≥ 1}.

We now provide some intuition on why the quasipotential is not the rate function in the
example under consideration. For a formal proof, see Section 8. We first introduce some nota-
tion. Let R∞ denote the infinite product of R equipped with the product topology. We view
M1(Z) as the subset {x ∈R

∞ : xi ≥ 0 ∀i,
∑

i≥0 xi = 1} of R
∞ with the subspace topology

(e.g., see [15, Chapter 3, Section 2]). If ξ, f ∈R
∞, we define

〈ξ, f 〉 := lim
m→∞

m∑
z=0

ξ (z)f (z), (1.5)

whenever the limit exists. Also, define ϑ : Z →R+ by

ϑ(z) := z log z, z ∈Z, (1.6)

with the convention that 0 log 0 = 0, and define ι(z) := z, z ∈Z . Using the fact that ξ∗
Q has

geometric decay, it can be checked that I(ξ‖ξ∗
Q) is finite if and only if the first moment of ξ (i.e.,

〈ξ, ι〉) is finite. However, it turns out that V(ξ ) (i.e., the quantity in (1.3) with ξ∗ replaced by ξ∗
Q)

is finite if and only if the ϑ-moment of ξ (i.e., 〈ξ, ϑ〉) is finite. In particular, if we consider a ξ ∈
M1(Z) whose first moment is finite but whose ϑ-moment is infinite, then V(ξ ) 	= I(ξ‖ξ∗

Q). Let
ε > 0, ξ ∈M1(Z) be such that 〈ξ, ι〉<∞ but 〈ξ, ϑ〉 = ∞, and consider the ε-neighbourhood
of ξ in M1(Z). By Sanov’s theorem, the probability of this neighbourhood under ℘N

Q is of the
form exp{−N(I(ξ‖ξ∗

Q) + o(1))}. For a fixed T > 0, let us now try to estimate the probability of

μN
νN

(T) being in this neighbourhood when νN is in a small neighbourhood of ξ∗
Q. If the process

μN is initiated at a νN near ξ∗
Q, then the probability that the random variable μN

νN
(T) is in the

ε-neighbourhood of ξ is at most

exp

{
−N

(
inf

{ξ ′ : d(ξ,ξ ′)≤ε}
V(ξ ′) + o(1)

)}
.

Since V is lower semicontinuous (we prove this in Lemma 5.4), we must have

inf
{ξ ′ : d(ξ,ξ ′)≤ε}

V(ξ ′) → ∞ as ε→ 0.

Hence we can choose an ε small enough so that inf{ξ ′ : d(ξ,ξ ′)≤ε} V(ξ ′)> 2I(ξ‖ξ∗
Q). For this ε,

the probability that μN
νN

(T) lies is the ε-neighbourhood of ξ is bounded above by exp{−N ×
(2I(ξ‖ξ∗

Q) + o(1))}, which is smaller than exp{−N(I(ξ‖ξ∗
Q) + o(1))}, even in the exponential
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FIGURE 2. Transition rates of a wireless node.

scale, for large enough N. That is, for any arbitrary but fixed T , we can find a small neighbour-
hood of ξ such that the probability that μN

νN
(T) lies in that neighbourhood is smaller than what

we expect to see in the stationary regime. In other words, there are some barriers in M1(Z) that
cannot be surmounted in any finite time, but that can be crossed in the stationary regime. These
barriers indicate that, to obtain the correct stationary-regime probability of a small neighbour-
hood of ξ using the dynamics of μN

νN
, one should wait longer than any fixed time horizon. That

is, one should consider the random variable μN
νN

(T(N)), where T(N) is a suitable function of N,
and estimate the probability thatμN

νN
(T(N)) belongs to a small neighbourhood of ξ . However, it

is not straightforward to obtain such estimates from the process-level large deviation estimates
of μN

νN
, since the latter are usually available for a fixed time duration.

There are natural barriers in the context of finite-state mean-field models when the limiting
dynamical system has multiple (but finitely many) stable equilibria [36]. In such situations,
passages from a neighbourhood of one equilibrium to a neighbourhood of another take place
over time durations of the form exp{N × O(1)} where N is the number of particles (here, O(1)
refers to a bounded sequence). Interestingly, these barriers can be surmounted using trajecto-
ries of finite time durations; i.e., for any fixed T , the probability that the empirical measure
process reaches a neighbourhood of an equilibrium at time T when it is initiated in a small
neighbourhood of another equilibrium is of the form exp{−N × O(1)}. In contrast, in the case
of the above counterexample, the barriers cannot be surmounted in finite time durations; for
any fixed T , the probability that μN(T) reaches a small neighbourhood of a point in M1(Z)
with finite first moment but infinite ϑ-moment when it is initiated from a neighbourhood of
ξ∗

Q is of the form exp{−N ×ω(1)} (here, ω(1) refers to a sequence that goes to ∞). Hence we
anticipate that the barriers that we encounter in the above counterexample are somehow more
difficult to surmount than those that arise in the case of finite-state mean-field models with
multiple stable equilibria.

1.1.2. Non-interacting nodes in a wireless network. We provide another counterexample where
the issue is similar. Consider the graph (Z, EW ) whose edge set EW consists of forward edges
{(z, z + 1), z ∈Z} and backward edges {(z, 0), z ∈Z \ {0}} (see Figure 2). Let λf and λb be
positive numbers. Consider the generator LW acting on functions f on Z by

LWf (z) :=
∑

z′ : (z,z′)∈EW

λz,z′ (f (z′) − f (z)), z ∈Z,

where λz,z+1 = λf for each z ∈Z and λz,0 = λb for each z ∈Z \ {0}. The invariant probability
measure associated with this Markov process is

ξ∗
W (z) := λb

λf + λb

(
λf

λf + λb

)z

, z ∈Z .

Similarly to the previous example, for each N ≥ 1, we consider N particles, each of which
evolves independently as a Markov process on Z with the infinitesimal generator LW . It is
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easy to check that the empirical measure of the system of particles possesses a unique invariant
probability measure, which we denote by ℘N

W . Under stationarity, the state of each particle is
distributed as ξ∗

W . As a consequence, ℘N
W is the law of the random variable 1

N

∑N
n=1 δζn on

M1(Z), where ζ1, . . . , ζN are i.i.d. ξ∗
W . Hence, by Sanov’s theorem, the family {℘N

W ,N ≥ 1}
satisfies the LDP with the rate function I(·‖ξ∗

W ). As we show in Section 8, in this example
too, the quasipotential (1.3) with ξ∗ replaced by ξ∗

W is not the same as I(·‖ξ∗
W ). As in the

previous example, there are points ξ where V(ξ ) = ∞ but I(ξ‖ξ∗
Q)<∞, points ξ that have a

finite first moment but infinite ϑ-moment. Once again, the quasipotential does not govern the
rate function for the family {℘N

W ,N ≥ 1}.

1.2. Assumptions and main result

We now provide some assumptions on the model of countable-state mean-field interacting
particle systems that ensure that the barriers in M1(Z) that are insurmountable using trajecto-
ries of arbitrary but finite time duration remain insurmountable in the stationary regime as well.
Under these assumptions, we prove the main result of this paper, namely, that the sequence of
invariant measures {℘N,N ≥ 1} satisfies the LDP with rate function V .

1.2.1. Assumptions. Our first set of assumptions is on the mean-field interacting particle
system (i.e., on the generator L N defined in (1.1)).

(A1) The edge set is given by E = {(z, z + 1), z ∈Z} ∪ {(z, 0), z ∈Z \ {0}}.
(A2) There exist positive constants λ and λ such that

λ

z + 1
≤ λz,z+1(ξ ) ≤ λ

z + 1
and λ≤ λz,0(ξ ) ≤ λ

for all ξ ∈M1(Z).

(A3) The functions (z + 1)λz,z+1( · ), z ∈Z, and λz,0( · ), z ∈Z \ {0}, are uniformly Lipschitz
continuous on M1(Z).

Note that Assumption (A1) considers a specific transition graph (Figure 2) for each particle.
This graph arises in the contexts of random backoff algorithms for medium access in wireless
local area networks [20] and decentralised control of loads in a smart grid [26]. Assumption
(A2) ensures that the forward transition rate at state z decays as 1/z. This key assumption
cuts down the speed of outward excursions and enables us to overcome the issue described in
the counterexamples. To highlight this, consider a modified example of Section 1.1.2 where
λz,z+1 = λf /(z + 1), z ∈Z; the rest of the description remains the same. Let ξ̃W ∈M1(Z)
denote the invariant probability measure associated with one particle. It can be checked that
ξ̃W (z) is of the order of exp{−ϑ(z)}, unlike ξ∗

W , which has geometric decay. As a consequence,
I(ξ‖ξ̃W ) is finite if and only if the ϑ-moment of ξ is finite. Hence, by imposing (A2), we have
ensured that the barriers in M1(Z) that are insurmountable for finite-time-duration trajecto-
ries continue to remain insurmountable in the stationary regime; this is the key property that
enables us to prove the main result of this paper. Assumption (A3) is a uniform Lipschitz con-
tinuity property for the transition rates which is required for the process-level LDP for μN

νN
to

hold and for the McKean–Vlasov equation (1.2) to be well posed.
Our second set of assumptions is on the McKean–Vlasov equation (1.2). Let μν , ν ∈

M1(Z), denote the solution to the limiting dynamics (1.2) with initial condition ν ∈M1(Z).
Recall the function ϑ . Define KM := {ξ ∈M1(Z) : 〈ξ, ϑ〉 ≤ M}, M > 0.
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(B1) There exists a unique globally asymptotically stable equilibrium ξ∗ for the McKean–
Vlasov equation (1.2).

(B2) We have 〈ξ∗, ϑ〉<∞ and limt→∞ supν∈KM
〈μν(t), ϑ〉 = 〈ξ∗, ϑ〉 for each M > 0.

The first assumption above asserts that all the trajectories of (1.2) converge to ξ∗ as time
becomes large. The proof of the LDP upper and lower bounds for the family {℘N,N ≥ 1}
involves construction of trajectories that start at suitable compact sets, reach the stable equilib-
rium ξ∗ using arbitrarily small cost, and then terminate at a desired point in M1(Z) starting
from ξ∗. All of these are enabled by Assumption (B1) (see more remarks about this assumption
in Section 1.3). The second assumption asserts that the ϑ-moment of the solution to the limit-
ing dynamics converges uniformly over initial conditions lying in sets of bounded ϑ-moment.
In the case of a non-interacting system that satisfies (A1) but with constant forward transition
rates (for example, see LW in Section 1.1.2), the analogue of this assumption can easily be
verified: the first moment of the solution to the limiting dynamics converges uniformly over
initial conditions lying in sets of bounded first moment. In fact, one can explicitly write down
the first moment of the solution to the limiting dynamics in this case and verify this assumption
easily. Assumption (B2) is the analogous statement for our mean-field system that satisfies the
1/z-decay of the forward transition rates in Assumption (A2).

1.2.2. Main result. We now state the main result of this paper, namely the LDP for the family
of invariant measures {℘N,N ≥ 1} under Assumptions (A1)–(A3) and (B1)–(B2).

We first assert the existence and uniqueness of the invariant measure ℘N for L N for each
N ≥ 1, and the exponential tightness of the family {℘N,N ≥ 1}.
Proposition 1.1. Assume (A1) and (A2). For each N ≥ 1, L N admits a unique invariant
probability measure℘N. Furthermore, the family {℘N,N ≥ 1} is exponentially tight in M1(Z).

Recall the quasipotential V defined in (1.3). We now state the main result of this paper.

Theorem 1.1. Assume (A1), (A2), (A3), (B1), and (B2). Then the family of probability
measures {℘N,N ≥ 1} satisfies the LDP on M1(Z) with rate function V.

The proof of this result is carried out in Sections 4–7. We begin with the process-level
uniform LDP for μN

νN
over compact subsets of M1(Z); this uniform LDP gives us the large

deviation estimates for the process μN
νN

uniformly over the initial conditions νN lying in a
given compact set (see Definition 2.2 and Theorem 2.1). We prove the LDP for the family
{℘N,N ≥ 1} by transferring this process-level uniform LDP for μN

νN
over compact subsets of

M1(Z) to the stationary regime. The proof of the LDP lower bound (in Section 4) consid-
ers specific trajectories and lower-bounds the probability of small neighbourhoods of points in
M1(Z) under ℘N using the probability that the process μN

νN
remains close to these trajectories.

For the proof of the upper bound, we require certain regularity properties of the quasipoten-
tial. These properties are established in Section 5. We first show a controllability property (this
terminology is from Cerrai and Röckner [11]) for V: V(ξ ) is finite if and only if 〈ξ, ϑ〉<∞.
Using the lower bound proved in Section 4, we then show that the level sets of V are com-
pact subsets of M1(Z). Since M1(Z) is not locally compact and V has compact lower level
sets, we do not expect V to be continuous on M1(Z). Indeed, if ξ ∈M1(Z) is such that V is
continuous at ξ and V(ξ )<∞, given ε > 0 there exists a δ > 0 such that d(ξ ′, ξ )< δ implies
that |V(ξ ′) − V(ξ )|< ε. In particular, {ξ ′ ∈M1(Z) : V(ξ ′) ≤ V(ξ ) + ε} ⊃ B(ξ, δ). Since {ξ ′ ∈
M1(Z) : V(ξ ′) ≤ V(ξ ) + ε} is compact in M1(Z), this shows that ξ has a relatively compact
neighbourhood in M1(Z), which is a contradiction. This shows that, for any ξ ∈M1(Z) such

https://doi.org/10.1017/apr.2023.55 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.55


On the rate function of the invariant measure of countable-state mean-field models 967

that V(ξ )<∞, V is discontinuous at ξ . However, we prove the following small-cost con-
nection property: whenever ξn → ξ∗ in M1(Z) and 〈ξn, ϑ〉 → 〈ξ∗, ϑ〉 as n → ∞, we have
limn→∞ V(ξn) = V(ξ∗) = 0. These properties of the quasipotential are then used to transfer the
process-level uniform LDP upper bound for μN

νN
(uniform over compact subsets of M1(Z))

to the LDP upper bound for the family of invariant measures. The proof of the upper bound is
carried out in Section 6. Finally, we complete the proof of the theorem in Section 7.

While the proofs of our lower and upper bounds follow the general methodology of Sowers
[33], there are significant model-specific difficulties that arise in our context. The main novelty
in the proof of Theorem 1.1 is to establish the small-cost connection property of the quasipo-
tential V under Assumptions (A1)–(A3) and (B1)–(B2). That is, we can find trajectories of
small cost that start at ξ∗ and end at points in M1(Z) whose ϑ-moment is not very far from
that of ξ∗. In the work of Sowers [33], this is carried out by considering the ‘straight-line’
trajectory that connects the attractor to the nearby point under consideration. Such a trajectory
may not have small cost in our case since the mass transfer is restricted to the edges in E . We
overcome this difficulty by considering a mass transfer of piecewise constant velocity via the
edges in E . We then carefully estimate the cost of this trajectory and prove the necessary small-
cost connection property. We also simplify the proof of the compactness of the lower level sets
of V; while Sowers [34, Proposition 7] studies the minimisation of the costs of trajectories over
the infinite horizon, we arrive at it by using the LDP lower bound and the exponential tightness
of the family {℘N,N ≥ 1}. We also remark that the methodology of Sowers [33] has been used
by Cerrai and Röckner [11] in the context of stochastic reaction diffusion equations and by
Cerrai and Paskal [9] in the context of two-dimensional stochastic Navier–Stokes equations.

1.3. Discussion and future directions

The main result and the counterexamples suggest that in order for the family of invari-
ant measures of a Markov process to satisfy the LDP with rate function governed by the
Freidlin–Wentzell quasipotential, one must have some good properties on the model under
consideration. In the case of our main result, this goodness is achieved by the 1/z-decay of the
forward transition rates from Assumption (A2). We use this assumption to show the exponen-
tial tightness of the invariant measure over compact subsets with bounded ϑ-moments. It also
enables us to show the regularity properties of the quasipotential which are required to transfer
the process-level large deviation result to the stationary regime. However, a general treatment
of the LDP for the family of invariant measures of a Markov process (that encompasses the
cases of [7, 9, 11, 17, 33]), especially when the ambient state space is not locally compact, is
missing from the literature.

One of the assumptions that plays a significant role in the proof of our main result is the
existence of a unique globally asymptotically stable equilibrium for the limiting dynamics
(Assumption (B1)). In the works of Sowers [33], Cerrai and Röckner [11], and Cerrai and
Paskal [9], the model assumptions ensure that (B1) holds. In general, the limiting dynamical
system (1.2) could possess multiple ω-limit sets. In that case, the approach of our proofs breaks
down. A well-known approach to studying large deviations of the invariant measures in such
cases is to focus on small neighbourhoods of these ω-limit sets and then analyse the discrete-
time Markov chain that evolves on these neighbourhoods. The LDP then follows from the
estimates of the invariant measure of this discrete-time chain (see Freidlin and Wentzell [18,
Chapter 6, Section 4]). However, this approach requires the uniform LDP over open subsets of
M1(Z), which is not yet available for our mean-field model. If this can be established, along
with the regularity properties of the quasipotential established in Section 5, one can use the
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above idea not only to extend our main result to the case when the limiting dynamical system
possesses multiple ω-limit sets, but also to study exit problems and metastability phenomena
in our mean-field model.

Another definition of the quasipotential appears in the literature. It is given by the minimi-
sation of costs of the form S(−∞,0](ϕ) over infinite-horizon trajectories ϕ on (−∞, 0] such that
the terminal condition ϕ(0) is fixed and ϕ(t) → ξ∗ as t → −∞ (see Sowers [33], Cerrai and
Röckner [11]). While it is clear that the above definition of the quasipotential is a lower bound
for V in (1.3), unlike in Sowers [33] and Cerrai and Röckner [11], we are not able to show that
the two definitions are the same. A proof of this equality, or otherwise, would add more insight
on the general case.

We remark that Assumption (A3) does not play a role in the proof of our main result. It
is used to invoke the process-level LDP for μN

νN
(see Theorem 2.1) and the well-posedness of

the limiting dynamical system (1.2). If these two properties are established through some other
means, then the proof of Theorem 1.1 will hold verbatim without the need for Assumption
(A3).

Finally, we mention that a time-independent variational formula for the quasipotential is
available for some non-reversible models in statistical mechanics; see Bertini et al. [2, 3]. It
is not clear whether the quasipotential V in (1.3) admits a time-independent variational form.
This would be an interesting direction to explore.

1.4. Related literature

Process-level large deviations of small-noise diffusion processes have been well studied
in the past. For finite-dimensional large deviation problems, see Freidlin and Wentzell [18,
Chapter 5], Liptser [23], Veretennikov [35], Puhalskii [29], and the references therein. For
infinite-dimensional problems where the state space is not locally compact, see Sowers [34]
and Cerrai and Röckner [10]. More recently, uniform large deviation principles (uniform
LDPs) for Banach-space-valued stochastic differential equations over the class of bounded and
open subsets of the Banach space have been studied by Salins et al. [31]. These have been used
to study the exit times and metastability in such processes; see Salins and Spiliopoulos [32].
While the above works focus on diffusion processes, our work focuses on the stationary-regime
large deviations of countable-state mean-field models with jumps. In the spirit of the small-
noise problems listed above, our process μN

νN
can be viewed as a small random perturbation of

the dynamical system (1.2) on M1(Z).
In the context of interacting particle systems, Dawson and Gärtner [12] established the

process-level LDP for weakly interacting diffusion processes, and Léonard [21] and Borkar
and Sundaresan [7] extended this to mean-field interacting particle systems with jumps. In this
work, we focus on the stationary-regime large deviations of mean-field models with jumps
when the state of each particle comes from a countable set. For small-noise diffusion pro-
cess on Euclidean spaces and finite-state mean-field models, since the state space (on which
the empirical measure process evolves) is locally compact, the process-level large deviation
results have been extended in a straightforward manner to the uniform LDP over the class of
open subsets of the space. Such uniform large deviation estimates have been used to prove the
large deviations of the invariant measure and the exit time estimates; see Freidlin and Wentzell
[18, Chapter 6] in the context of diffusion processes, and Borkar and Sundaresan [7, 36] in
the context of finite-state mean-field models. One of the key ingredients in these proofs is
the continuity of the quasipotential. However, in our case, the state space M1(Z) is infinite-
dimensional and not locally compact. Therefore, since the quasipotential (1.3) is expected to
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have compact lower level sets, we do not expect it to be continuous on M1(Z), unlike in the
finite-dimensional problems mentioned above. Hence the ideas presented in [7] are not directly
applicable to our context of the LDP for the family of invariant measures.

Large deviations of the family of invariant measures for small-noise diffusion processes on
non-locally-compact spaces have also been studied in the past; see Sowers [33] and Cerrai and
Röckner [11]. They have a unique attractor for the limiting dynamics, and the proof essentially
involves conversion of the uniform LDP over the finite time horizon to the stationary regime.
Martirosyan [24] studied a situation where the limiting dynamical system possesses multiple
attractors. For the study of large deviations of the family of invariant measures for simple exclu-
sion processes, see Bodineau and Giacomin [5] and Bertini et al. [3]. More recently, Farfán
et al. [17] extended this to a simple exclusion process whose limiting hydrodynamic equa-
tion has multiple attractors. Their proof proceeds similarly to the case of finite-dimensional
diffusions in Freidlin and Wentzell [18, Chapter 6, Section 4], by first approximating the pro-
cess near the attractors and then using the Khasminskii reconstruction formula [19, Chapter 4,
Section 4]. In particular, it requires the uniform LDP to hold over open subsets of the state
space. Since their state space, although infinite-dimensional, is compact, the proof of the uni-
form LDP over open subsets easily follows from the process-level LDP. Also, the compactness
of the state space simplifies the proof of the small-cost connection property from the attractors
to nearby points, a property needed in the Khasminskii reconstruction. Although we restrict
our attention to the case of a unique globally asymptotically stable equilibrium as in [11,
33], the main novelty of our work is that we establish certain regularity properties of the
quasipotential for countable-state mean-field models with jumps which have not previously
been established. We then use these properties to prove the LDP for the family of invari-
ant measures. Furthermore, we exhibit two counterexamples in which the stationary-regime
LDP’s rate functions are not governed by the usual quasipotential. To the best of our knowl-
edge, such examples, in which the LDP for the family of invariant measures holds but its
rate functions are not governed by the usual Freidlin–Wentzell quasipotential, are new. These
examples are constructed in such a way that the particle systems do not possess the small-cost
connection property from the attractor to nearby points with finite first moment but infinite
ϑ-moment.

Puhalskii [28] studied large deviations of the family of invariant measures for a queueing
network in a finite-dimensional setting. In addition, Puhalskii [30] studied large deviations of
the family of invariant measures for a stochastic process under some general conditions. One
of the conditions in [30] is the small-cost connection property between any two nearby points
in the state space, which we do not expect to hold in our countable-state mean-field model
since our state space is infinite-dimensional.

1.5. Organisation

This paper is organised as follows. In Section 2, we provide preliminary results on the large
deviations over finite time horizons. The proof of the main result is carried out in Sections 3–7.
In Section 3, we prove the existence, uniqueness, and exponential tightness of the family of
invariant measures. In Section 4, we prove the LDP lower bound for the family of invariant
measures. In Section 5, we establish some regularity properties of the quasipotential V defined
in (1.3). In Section 6, we prove the LDP upper bound for the family of invariant measures.
In Section 7, we complete the proof of the main result. Finally in Section 8, we prove that
the quasipotential differs from the relative entropy (with respect to the globally asymptotically
stable equilibrium) for the two counterexamples discussed in Section 1.1.
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2. Preliminaries

2.1. Frequently used notation

We first summarise the notation used throughout the paper. Let Z denote the set of nonnega-
tive integers, and let (Z, E) denote a directed graph on Z . Let R∞ denote the infinite product of
R equipped with the topology of pointwise convergence. Let C0(Z) denote the space of func-
tions on Z with compact support. Recall that M1(Z) denotes the space of probability measures
on Z equipped with the total variation metric (denoted by d). This metric generates the topol-
ogy of weak convergence on M1(Z). By Scheffé’s lemma [15, Chapter 3, Section 2], M1(Z)
can be identified with the subset {x ∈R

∞ : xi ≥ 0 ∀i,
∑

i≥0 xi = 1} of R∞ with the subspace
topology. For each N ≥ 1, recall that MN

1 (Z) ⊂M1(Z) denotes the space of probability mea-
sures on Z that can arise as empirical measures of N-particle configurations on ZN . Recall ϑ
as defined in (1.6). Given α ∈ C0(Z) and g ∈R

∞, let the bracket 〈α, g〉 denote
∑

z∈Z α(z)g(z).
Similarly, given f , g ∈R

∞, let the bracket 〈f , g〉 denote limn→∞
∑n

k=0 f (k)g(k), whenever the
limit exists. For M > 0, define

KM := {ξ ∈M1(Z) : 〈ξ, ϑ〉 ≤ M} ; (2.1)

by Prokhorov’s theorem, KM is a compact subset of M1(Z). Define K := ⋃
M≥1 KM . Let

ξ∗ ∈M1(Z) denote the globally asymptotically stable equilibrium for the McKean–Vlasov
equation (1.2) (see Assumption (B1)). For each �> 0, define

K(�) := {ξ ∈ K : d(ξ∗, ξ ) ≤� and |〈ξ∗, ϑ〉 − 〈ξ, ϑ〉| ≤�}; (2.2)

note that K(�) depends on ξ∗ as well (which we omit from the notation, for ease of reading).
Define

τ (u) := eu − u − 1, u ∈R. (2.3)

Note that τ is the log-moment generating function of the centred unit-rate Poisson law, and
define its convex dual by

τ ∗(u) :=
⎧⎨⎩

∞ if u<−1,
1 if u = −1,
(u + 1) log (u + 1) − u if u>−1.

(2.4)

For a complete and separable metric space (S, d0), A ⊂ S , and x ∈ S , let d0(x, A) denote
infy∈A d0(x, y). For a set A, let ∼ A denote the complement of A. For two numbers a and b, let
a ∨ b (resp. a ∧ b) denote the maximum (resp. minimum) of a and b. Also, let a+ = max{a, 0}.
For a metric space S , let B(S) denote the Borel σ -field on S . Finally, C denotes a constant,
and its value may be different at each occurrence.

2.1.1. Notation related to the dynamics. Let D([0, T], S) denote the space of S-valued func-
tions on [0, T] that are right-continuous with left limits. It is equipped with the Skorokhod
topology, which makes it a complete and separable metric space (see, e.g., Ethier and Kurtz
[16, Chapter 3]). Let ρ denote a metric on D([0, T], S) that generates the Skorokhod topology.
An element of D([0, T], S) is called a ‘trajectory’, and we shall refer to the process-level large
deviations rate function evaluated on a trajectory as the ‘cost’ associated with that trajectory.
For a trajectory ϕ, let both ϕt and ϕ(t) denote the evaluation of ϕ at time t. For N ≥ 1 and
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νN ∈MN
1 (Z), let PN

νN
denote the solution to the D([0, T],MN

1 (Z))-valued martingale problem
for L N with initial condition νN ∈MN

1 (Z) (whenever the martingale problem for L N is well
posed). Let μN

νN
denote the random element of D([0, T],MN

1 (Z)) whose law is PN
νN

. For each
ξ ∈M1(Z), let Lξ denote the generator acting on functions f on Z by

f �→ Lξ (z) :=
∑

z′ : (z,z′)∈E
λz,z′ (ξ )(f (z′) − f (z)), z ∈Z,

i.e., the generator of the single particle evolving on Z under the static mean-field ξ .
Let C1

0([0, T] ×Z) denote the space of real-valued functions on [0, T] ×Z with com-
pact support that are continuously differentiable in the first argument. Given a trajectory
ϕ ∈ D([0, T],M1(Z)) such that the mapping [0, T] � t �→ ϕt ∈M1(Z) is absolutely continu-
ous (see Dawson and Gärtner [12, Section 4.1]), one can define ϕ̇t ∈R

∞ for almost all t ∈ [0, T]
such that

〈ϕt, ft〉 = 〈ϕ0, f0〉 +
∫

[0,t]
〈ϕ̇u, fu〉du +

∫
[0,t]

〈ϕu, ∂ufu〉du

holds for each f ∈ C1
0([0, T] ×Z) and t ∈ [0, T].

Finally, let M1(D([0, T],Z)) denote the space of probability measures on D([0, T],Z)
equipped with the usual weak topology. Also, let M1(M1(D([0, T],Z))) denote the space of
probability measures on M1(D([0, T],Z)) equipped with the weak topology.

2.2. Process-level large deviations

We first recall the definition of the LDP for a family of random variables indexed by one
parameter.

Definition 2.1. (Large deviation principle.) Let (S, d0) be a metric space. We say that a family
{XN,N ≥ 1} of S-valued random variables defined on a probability space (�,F , P) satisfies
the large deviation principle (LDP) with rate function I : S → [0,∞] if the following hold:

• (Compactness of level sets.) For any s ≥ 0,�(s) := {x ∈ S : I(x) ≤ s} is a compact subset
of S .

• (LDP lower bound.) For any γ > 0, δ > 0, and x ∈ S , there exists N0 ≥ 1 such that

P(d0(XN, x)< δ) ≥ exp{−N(I(x) + γ )}
for any N ≥ N0.

• (LDP upper bound.) For any γ > 0, δ > 0, and s> 0, there exists N0 ≥ 1 such that

P(d0(XN, �(s)) ≥ δ) ≤ exp{−N(s − γ )}
for any N ≥ N0.

This definition is also used to study the large deviations of a family of probability measures.
For each N ≥ 1, let PN = P ◦ (XN)−1, the law of the random variable XN on (S, d0). We say
that the family of probability measures {PN,N ≥ 1} satisfies the LDP on (S, d0) with rate
function I if the sequence of S-valued random variables {XN,N ≥ 1} satisfies the LDP with rate
function I.
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The LDP lower bound in the above definition is equivalent to the following statement [18,
Chapter 3, Section 3]:

lim inf
N→∞

1

N
log P(XN ∈ G) ≥ − inf

x∈G
I(x), for all G ⊂ S open.

Similarly, under the compactness of the level sets of the rate function I, the LDP upper bound
above is equivalent to the following statement:

lim sup
N→∞

1

N
log P(XN ∈ F) ≤ − inf

x∈F
I(x), for all F ⊂ S closed.

To study the LDP for the family of invariant measures, we require estimates on the proba-
bilities of the process-level large deviations of μN

νN
. In particular, we consider hitting times of

μN
νN

on certain subsets of the state space M1(Z) and apply the process-level LDP lower and
upper bounds for μN

νN
starting at these subsets. Therefore, in addition to the scaling parameter

N, we must consider the process μN
νN

indexed by the initial condition νN ∈MN
1 (Z). To study

the process-level large deviations of such stochastic processes indexed by two parameters, we
use the following definition of the uniform LDP (see Freidlin and Wentzell [18, Chapter 3,
Section 3]).

Definition 2.2. (Uniform large deviation principle.) We say that the family {μN
νN
, νN ∈

MN
1 (Z),N ≥ 1} of D([0, T],M1(Z))-valued random variables defined on a probability space

(�,F , P) satisfies the uniform large deviation principle (uniform LDP) over the class A of sub-
sets of MN

1 (Z) with the family of rate functions {Iν, ν ∈M1(Z)}, Iν : D([0, T],M1(Z)) →
[0,+∞], ν ∈M1(Z), if the following hold:

• (Compactness of level sets.) For each K ⊂M1(Z) compact and s ≥ 0,
⋃
ν∈K �ν(s) is a

compact subset of D([0, T],M1(Z)), where

�ν(s) := {ϕ ∈ D([0, T],M1(Z)) : ϕ(0) = ν, Iν(ϕ) ≤ s}.
• (Uniform LDP lower bound.) For any γ > 0, δ > 0, s> 0, and A ∈A, there exists N0 ≥ 1

such that

P(ρ(μN
νN
, ϕ)< δ) ≥ exp{−N(IνN (ϕ) + γ )}

for all νN ∈ A ∩MN
1 (Z), ϕ ∈�νN (s), and N ≥ N0.

• (Uniform LDP upper bound.) For any γ > 0, δ > 0, s0 > 0, and A ∈A, there exists N0 ≥
1 such that

P(ρ(μN
νN
, �νN (s)) ≥ δ) ≤ exp{−N(s − γ )},

for all νN ∈ A ∩MN
1 (Z), s ≤ s0, and N ≥ N0.

Note that the initial conditions in the upper and lower bounds lie in A ∩MN
1 (Z), unlike in

the definition in [18, Chapter 3, Section 3].
We now make some definitions. Recall τ as defined in (2.3). For each ν ∈M1(Z) and T > 0,

define the functional S[0,T](·|ν) : D([0, T],M1(Z)) → [0,∞] by

S[0,T](ϕ|ν) :=
∫

[0,T]
sup

α∈C0(Z)

{
〈α, ϕ̇t −�∗

ϕt
ϕt〉 −

∑
(z,z′)∈E

τ (α(z′) − α(z))λz,z′(ϕt)ϕt(z)

}
dt,

(2.5)
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whenever ϕ(0) = ν and the mapping [0, T] � t �→ ϕ(t) ∈M1(Z) is absolutely continuous;
S[0,T](ϕ|ν) = ∞ otherwise. Define the lower level sets of the functional S[0,T](·|ν) by

�[0,T]
ν (s) := {ϕ ∈ D([0, T],M1(Z)) : ϕ(0) = ν, S[0,T](ϕ|ν) ≤ s}, s> 0, ν ∈M1(Z).

The next lemma asserts that these level sets are compact in D([0, T],M1(Z)) when the initial
conditions belong to a compact subset of M1(Z). The proof is deferred to Appendix A.

Lemma 2.1. For each T > 0, s> 0, and K ⊂M1(Z) compact,

{ϕ ∈ D([0, T],M1(Z)) : ϕ(0) ∈ K, S[0,T](ϕ|ϕ(0)) ≤ s}

is a compact subset of D([0, T],M1(Z)).

The starting point of our study of the invariant-measure asymptotics is the following uni-
form LDP for the family {μN

νN
, νN ∈MN

1 (Z),N ≥ 1} over the class of compact subsets of
M1(Z) with the family of rate functions {S[0,T](·|ν), ν ∈M1(Z)}. Its proof uses the process-
level LDP for μN

νN
studied in Léonard [21] for a fixed initial condition and its extension (when

Z is a finite set) to the case when initial conditions converge to a point in M1(Z) in Borkar
and Sundaresan [7]. The proof can be found in Appendix A.

Theorem 2.1. Fix T > 0 and assume (A1), (A2), and (A3). Then the family of D([0, T],
M1(Z))-valued random variables {μN

νN
, νN ∈MN

1 (Z),N ≥ 1} satisfies the uniform LDP over
the class of compact subsets of M1(Z) with the family of rate functions {S[0,T]( · |ν), ν ∈
M1(Z)}.

The rate function S[0,T](·|ν) admits a non-variational representation in terms of a minimal
cost ‘control’ that modulates the transition rates across various edges in E so that the desired
trajectory is obtained. Recall τ ∗ as defined in (2.4).

Theorem 2.2. (Non-variational representation; cf. Léonard [22].) Let ϕ ∈ D([0, T],M1(Z))
be such that S[0,T](ϕ|ϕ(0))<∞. Then there exists a measurable function hϕ : [0, T] × E →R

such that

〈ϕt, ft〉 = 〈ϕ0, f0〉 +
∫

[0,t]
〈ϕu, ∂ufu〉du

+
∫

[0,t]

∑
(z,z′)∈E

(fu(z′) − fu(z))(1 + hϕ(u, z, z′))λz,z′ (ϕu)ϕu(z)du (2.6)

holds for all t ∈ [0, T] and all f ∈ C1
0([0, T] ×Z), and S[0,T](ϕ|ϕ(0)) admits the non-

variational representation

S[0,T](ϕ|ϕ(0)) =
∫

[0,T]

∑
(z,z′)∈E

τ ∗(hϕ(t, z, z′))λz,z′(ϕt)ϕt(z)dt. (2.7)
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Remark 2.1. It can be shown that the rate function S[0,T] defined in (2.5) can also be
expressed as

S[0,T](ϕ|ν) = sup
f ∈C1

0([0,T]×Z)

{
〈ϕT , fT〉 − 〈ϕ0, f0〉 −

∫
[0,T]

〈ϕu, ∂ufu〉du

−
∫

[0,T]
〈ϕu, Lϕu fu〉du −

∫
[0,T]

∑
(z,z′)∈E

τ (fu(z′) − fu(z))λz,z′(ϕu)ϕu(z)du

}
,

(2.8)

for ϕ ∈ D([0, T],M1(Z)); see Léonard [22]. This form of the rate function will be used in the
proofs for the counterexamples in Section 8.

3. Invariant measure: existence, uniqueness, and exponential tightness

In this section we prove Proposition 1.1, the existence and uniqueness of the invariant
measure ℘N for L N for each N ≥ 1, and the exponential tightness of the family of invari-
ant measures {℘N,N ≥ 1}. The proof relies on the standard Krylov–Bogolyubov argument and
a coupling between the interacting particle system under consideration and a non-interacting
system with maximal forward transition rates and minimal backward transition rates.

We first introduce some notation for the non-interacting particle system. Let L̄ denote the
generator acting on functions f on Z by

L̄f (z) =
∑

z′ : (z,z′)∈E
λz,z′ (f (z′) − f (z)), z ∈Z, (3.1)

where λz,z+1 = λ/(z + 1) and λz,0 = λ. For each z ∈Z , let P̄z denote the solution to the
D([0, T],Z)-valued martingale problem for L̄ with initial condition z. Integration with respect
to P̄z is denoted by Ēz. Let π ∈M1(Z) denote the unique invariant probability measure for L̄.
Let P̄π denote the solution to the martingale problem for L̄ with initial law π . Integration with
respect to P̄π is denoted by Ēπ . By solving the detailed balance equations for L̄, we see that

π (z) ≤ π (0)

(
λ

λ

)z z∏
k=1

1

k
, z ≥ 1.

In particular, π (z) has superexponential decay in z, and Ēπ (exp{βϑ(X)})<∞ for small enough
β > 0, where ϑ is defined in (1.6). Finally, for each N ≥ 1, let P̄N

νN
denote the solution to the

D([0, T],MN
1 (Z))-valued martingale problem for L N with initial condition νN ∈MN

1 (Z),
λz,z+1(ζ ) replaced by λ/(z + 1) and λz,0(ζ ) replaced by λ in (1.1), respectively, for each ζ ∈
M1(Z). Integration with respect to P̄

N
νN

is denoted by Ē
N
νN

. Also, recall PN
νN

, νN ∈MN
1 (Z),

from Section 2.1.1. We are now ready to prove Proposition 1.1.

Proof of Proposition 1.1. Fix N ≥ 1. We first show the existence and uniqueness of the
invariant probability measure for L N . Consider the family of probability measures {ηN

T , T ≥ 1}
on M1(Z) defined by

ηN
T (A) := 1

T

∫ T

0
P

N
δ0

(μN(t) ∈ A)dt, A ∈B(M1(Z)), T ≥ 1.
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Let XN
n (t) denote the state of the nth particle at time t. Recall the compact sets KM ,

M > 0, defined in (2.1). We first couple the laws P
N
δ0

and P̄
N
δ0

. For zN ∈ZN , define

emp(zN) := 1
N

∑N
n=1 δzN

n
∈MN

1 (Z). Let eN
n denote the N-length vector with a 1 in the nth posi-

tion and 0 everywhere else. Consider the Markov process on ZN ×ZN with the infinitesimal
generator acting on functions f on ZN ×ZN by

(zN, z̄N) �→
N∑

n=1

[ (
f (zN + eN

n , z̄N + eN
n ) − f (zN, z̄N)

) (
λzN

n ,z
N
n +1(emp(zN)) ∧ λ

z̄N
n + 1

)

+ (
f (zN + eN

n , z̄N) − f (zN, z̄N)
) (
λzN

n ,z
N
n +1(emp(zN)) − λ

z̄N
n + 1

)+

+ (
f (zN, z̄N + eN

n ) − f (zN, z̄N)
) ( λ

z̄N
n + 1

− λzN
n ,z

N
n +1(emp(zN))

)+

+ (
f (zN − zN

n eN
n , z̄N − z̄N

n eN
n ) − f (zN, z̄N)

) (
λzN

n ,0
(emp(zN)) ∧ λ

)
1{zN

n >0,z̄N
n >0}

+ (
f (zN − zN

n eN
n , z̄N) − f (zN, z̄N)

) (
λzN

n ,0
(emp(zN)) − λ

)+
1{zN

n >0}

+ (
f (zN, z̄N − z̄N

n eN
n ) − f (zN, z̄N)

) (
λ− λzN

n ,0
(emp(zN))

)+
1{z̄N

n >0}
]

.

Such couplings have been studied for continuous-time Markov chains; see, e.g., [27]. Note
that, under the above Markov process, for any two initial conditions νN, ν̄N ∈MN

1 (Z), the
empirical measure flow associated with the first (resp. second) marginal has law P

N
νN

(resp.
P̄

N
ν̄N

). Therefore, for any t> 1, M > 1, and β > 0, we have

P
N
δ0

(μN(t) /∈ KM) ≤ P̄
N
δ0

(μN(t) /∈ KM)

= P̄
N
δ0

(
N∑

n=1

ϑ(XN
n (t))>NM

)

≤ exp{−NMβ}ĒN
δ0

(
exp

{
β

N∑
n=1

ϑ(XN
n (t))

})

= exp{−NMβ}(Ē0(exp{βϑ(XN
1 (t))}))N, (3.2)

where the first inequality follows from the above coupling since (i) the nth particle under P̄N
δ0

moves from z to z + 1 whenever it does so under PN
δ0

, and (ii) the nth particle under PN
δ0

moves

to 0 (i.e., a z-to-0 transition for some z) whenever it does so under P̄N
δ0

. The second inequality in

(3.2) is a consequence of Chebyshev’s inequality. Recall π and the laws P̄π and P̄0. We couple
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the laws P̄π and P̄0. Consider the Markov process on Z ×Z with the infinitesimal generator
acting on functions f on Z ×Z by

(z̄1, z̄2) �→ (f (z̄1 + 1, z̄2 + 1) − f (z̄1, z̄2))

(
λ

z̄1 + 1
∧ λ

z̄2 + 1

)

+ (f (z̄1 + 1, z̄2) − f (z̄1, z̄2))

(
λ

z̄1 + 1
− λ

z̄2 + 1

)+

+ (f (z̄1, z̄2 + 1) − f (z̄1, z̄2))

(
λ

z̄2 + 1
− λ

z̄1 + 1

)+

+ (f (0, 0) − f (z̄1, z̄2)) λ1{z̄1>0,z̄2>0}
+ (f (0, z̄2) − f (z̄1, z̄2)) λ1{z̄1>0,z̄2=0}
+ (f (z̄1, 0) − f (z̄1, z̄2)) λ1{z̄1=0,z̄2>0}.

Note that, when the initial condition has law (π, δ0), the first (resp. second) component under
the above process has law P̄π (resp. P̄0). Also note that if X̄1(0) ≥ X̄2(0), then X̄1(s) ≥ X̄2(s)
for all s under the above coupling. Since the first component is at least the second component
under the initial law (π, δ0), it follows that Ē0(exp{βϑ(XN

1 (t))}) ≤ Ēπ (exp{βϑ(XN
1 (t))}). The

latter is finite for sufficiently small β > 0, thanks to the exp{−ϑ(z)} decay of the probabil-
ity measure π on Z . Thus we can choose β̄ > 0 small enough (independently of M) so that
log Ēπ (exp{β̄ϑ(XN

1 (t))})< 1. Hence (3.2) implies that

P
N
δ0

(μN(t) /∈ KM) ≤ exp{−N(Mβ̄ − 1)}.

Therefore, for any M > 0 and T ≥ 1, we get

ηN
T (∼KM) ≤ exp{−N(Mβ̄ − 1)}. (3.3)

Since KM is a compact subset of M1(Z), this shows that the family {ηN
T , T ≥ 1} is tight. Hence

it follows that there exists an invariant probability measure ℘N for L N (see, e.g., Ethier and
Kurtz [16, Theorem 9.3, p. 240]). By Assumption (A1), μN is an irreducible Markov process;
hence ℘N is the unique invariant probability measure for L N .

We now show the exponential tightness of the family {℘N,N ≥ 1}. Let M > 0 be given, and
choose M′ = (M + 1)/β̄. For each N ≥ 1, since ℘N is a weak limit of the family {ηN

T , T ≥ 1}
as T → ∞, from (3.3) with M replaced by M′, it follows that

℘N(∼KM′ ) ≤ lim inf
T→∞ ηN

T (∼KM′ ) ≤ exp{−NM} (3.4)

for each N ≥ 1. Hence,

lim sup
N→∞

1

N
log℘N(∼KM′) ≤ −M,

which establishes that the family {℘N,N ≥ 1} is exponentially tight. This completes the proof
of the proposition. �
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4. The LDP lower bound

In this section we prove the LDP lower bound for the family {℘N,N ≥ 1}. To lower-bound
the probability of a small neighbourhood of a point ξ under ℘N , we first produce a trajectory
that starts at KM for a suitable M> 0, connects to ξ∗ with a small cost, and then reaches ξ
from ξ∗ with cost arbitrarily close to V(ξ ), where V is the quasipotential defined in (1.3). The
probability of a small neighbourhood of ξ under ℘N is then lower-bounded by the probability
that the process μN remains in a small neighbourhood of the trajectory constructed above. The
latter is then lower-bounded using the uniform LDP lower bound for μN , where the uniformity
is over the initial condition lying in a given compact subset of M1(Z).

Recall K(�) as defined in (2.2). We begin with a lemma that allows us to connect points in
K(�) to ξ∗ for small enough � with small cost. We omit its proof here, since it follows from
a certain continuity property of V which will be shown in Lemma 5.3.

Lemma 4.1. Given γ > 0, there exist �> 0 and T = T(�)> 0 such that for any ζ ∈ K(�)
there exists a trajectory ϕ on [0,T] such that ϕ(0) = ζ , ϕ(T) = ξ∗, and S[0,T](ϕ|ζ ) ≤ γ .

We now prove the LDP lower bound for the family {℘N,N ≥ 1}.
Lemma 4.2. For any γ > 0, δ > 0, and ξ ∈M1(Z), there exists N0 ≥ 1 such that

℘N{ζ ∈M1(Z) : d(ζ, ξ )< δ} ≥ exp{−N(V(ξ ) + γ )} (4.1)

for all N ≥ N0.

Proof. Fix γ > 0, δ > 0, and ξ ∈M1(Z). We may assume that V(ξ )<∞; if V(ξ ) = ∞ then
(4.1) trivially holds for all N ≥ 1. Choose some M > 0 and N1 ≥ 1 such that ℘N(KM) ≥ 1/2
for all N ≥ N1; this is possible from the exponential tightness of the family {℘N,N ≥ 1} (see
Proposition 1.1). Using Lemma 4.1, choose ε > 0 and T0 > 0 such that for any ζ1 ∈ K(ε) there
exists a trajectory ϕ1 on [0, T0] such that ϕ1(0) = ζ1, ϕ1(T0) = ξ∗, and S[0,T0](ϕ1|ζ1) ≤ γ /4.
Since ξ∗ is the globally asymptotically stable equilibrium for (1.2) and since KM is compact,
for the above ε > 0, there exists a T1 > 0 such that for any ζ ∈ KM we have μζ (T1) ∈ K(ε),
where μζ denotes the solution to the McKean–Vlasov equation (1.2) with initial condition ζ
(see Assumption (B2)). Also, by the definition of V(ξ ), there exists a T2 > 0 and a trajectory
ϕ2 such that ϕ2(0) = ξ∗, ϕ2(T2) = ξ , and S[0,T2](ϕ2|ξ∗) ≤ V(ξ ) + γ /4. Let T = T1 + T0 + T2.
Given ζ ∈ KM , we construct a trajectory ϕζ on [0, T] by using the above three trajectories as
follows. Let ϕζ (0) = ζ ; ϕζ (t) =μζ (t) for t ∈ [0, T1]; ϕζ (t) = ϕ1(t − T1) for t ∈ (T1, T1 + T0];
and ϕζ (t) = ϕ2(t − (T1 + T0)) for t ∈ (T1 + T0, T]. Note that S[0,T](ϕζ |ζ ) ≤ V(ξ ) + γ /2.

Recall that d is the metric on M1(Z) and ρ is the metric on D([0, T],M1(Z)). Note
that we can choose a δ′ > 0 (depending on T and M) such that ρ(ϕ, ϕζ )< δ′ implies that
d(ϕ(T), ϕζ (T))< δ for any ϕ ∈ D([0, T],M1(Z)) and ζ ∈ KM . Indeed, if such a choice is
not possible, then there exist a sequence {ζn} ∈ KM and a sequence of trajectories {ϕn} ⊂
D([0, T],M1(Z)) such that S[0,T](ϕζn |ζn) ≤ V(ξ ) + γ /2 and ρ(ϕn, ϕζn )< 1/n for each n ≥ 1,
but d(ϕn(T), ϕζn (T))> δ. By the compactness of the level sets of S[0,T] in Lemma 2.1, it follows
that there exists a subsequential limit for {ϕζnk

}k≥1 (say, ϕ∗); since ρ(ϕn, ϕζn )< 1/n, ϕnk also
converges to ϕ∗ in D([0, T],M1(Z)) as k → ∞. Furthermore, since S[0,T](ϕ∗|ϕ∗

0 )<∞, from
Theorem 2.2, we have that [0, T] � t �→ ϕ∗(t) is continuous. Since D([0, T],M1(Z)) � ϕ �→
ϕ(T) is continuous at all ϕ such that t �→ ϕ(t) is continuous (see, e.g, [4, p. 124]), it follows
that d(ϕnk (T), ϕ∗(T)) → 0 as k → ∞. This contradicts the assumption d(ϕn(T), ϕζn (T))> δ.
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This shows that we can choose a δ′ > 0 such that ρ(ϕ, ϕζ )< δ′ implies that d(ϕ(T), ϕζ (T))< δ
for any ϕ ∈ D([0, T],M1(Z)) and ζ ∈ KM . Therefore, for each N ≥ N1, we have

℘N{ζ ∈M1(Z) : d(ζ, ξ )< δ} =
∫
MN

1 (Z)
P

N
ζ (d(μN(T), ξ )< δ)℘N(dζ )

≥
∫
KM∩MN

1 (Z)
P

N
ζ (d(μN(T), ξ )< δ)℘N(dζ )

≥
∫
KM∩MN

1 (Z)
P

N
ζ (ρ(μN, ϕζ )< δ′)℘N(dζ )

≥ 1

2
inf

ζ∈KM∩MN
1 (Z)

P
N
ζ (ρ(μN, ϕζ )< δ′); (4.2)

here the first equality follows since ℘N is invariant to time shifts. By the uniform LDP lower
bound in Theorem 2.1, there exists N2 ≥ N1 such that

P
N
ζ (ρ(μN, ϕ)< δ′) ≥ exp{−N(S[0,T](ϕ|ζ ) + γ /4)}

for all ζ ∈ KM ∩MN
1 (Z), ϕ ∈�[0,T]

ζ (V(ξ ) + γ /2), and N ≥ N2. Noting that S[0,T](ϕζ |ζ ) ≤
V(ξ ) + γ /2 for any ζ ∈ KM ∩MN

1 (Z), and using the above uniform LDP lower bound, (4.2)
becomes

℘N{ζ ∈M1(Z) : d(ζ, ξ )< δ} ≥ 1

2
exp{−N(V(ξ ) + 3γ /4)}

for all N ≥ N2. Finally, choose N0 ≥ N2 so that 1/2 ≥ exp{−Nγ /4}. Then the above becomes

℘N{ζ ∈M1(Z) : d(ζ, ξ )< δ} ≥ exp{−N(V(ξ ) + γ )}
for all N ≥ N0. This completes the proof of the LDP lower bound for the family {℘N,N ≥ 1}.
�

5. Properties of the quasipotential

In this section we prove three key properties of the quasipotential V defined in (1.3). These
three properties are (i) a characterisation of the set of points for which V is finite, (ii) a cer-
tain continuity property for V , and (iii) the compactness of the lower level sets of V . These
properties play an important role in the proof of the LDP upper bound in Section 6.

5.1. A characterisation of finiteness of the quasipotential

Recall the function ϑ defined in (1.6) and the compact sets KM , M> 0, defined in (2.1). We
start with a lemma that enables us to connect δ0, the point mass at state 0, to a point ξ ∈ KM

for some M > 0. This connection is made using a trajectory of piecewise constant velocity
wherein, for each z ≥ 1, we move the mass ξ (z) from state 0 to state z in z steps; in the kth step,
we move the mass ξ (z) from state k − 1 to state k with unit velocity. The lemma asserts that the
cost of this piecewise-constant-velocity trajectory is bounded above by a constant that depends
only on M.

Lemma 5.1. Given M> 0, there exists a constant CM depending on M such that for any
ξ ∈ KM, there exists a T > 0 and a trajectory ϕ on [0,T] such that ϕ(0) = δ0, ϕ(T) = ξ , and
S[0,T](ϕ|δ0) ≤ CM.
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Proof. Fix M > 0 and ξ ∈ KM . Fix J ∈Z \ {0} and define ZJ = {1, 2, . . . , J}, tz = zξ (z)
for z ∈ZJ , and Tz =∑

z′∈ZJ ,z′≥z tz′ . Note that TJ ≤ TJ−1 ≤ · · · ≤ T1. We shall first construct
a trajectory ϕJ such that ϕJ(0) = δ0, ϕJ(T1)(z) = ξ (z) for each z ∈ZJ , and S[0,T1](ϕJ|δ0) is
bounded above by a constant independent of J.

Let TJ+1 = 0. For each z ∈ZJ , starting with z = J, we move the mass ξ (z) from state 0 to
state z using a piecewise unit velocity trajectory over the time duration (Tz+1, Tz+1 + tz]. We
define this trajectory ϕJ on [0, T1] as follows. Let ϕJ

0 = δ0. For each z ∈ZJ and 1 ≤ k ≤ z, when
t ∈ (Tz+1 + (k − 1)ξ (z), Tz+1 + kξ (z)], let

ϕ̇J
t (l) =

⎧⎨⎩
1 if l = k,
−1 if l = k − 1,
0 otherwise,

for l ∈Z , and define ϕJ
t (l) = δ0(l) + ∫

[0,t] ϕ̇
J
u(l)du, l ∈Z , t ∈ [0, T].

We now calculate the cost of this trajectory. Fix z ∈Z such that ξ (z)> 0, and let 1 ≤ k ≤ z.
For each t ∈ (Tz+1 + (k − 1)ξ (z), Tz+1 + kξ (z)) and α ∈ C0(Z), note that

〈α, ϕ̇J
t −�∗

ϕJ
t
ϕJ

t 〉 −
∑

(z,z′)∈E
τ (α(z′) − α(z))λz,z′(ϕ

J
t )ϕJ

t (z)

= (α(k) − α(k − 1)) −
∑

(z,z′)∈E
(exp{α(z′) − α(z)} − 1)λz,z′ (ϕ

J
t )ϕJ

t (z).

Hence,

sup
α∈C0(Z)

{
〈α, ϕ̇J

t −�∗
ϕJ

t
ϕJ

t 〉 −
∑

(z,z′)∈E
τ (α(z′) − α(z))λz,z′(ϕ

J
t )ϕJ

t (z)

}
≤ sup

x∈R
(x − (exp{x} − 1)λk−1,k(ϕJ

t )ϕJ
t (k − 1))

+ sup
α∈C0(Z)

⎛⎝−
∑

(z,z′)∈E ;(z,z′)	=(k−1,k)

(exp{α(z′) − α(z)} − 1)λz,z′ (ϕ
J
t )ϕJ

t (z)

⎞⎠
≤ log

(
1

ϕJ
t (k − 1)λk−1,k(ϕJ

t )

)
+ 2λ

≤ log

(
1

ϕJ
t (k − 1)

)
+ log k + log

(
1

λ

)
+ 2λ, (5.1)

where the last two inequalities follow from Assumption (A2). Consider the first term above. For
k> 1, integration of this quantity over the time duration t ∈ (Tz+1 + (k − 1)ξ (z), Tz+1 + kξ (z))
gives ∫

(Tz+1+(k−1)ξ (z),Tz+1+kξ (z))
log

(
1

ϕJ
t (k − 1)

)
dt = −

∫ 0

ξ (z)
log

(
1

u

)
du

= (u log u − u)

∣∣∣∣0
ξ (z)

= ξ (z) log

(
1

ξ (z)

)
+ ξ (z),
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where the first equality follows from the variable change u = ϕJ
t (k − 1) and the facts (i) ϕ̇J

t (k −
1) = −1, (ii) ϕJ

t (k − 1) = ξ (z) when t = Tz+1 + (k − 1)ξ (z), (iii) ϕJ
t (k − 1) = 0 when t =

Tz+1 + kξ (z), and (iv) du = −dt. For k = 1, using the bound ϕJ
t (0) ≥ ϕJ

t (0) − (1 −∑J
z′=z ξ (z′)),

we get ∫
(Tz+1,Tz+1+ξ (z))

log

(
1

ϕJ
t (0)

)
dt

≤
∫

(Tz+1,Tz+1+ξ (z))
log

(
1

ϕJ
t (0) − (1 −∑J

z′=z ξ (z′))

)
dt

= −
∫ 0

ξ (z)
log

(
1

u

)
du,

where the last equality follows from the variable change u = ϕJ
t (0) − (1 −∑J

z′=z ξ (z′)) and

the facts (i) ϕ̇J
t (0) = −1, (ii) ϕJ

t (0) = 1 −∑J
z′=z+1 ξ (z′) when t = Tz+1, so that ϕJ

t (0) − (1 −∑J
z′=z ξ (z′)) = ξ (z) when t = Tz+1, (iii) ϕJ

t (0) = 1 −∑J
z′=z ξ (z′) when t = Tz+1 + ξ (z), so that

ϕJ
t (0) − (1 −∑J

z′=z ξ (z′)) = 0 when t = Tz+1 + ξ (z), and (iv) du = −dt. Thus, proceeding as
before for the case k> 1, we arrive at∫

(Tz+1,Tz+1+ξ (z))
log

(
1

ϕJ
t (0)

)
dt ≤ ξ (z) log

(
1

ξ (z)

)
+ ξ (z).

Hence, integrating (5.1) over t ∈ (Tz+1 + (k − 1)ξ (z), Tz+1 + kξ (z)) and summing over 1 ≤ k ≤
z, we get, for each z ∈ZJ ,∫

(Tz+1,Tz+1+tz)
sup

α∈C0(Z)

{
〈α, ϕ̇J

t −�∗
ϕJ

t
ϕJ

t 〉 −
∑

(z,z′)∈E
τ (α(z′) − α(z))λz,z′(ϕ

J
t )ϕJ

t (z)

}
dt

≤ zξ (z) log

(
1

ξ (z)

)
+ C̃z, (5.2)

where C̃z = (z log z + z)ξ (z) + zξ (z)
(

log
(

1
λ

)
+ 2λ

)
. Let C̃J =∑

z∈ZJ
C̃z. Then, summing the

above display over z ∈ZJ , we arrive at

S[0,T1](ϕ
J |δ0) ≤

∑
z∈ZJ

zξ (z) log

(
1

ξ (z)

)
+ C̃J .

Note that∑
z∈ZJ

zξ (z) log

(
1

ξ (z)

)
=

∑
z∈ZJ :

ξ (z)≤1/z3

zξ (z) log

(
1

ξ (z)

)
+

∑
z∈ZJ :

ξ (z)>1/z3

zξ (z) log

(
1

ξ (z)

)

≤ 1

e
+

∑
z∈ZJ\{1} :

ξ (z)≤1/z3

3 log z

z2
+ 3

∑
z∈ZJ :

ξ (z)>1/z3

(z log z)ξ (z)

≤ 1

e
+ 3

∑
z∈ZJ

{
log z

z2
+ (z log z)ξ (z)

}
, (5.3)
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where the first inequality comes from the fact that the mapping x �→ x log (1/x) is monotoni-
cally increasing for x ∈ [0, 1/e]. Hence,

S[0,T1](ϕ
J|δ0) ≤ 1

e
+ 3

∑
z∈ZJ

{
log z

z2
+ (z log z)ξ (z)

}
+ C̃J, J ≥ 1.

Define T =∑
z∈Z zξ (z). We now extend the trajectory ϕJ to (T1, T] by defining ϕJ

t = ϕJ
T1

for
t ∈ (T1, T]. Noting that ϕ̇J

t (z) = 0 for all z ∈Z on t ∈ (T1, T], this extension suffers an additional
cost of at most 2λT . Hence, we get

S[0,T](ϕ
J|δ0) ≤ 1

e
+ 3

∑
z∈ZJ

{
log z

z2
+ (z log z)ξ (z)

}
+ C̃J + 2λT .

Noting that (i) the right-hand side above is bounded above by 〈ξ, ϑ〉C(λ, λ), where C(λ, λ) is
a constant depending on λ and λ, and (ii) 〈ξ, ϑ〉 ≤ M, the above display yields

S[0,T](ϕ
J|δ0) ≤ C(M, λ, λ),

where C(M, λ, λ) is a constant depending on M, λ, and λ. Using the compactness of the level
sets of S[0,T] (see Lemma 2.1), it follows that the sequence of trajectories {ϕJ, J ≥ 1} has a
convergent subsequence. Re-indexing the original sequence, let ϕJ → ϕ in D([0, T],M1(Z))
as J → ∞. By construction, for each J ∈Z \ {0}, ϕJ

T (z) = ξ (z) for all z ∈ZJ ; hence ϕT (z) = ξ (z)
for all z ∈Z . Recall that lower semicontinuity of S[0,T] was proved in the course of the proof
of Lemma 2.1. Therefore, it follows that

S[0,T](ϕ|δ0) ≤ lim inf
J→∞ S[0,T](ϕ

J|δ0) ≤ C(M, λ, λ).

This completes the proof of the lemma. �
We are now ready to characterise the set of points ξ in M1(Z) such that V(ξ ) is finite.

Lemma 5.2. We have V(ξ )<∞ if and only if ξ ∈ K. Furthermore, for any M > 0, there exists
a constant CM > 0 such that ξ ∈ KM implies V(ξ ) ≤ CM.

Proof. Let ξ ∈M1(Z) be such that V(ξ )<∞. Then there exist a T > 0 and a trajectory ϕ
on [0, T] such that ϕ(0) = ξ∗, ϕ(T) = ξ , and S[0,T](ϕ|ξ∗) ≤ V(ξ ) + 1. By Theorem 2.2, there
exists a measurable function hϕ on [0, T] × E such that

〈ϕt, f 〉 = 〈ϕ0, f 〉 +
∫

[0,t]

∑
(z,z′)∈E

(f (z′) − f (z))(1 + hϕ(u, z, z′))λz,z′ (ϕu)ϕu(z)du (5.4)

holds for all t ∈ [0, T] and f ∈ C0(Z), and S[0,T](ϕ|ϕ(0)) is given by

S[0,T](ϕ|ϕ(0)) =
∫

[0,T]

∑
(z,z′)∈E

τ ∗(hϕ(t, z, z′))λz,z′(ϕt)ϕt(z)dt.
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For any x ≥ 0 and y ∈R, using the convex duality relation (x − 1)y ≤ τ ∗(x − 1) + τ (y),
we get the inequality xy ≤ τ ∗(x − 1) + (exp{y} − 1). Hence, from the above non-variational
representation for S[0,T](ϕ|ϕ(0)), (5.4) implies

〈ϕt, f 〉 ≤ 〈ξ∗, f 〉 +
∫

[0,t]

∑
(z,z′)∈E

τ ∗(hϕ(u, z, z′))λz,z′(ϕu)ϕu(z)du

+
∫

[0,t]

∑
(z,z′)∈E

(exp{f (z′) − f (z)} − 1)λz,z′ (ϕu)ϕu(z)du

≤ 〈ξ∗, f 〉 + V(ξ ) + 1

+
∫

[0,t]

∑
(z,z′)∈E

(exp{f (z′) − f (z)} − 1)λz,z′ (ϕu)ϕu(z)du. (5.5)

Recall the function ϑ on Z . For n ≥ 1, define

ϑn(z) =
{
ϑ(z), if z ≤ n,
0, otherwise.

By convexity, note that ϑn(z + 1) − ϑn(z) ≤ 1 + log (z + 1) and ϑn(0) − ϑn(z) ≤ 0 for each z ∈
Z . Therefore, using the upper bound for the transition rates from Assumption (A2), we have∫

[0,t]

∑
(z,z′)∈E

(exp{ϑn(z′) − ϑn(z)} − 1)λz,z′ (ϕu)ϕu(z)du ≤ λ(e − 1)t

for each t ∈ [0, T] and n ≥ 1. It follows from (5.5) with f replaced by ϑn that

〈ϕt, ϑn〉 ≤ 〈ξ∗, ϑn〉 + V(ξ ) + 1 + λ(e − 1)T

for each t ∈ [0, T] and n ≥ 1. Letting n → ∞ and using monotone convergence, we conclude
that

sup
t∈[0,T]

〈ϕt, ϑ〉 = sup
t∈[0,T]

lim
n→∞〈ϕt, ϑn〉 ≤ 〈ξ∗, ϑ〉 + V(ξ ) + 1 + λ(e − 1)T . (5.6)

In particular, 〈ξ, ϑ〉 ≤ 〈ξ∗, ϑ〉 + V(ξ ) + 1 + λ(e − 1)T . It follows that ξ ∈ K.
Conversely, let ξ ∈ K. Let M > 0 be such that ξ ∈ KM . By Lemma 5.1, there exist a T > 0

and a trajectory ϕ(2) on [0, T] such that ϕ(2)(0) = δ0, ϕ(2)(T) = ξ , and S[0,T](ϕ(2)|δ0) ≤ CM

for some constant CM > 0 depending on M. Let t0 = 0, tz =∑z
z′=1 ξ

∗(z′), z ∈Z \ {0}, and
T1 =∑

z′ 	=0 ξ
∗(z′). We now construct another trajectory ϕ(1) on [0, T1] such that ϕ(1)(0) =

ξ∗, ϕ(1)(T1) = δ0, and S[0,T1](ϕ(1)|ξ∗)<∞. This trajectory is constructed using piecewise-
constant-velocity paths, and its cost S[0,T1](ϕ(1)|ξ∗) is computed using arguments similar to
those used in the proof of Lemma 5.1; we provide the details here for completeness. When
t ∈ (tz−1, tz] for some z ∈Z \ {0}, let

ϕ̇
(1)
t (l) =

⎧⎨⎩
−1 if l = z,
1 if l = 0,
0 otherwise,
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for l ∈Z , and define ϕ(1)
t (l) = ϕ

(1)
0 (l) + ∫

[0,t] ϕ̇
(1)
u (l)du, l ∈Z , t ∈ [0, T1]. Note that for each

α ∈ C0(Z), when t ∈ (tz−1, tz), we have{
〈α,ϕ̇(1)

t −�∗
ϕ

(1)
t
ϕ

(1)
t 〉 −

∑
(z,z′)∈E

τ (α(z′) − α(z))λz,z′(ϕ
(1)
t )ϕ(1)

t (z)

}
= (α(0) − α(z)) − (exp{α(0) − α(z)} − 1)λz,0(ϕ(1)

t )ϕ(1)
t (z)

−
∑

(z0,z′)∈E : (z0,z′)	=(z,0)

(exp{α(z′) − α(z0)} − 1)λz0,z′ (ϕ
(1)
t )ϕ(1)

t (z0)

}
,

so that optimising the left-hand side of the above display over α ∈ C0(Z) yields

sup
α∈C0(Z)

{
〈α,ϕ̇(1)

t −�∗
ϕ

(1)
t
ϕ

(1)
t 〉 −

∑
(z,z′)∈E

τ (α(z′) − α(z))λz,z′ (ϕ
(1)
t )ϕ(1)

t (z)

}

≤ log

(
1

ϕ
(1)
t (z)λz,0(ϕ(1)

t )

)
+ 2λ̄

≤ log

(
1

ϕ
(1)
t (z)

)
+ log

(
1

λ

)
+ 2λ,

where the last inequality follows from the lower bound on the backward transition rates in
Assumption (A2). Integrating the above over (tz−1, tz) and summing over z ∈Z \ {0}, we arrive
at

S[0,T1](ϕ
(1)|ξ∗) ≤

∑
z∈Z\{0}

{
ξ∗(z) log

1

ξ∗(z)
+ ξ∗(z)

(
1 + log

(
1

λ

)
+ 2λ

)}
. (5.7)

Since ξ∗ ∈ K, proceeding via the steps in (5.3), we conclude that the right-hand side of the
above display is finite. We combine ϕ(1) and ϕ(2) and define a new trajectory ϕ̃ on [0, T1 + T] as
follows: ϕ̃(t) = ϕ(1)(t) on t ∈ [0, T1]; ϕ̃(t) = ϕ(2)(t − T1) on t ∈ (T1, T1 + T]. Note that ϕ̃(0) =
ξ∗, ϕ̃(T1 + T) = ξ , and S[0,T1+T](ϕ̃|ξ∗)<∞. Hence V(ξ )<∞.

To prove the second statement, we note that given any M > 0, for any ξ ∈ KM , the cost of the
trajectory ϕ̃ constructed in the previous paragraph is bounded above by a constant depending
only on M (and not on ξ ). This completes the proof of the lemma. �

5.2. Continuity

We now establish a certain continuity property of the quasipotential V . Since V has compact
level sets and the space M1(Z) is not locally compact, we cannot expect V to be continuous on
M1(Z). In fact, for any point ξ ∈M1(Z) with V(ξ )<∞, one can produce a sequence {ξn, n ≥
1} such that ξn → ξ in M1(Z) as n → ∞, and 〈ξn, ϑ〉 = ∞ for all n ≥ 1, so that infn≥1 V(ξn) =
∞. We prove that V is continuous under the convergence of ϑ-moments when it is restricted
to K. That is, when ξn, ξ ∈ K, ξn → ξ in M1(Z), and 〈ξn, ϑ〉 → 〈ξ, ϑ〉 as n → ∞, we have
V(ξn) → V(ξ ) as n → ∞. Towards this, we produce a trajectory that connects ξ to ξn by first
moving the mass from all the large enough states z back to state 0, then producing a constant-
velocity trajectory that fills the required mass from state 0 to all the large enough states z, and
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finally adjusting mass within a finite subset of Z to reach ξn. We show that the cost of the
trajectory constructed above can be made arbitrarily small for large enough n.

Lemma 5.3. Let ξn ∈ K, n ≥ 1, and ξ ∈ K. Suppose that ξn → ξ in M1(Z) and 〈ξn, ϑ〉 →
〈ξ, ϑ〉 as n → ∞. Then V(ξn) → V(ξ ) as n → ∞.

Proof. We first prove that lim supn→∞ V(ξn) ≤ V(ξ ). Fix ε > 0. We shall move from ξ to
ξn in five steps. The outline of this construction is as follows:

• ϕ(0): This trajectory starts with ξ and moves all the mass for all states z> z0, for a
suitable large enough z0, back to state 0. This backward movement results in a cost of
O(ε).

• ϕ(1): Next, we move any additional mass, if required, from the states {1, 2, . . . , z0} back
to state 0 so that there is enough mass at state 0 to fill up all the states beyond z0. Again,
this backward movement results in a cost of O(ε).

• ϕ(2): Next, we construct a trajectory of piecewise constant velocity to move the mass∑
z′>z0

ξn(z) from state 0 to state z0 + 1. After this movement, state z0 + 1 contains all
the mass required to fill up the states beyond it. This forward movement results in a
cost of O(ε log (1/ε)), instead of O(ε), because we move the total mass for all the states
beyond z0.

• ϕ(3): Then, for each z> z0, we move the required mass (i.e., ξn(z)) from state 0 to state z
using a trajectory of piecewise constant velocity. At the end of this procedure, for each
z> z0, the mass at state z becomes ξn(z). This forward movement results in a cost of
O(ε).

• ϕ(4): Finally, we adjust the mass within the finite set {1, 2, . . . , z0} to match with ξn.
This also results in a cost of at most O(ε log (1/ε)). Again, this cost is O(ε log (1/ε))
instead of O(ε) because we move, for each z ∈ {1, 2, . . . , z0}, the sum of the additional
mass (under ξn as opposed to ξ ) in the states {z, z + 1, . . . , z0} from state 0 to state z.

Therefore, the total cost of all these trajectories is at most O(ε log (1/ε)), which vanishes as
ε→ 0. We now define these trajectories in detail and evaluate their costs.

Let z0 ≥ 2 be such that∑
z>z0

ϑ(z)ξ (z)< ε/6 and
∑
z>z0

log z

z2
< ε.

Then choose n1 ≥ 1 such that
∑

z>z0
ϑ(z)ξn(z)< ε/3 holds for all n ≥ n1; this is possible since

ξn → ξ in M1(Z) and 〈ξn, ϑ〉 → 〈ξ, ϑ〉 as n → ∞. Let

tz0 = 0, tz =
z∑

z′=z0+1

ξ (z′), z> z0, and T0 =
∑
z′>z0

ξ (z′).

Define the trajectory ϕ(0) on [0, T0] as follows. When t ∈ (tz−1, tz] for some z> z0, let

ϕ̇
(0)
t (l) =

⎧⎨⎩
−1 if l = z,
1 if l = 0,
0 otherwise,
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for l ∈Z , and define

ϕ
(0)
t (l) = ξ (l) +

∫
[0,t]

ϕ̇(0)
u (l)du, l ∈Z, t ∈ [0, T0].

Note that ϕ(0)
T0

(z) = ξ (z) for 1 ≤ z ≤ z0, ϕ(0)
T0

(z) = 0 for z> z0, and ϕ(0)
T0

(0) = ξ (0) +∑
z>z0

ξ (z).
Let M = (supn≥n1

〈ξn, ϑ〉) ∨ 〈ξ, ϑ〉 + 1. Using ideas similar to those used in the proof
of Lemma 5.2, it can be checked that S[0,T0](ϕ(0)|ξ ) ≤ C0(M, λ, λ)ε, for some constant
C1(M, λ, λ) depending on M, λ, and λ. Indeed, the cost is O(

∑
z>z0

ξ (z) log (1/ξ (z))), which,
using the argument used to arrive at the bound (5.7) and the choice of z0, is bounded by

O

(∑
z>z0

(
(z log z)ξ (z) + log z

z2

))
= O(ε).

Let εn =∑
z>z0

ξn(z). If εn >ϕ
(0)
T0

(0), then we move the extra mass εn − ϕ
(0)
T0

(0) from the

states {1, 2, . . . , z0} to state 0 as follows. Let T1 = T0 + εn − ϕ
(0)
T0

(0). When t is between T0 +∑z0
z′=z+1 ϕ

(0)
T0

(z′) and (T0 +∑z0
z′=z ϕ

(0)
T0

(z′)) ∧ T1 for some z ≤ z0, let

ϕ̇
(1)
t (l) =

⎧⎨⎩
−1 if l = z,
1 if l = 0,
0 otherwise,

for l ∈Z . Define the trajectory ϕ(1) on [0, T1] as follows: ϕ(1)
t = ϕ

(0)
t when t ∈ [0, T0]; ϕ(1)

t (l) =
ϕ

(0)
T0

(l) + ∫
[0,t] ϕ̇

(1)
u (l)du, l ∈Z , t ∈ (T0, T1]. Note that ϕ(1) depends on n, but we suppress this

in the notation for ease of reading. Again, since εn is smaller than ε/3, by using calculations
similar to those used in the proof of Lemma 5.2, we see that S[T0,T1](ϕ(1)|ϕ(0)

T0
) ≤ C1(M, λ, λ)ε

for some constant C1(M, λ, λ) depending on M, λ, and λ. On the other hand, if εn ≤ ϕ(0)
T0

(0),

we set T1 = T0 and ϕ(1)
t = ϕ

(0)
t on [0, T1]. In both cases, we have ϕ(1)

T1
(0) ≥ εn.

Let T2 = (z0 + 1)εn. We now construct another trajectory ϕ(2) on [0, T2] to transfer the mass
εn from state 0 (in ϕ(1)

T1
) to state z0 + 1. Let ϕ(2)

0 = ϕ
(1)
T1

. When t ∈ ((z − 1)εn, zεn] for some
z ∈ {1, 2, . . . , z0 + 1}, let

ϕ̇
(2)
t (l) =

⎧⎨⎩
−1 if l = z − 1,
1 if l = z,
0 otherwise,

for l ∈Z , and define ϕ(2)
t (l) = ϕ

(1)
T1

(l) + ∫
[0,t] ϕ̇

(2)
u (l)du, l ∈Z , t ∈ (0, T2]. Note that |x log ( 1

x ) −
y log ( 1

y )| ≤ δ + δ log (1/δ) whenever |x − y| ≤ δ, and that εn ≤ ε/(z0 log z0). Hence, using cal-

culations similar to those done in the proof of Lemma 5.1, we see that S[0,T2](ϕ(2)|ϕ(1)
T1

) can be

bounded above by C2(M, λ, λ)ε log (1/ε), where C2(M, λ, λ) is a constant depending on M,
λ, and λ, for each n ≥ n1 (recall that ϕ(2) depends on n). Indeed, the cost is bounded by the
order of

z0εn log

(
1

εn

)
+ (z0 log z0)εn ≤ z0

ε

z0 log z0
log

(
z0 log z0

ε

)
+ ε

≤ ε log (1/ε) + 3ε
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(see the bound in (5.2)), where the first inequality uses the fact that εn ≤ ε/(z0 log z0), and the
second inequality uses the fact that z0 ≥ 2, so that z0 log z0 > 1.

Note that ϕ(2)
T2

(z0 + 1) = εn. We now construct a trajectory that distributes this mass εn from
state z0 + 1 to all the states z ≥ z0 + 1 to match with ξn(z). Let t′z = zξn(z) for z ≥ z0 + 2 and
T3 =∑

z≥z0+2 t′z. Similarly to the construction in the proof of Lemma 5.1, we can now con-

struct a trajectory ϕ(3) on [0, T3] such that ϕ(3)
0 = ϕ

(2)
T2

, ϕ(3)
T3

(z) = ξn(z) for each z ≥ z0 + 1, and

S[0,T3](ϕ(3)|ϕ(2)
T2

) ≤ C3(M, λ, λ)ε for some constant C3(M, λ, λ) depending on M, λ, and λ, for
all n ≥ n1. Indeed, using the bounds in (5.2) and (5.3), the total cost is bounded by the order of

∑
z>z0+1

(
(z log z)ξn(z) + log z

z2

)
≤ ε

3
+ ε,

where the inequality follows from the choice of z0.
Finally, we construct a trajectory that connects ϕ(3)

T3
to ξn by adjusting the mass within

the states {0, 1, . . . , z0}. Note that ϕ(3)
T3

(z) = ξn(z) for each z ≥ z0 + 1. Let Z0 ⊂ {1, 2, . . . , z0}
denote the set of all z ∈ {1, 2, . . . , z0} such that ϕ(3)

T3
(z)> ξn(z). Similarly to the construction

of ϕ(1), for each z ∈Z0, we move the mass ϕ(3)
T3

(z) − ξn(z) from state z to state 0 using unit

velocity over a time duration ϕ(3)
T3

(z) − ξn(z). Once these mass transfers are complete, starting
with z = 1, we move the mass ∑

z′≥z,z′ /∈Z0,z′≤z0

(ξn(z′) − ϕ
(3)
T3

(z′))

from state z − 1 to state z at unit rate. Let

T4 =
∑
z∈Z0

(ϕ(3)
T3

(z) − ξn(z)) +
∑

z/∈Z0,z≤z0

(ξn(z) − ϕ
(3)
T3

(z)),

and let ϕ(4) denote this piecewise-constant-velocity trajectory. Let ε̃n =∑
z/∈Z0,z≤z0

(ξn(z) −
ϕ

(3)
T3

(z)). At each step of ϕ(4), since we move a mass of at most ε̃n from state z − 1 to state z,

the cost of ϕ(4) is at most of the order of

z0ε̃n log

(
1

ε̃n

)
+ (z0 log z0)ε̃n

(see (5.2)). Since ε̃n → 0 as n → ∞, we may choose n2 ≥ n1 so that ε̃n ≤ ε/(z0 log z0) for all
n ≥ n2. Therefore, for n ≥ n2, the above display is bounded by

z0
ε

z0 log z0
log

(
z0 log z0

ε

)
+ ε≤ ε log (1/ε) + 3ε,

which is O(ε log (1/ε)). Therefore, S[0,T4](ϕ(4)|ϕ(3)
T3

) ≤ C4(M, λ, λ)ε log (1/ε) for all n ≥ n2,

for some constant C4(M, λ, λ) depending on M, λ, and λ.
Let T =∑4

i=1 Ti. We now append the four paths ϕ(i), 1 ≤ i ≤ 4, constructed in the previ-
ous paragraphs over the time duration [0, T] to get a path ϕ such that ϕ0 = ξ , ϕT = ξn, and
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S[0,T](ϕ|ξ ) ≤ C(M, λ, λ)ε log (1/ε), where C(M, λ, λ) is a constant depending on M, λ and λ.
Hence, for each n ≥ n2, we have

V(ξn) ≤ V(ξ ) + S[0,T4](ϕ|ξ ) ≤ V(ξ ) + C(M, λ, λ)ε log (1/ε).

Therefore, lim supn→∞ V(ξn) ≤ V(ξ ) + C(M, λ, λ)ε log (1/ε). Letting ε→ 0 and noting that
ε log (1/ε) → 0, we arrive at lim supn→∞ V(ξn) ≤ V(ξ ).

To prove lim infn→∞ V(ξn) ≥ V(ξ ), we reverse the role of ξn and ξ in the above argument.
That is, we construct a trajectory ϕ on [0, T] such that ϕ0 = ξn, ϕT = ξ , and S[0,T](ϕ|ξn) ≤ εn

for all n ≥ 1, where εn → 0 as n → ∞. Thus, we get

V(ξ ) ≤ V(ξn) + εn.

Letting n → ∞, we conclude that lim infn→∞ V(ξn) ≥ V(ξ ). This completes the proof of the
lemma. �
Remark 5.1. The choice of n1 in the above proof suggests that the inequality
lim supn→∞ V(ξn) ≤ V(ξ ) can be proved as long as ξn → ξ in M1(Z) as n → ∞ and
lim supn→∞〈ξn, ϑ〉 ≤ 〈ξ, ϑ〉 holds. Similarly, the inequality lim infn→∞ V(ξn) ≥ V(ξ ) can be
proved as long as ξn → ξ in M1(Z) and lim infn→∞〈ξn, ϑ〉 ≥ 〈ξ, ϑ〉 holds. This observation
will be used later in the proof of the compactness of the lower level sets of V .

5.3. Compactness of the lower level sets of the quasipotential

Define the level sets of V by

�(s) := {ξ ∈M1(Z) : V(ξ ) ≤ s}, s> 0.

In this section we establish the compactness of �(s) for each s> 0.

Lemma 5.4. For each s> 0, �(s) is a compact subset of M1(Z).

Proof. We first prove an inclusion property of the level sets of V , namely, that given M> 0
there exists M′ > 0 such that

{ξ ∈M1(Z) : V(ξ ) ≤ M} ⊂ KM′ . (5.8)

On one hand, using Proposition 1.1 on the exponential tightness of the family {℘N,N ≥ 1}, we
can choose M′ > 0 (see (3.4)) such that

lim sup
N→∞

1

N
log℘N(∼KM′ ) ≤ −(M + 1).

On the other hand, using the LDP lower bound established in Lemma 4.2 and the compactness
of KM′ , we have

lim inf
N→∞

1

N
log℘N(∼KM′ ) ≥ − inf

ξ /∈KM′
V(ξ ).

Combining the above two displays, we get

− inf
ξ /∈KM′

V(ξ ) ≤ lim inf
N→∞

1

N
log℘N(∼KM′) ≤ lim sup

N→∞
1

N
log℘N(∼KM′ ) ≤ −(M + 1).
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That is, ξ /∈ KM′ implies V(ξ ) ≥ M + 1>M. This shows (5.8). By Prokhorov’s theorem, KM

is a compact subset of M1(Z); hence (5.8) shows that �(s) is precompact for each s> 0.
We now show that �(s) is closed in M1(Z). Let ξn ∈�(s) for each n ≥ 1, and let ξn → ξ

in M1(Z) as n → ∞. By Fatou’s lemma, we have lim infn→∞〈ξn, ϑ〉 ≥ 〈ξ, ϑ〉. Hence, by
Remark 5.1, we have lim infn→∞ V(ξn) ≥ V(ξ ). Thus, ξ ∈�(s). This completes the proof of
the lemma. �

6. The LDP upper bound

Recall KM as defined in (2.1) and K(�) as defined in (2.2). For m ∈N, define

Sm(�,M) = {ϕ ∈ D([0,m],M1(Z)) : ϕ(0) ∈ KM, ϕ(n) /∈ K(�) for all n = 1, 2, . . . ,m}.
That is, Sm(�,M) denotes the set of all trajectories that start at KM and do not intersect
K(�) at all integer time points in [0, m]. We begin with a lemma that asserts that the elements
of Sm(�,M) for large enough m must have non-trivial cost. The key idea used in the proof
comes from the compactness of level sets of the process-level large deviations rate function
S[0,T](·|ν), ν ∈ K, for any compact subset K of M1(Z) (see Lemma 2.1).

Lemma 6.1. For any s> 0, M> 0, and �> 0, there exists m0 ∈N such that

inf{S[0,m0](ϕ|ϕ(0)), ϕ ∈ Sm0 (�,M)}> s. (6.1)

Proof. Suppose not. Then there exist s> 0, M> 0, �> 0, a sequence of positive numbers
{εm,m ≥ 1} such that εm → 0 as m → ∞, and a sequence of trajectories {ϕm,m ≥ 1} such that
ϕm ∈ Sm(�,M), and S[0,m](ϕm|ϕm(0)) ≤ s + εm for each m ≥ 1.

Note that there exists an M1 > 0 such that ϕm(t) ∈ KM1 for each t ∈ [0,m] and each m ≥ 1.
Indeed, by Lemma 5.2, there exists CM > 0 such that ζ ∈ K(�) implies V(ζ ) ≤ CM . Thus, for
each m ≥ 1, there exist a T̄m > 0 and a trajectory ϕ̄m on [0, T̄m] such that ϕ̄m(0) = ξ∗, ϕ̄m(T̄m) =
ζ ∈ K(�), and S[0,T̄m](ϕ̄m|ξ∗) ≤ CM + 1. We extend this trajectory ϕ̄m to (T̄m, T̄m + m] by
defining ϕ̄m(t) = ϕm(t − T̄m) on t ∈ (T̄m, T̄ + m]. Note that S[0,T̄m+m](ϕ̄m|ξ∗) ≤ CM + 1 + s +
εm, so that V(ϕm(t)) ≤ CM + 1 + s + εm for each t ∈ [0,m] and each m ≥ 1. Thus, we can find
an M1 > 0 such that (5.8) holds with M replaced by CM + s + supm≥1 εm + 2 and M′ replaced
by M1. It follows that ϕm(t) ∈ KM1 for each t ∈ [0,m] and each m ≥ 1.

For the above choice of M1, using Assumption (B2), choose T1 > 1 such that μζ (t) ∈
K(�/2) for each t ≥ T1 and each ζ ∈ KM1 , where μζ is the solution to the McKean–Vlasov
equation (1.2) with initial condition ζ . Note that the closure of the set of all trajectories ϕ
on [0, T1] in D([0, T1],M1(Z)) with initial condition ϕ(0) ∈ KM1 and ϕ(T1) /∈ K(�) does not
contain any trajectory of the McKean–Vlasov equation (1.2). It follows from Lemma 2.1 that

β := inf{S[0,T1](ϕ|ϕ(0)), ϕ(0) ∈ KM1 , ϕ(n) /∈ K(�) for each n = 1, 2, . . . , �T1�}> 0.

Therefore, noting that ϕm(t) ∈ KM1 for each t ∈ [0,m] and m ≥ 1, we see that

S[0,m](ϕm|ϕm(0)) ≥
�m/T1�∑

n=1

S[(n−1)T1,nT1](ϕm|ϕm((n − 1)T1))

≥
⌊

m

T1

⌋
β

→ ∞ as m → ∞,

which contradicts our assumption. This completes the proof of the lemma. �
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With a slight abuse of notation, given A ⊂M1(Z), s> 0, and T > 0, define

�
[0,T]
A (s) := {ϕ ∈ D([0, T],M1(Z)) : ϕ(0) ∈ A, S[0,T](ϕ|ϕ(0)) ≤ s}.

We now prove a certain containment property for elements of M1(Z) that can arise as end-
points of trajectories in�[0,T]

K(�)(s), s> 0 and�> 0, i.e., points ξ ∈M1(Z) such that there exists
a trajectory ϕ with ϕ0 ∈ K(�) and S[0,T](ϕ|ϕ0) ≤ s. We prove that such points are not far from
the lower level sets of V in M1(Z). This connection between trajectories over finite time hori-
zons and the level sets of the quasipotential V is the key to transferring the process-level LDP
upper bound in Theorem 2.1 to the LDP upper bound for the family of invariant measures
{℘N,N ≥ 1}.
Lemma 6.2. For any s> 0 and δ > 0 there exist �> 0 and T1 ≥ 1 such that for all T ≥ T1,

{ϕ(T) : ϕ ∈�[0,T]
K(�)(s)} ⊂ {ξ ∈M1(Z) : d(ξ, �(s)) ≤ δ}. (6.2)

Proof. Suppose not. Then there exist s> 0, δ > 0, sequences {�n, n ≥ 1} and {Tn, n ≥
1} such that �n ↓ 0 and Tn ↑ ∞ as n → ∞, and trajectories ϕn ∈�[0,Tn]

K(�n)(s) such that
d(ϕn(Tn), �(s))> δ for each n ≥ 1. Let ξn = ϕn(Tn), n ≥ 1. By Lemma 5.3, there exist a T ′ > 0
and a sequence {εn, n ≥ 1}, with εn → 0 as n → ∞, such that for any ζ ′ ∈ K(�n) there exists
a trajectory ϕ̄ζ

′
on [0, T ′] such that ϕ̄ζ

′
(0) = ξ∗, ϕ̄ζ

′
(T ′) = ζ ′, and S[0,T ′](ϕ̄ζ

′ |ξ∗) ≤ εn. For
each n ≥ 1, let ϕ̃n be the trajectory on [0, T ′ + Tn] defined as follows. Let ϕ̃n(0) = ξ∗; ϕ̃n(t) =
ϕ̄ϕn(0)(t) on t ∈ [0, T ′]; ϕ̃n(t) = ϕn(t − T ′) on t ∈ (T ′, T ′ + Tn]. In particular, ϕ̃n(T ′ + Tn) = ξn.
Clearly, S[0,T ′+Tn](ϕ̃n|ξ∗) ≤ s + εn. It follows that V(ξn) ≤ s + εn. Using the compactness of the
lower level sets of V (see Lemma 5.4), we can find a convergent subsequence of {ξn, n ≥ 1};
after re-indexing and denoting this convergent subsequence by {ξn, n ≥ 1}, let ξn → ξ in
M1(Z) as n → ∞. By assumption, d(ξn, �(s))> δ for each n ≥ 1, and hence d(ξ, �(s)) ≥ δ.
Using the lower semicontinuity of V , we see that

V(ξ ) ≤ lim inf
n→∞ V(ξn) ≤ lim inf

n→∞ (s + εn) = s.

Hence ξ ∈�(s). This contradicts d(ξ, �(s)) ≥ δ, which is a consequence of our assumption.
This proves the lemma. �

We are now ready to prove the LDP upper bound for the family {℘N,N ≥ 1}. The proof
relies on the uniform LDP upper bound in Theorem 2.1, the exponential tightness of the family
{℘N,N ≥ 1}, the containment property established in Lemma 6.2, an estimate on the proba-
bility that μN lies in Sm(M, �) (which uses the process-level uniform LDP upper bound in
Theorem 2.1 and the result of Lemma 6.1), and finally the strong Markov property of μN .

Lemma 6.3. For any γ > 0, δ > 0, and s> 0, there exists N0 ≥ 1 such that

℘N{ζ ∈M1(Z) : d(ζ, �(s)) ≥ δ} ≤ exp{−N(s − γ )}
for all N ≥ N0.

Proof. Fix γ > 0, δ > 0, and s> 0. Choose M > 0 and N1 ≥ 1 such that ℘N(∼KM) ≤
exp{−Ns} for all N ≥ N1; this is possible from the exponential tightness of the family {℘N,N ≥
1} (see Proposition 1.1). For the given s> 0 and δ > 0, from Lemma 6.2, choose �> 0 and
T1 > 0 such that (6.2) holds for all T ≥ T1. For the above choice of �> 0 and M > 0, by
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Lemma 6.1, choose m0 ∈N such that (6.1) holds. By (6.1) and the compactness of �[0,m0]
KM

(s)
in D([0,m0],M1(Z)) (which follows from Lemma 2.1), the closure of Sm0 (�,M) does not

intersect �[0,m0]
KM

(s). It follows that there exists a δ0 > 0 such that ϕ ∈ Sm0 (�,M) implies

ρ(ϕ, �[0,m0]
KM

(s)) ≥ δ0. Hence by the uniform LDP upper bound in Theorem 2.1, there exists
N2 ≥ N1 such that

P
N
ζ (μN ∈ Sm0 (�,M)) ≤ P

N
ζ (ρ(μN, �

[0,m0]
KM

(s)) ≥ δ0)

≤ exp{−N(s − γ /2)} (6.3)

for all ζ ∈ KM ∩MN
1 (Z) and N ≥ N2. Thus, with T = m0 + T1 and N ≥ N2, we have

℘N{ζ ∈M1(Z):d(ζ, �(s)) ≥ δ}
=
∫
MN

1 (Z)
P

N
ζ (d(μN(T), �(s)) ≥ δ)℘N(dζ )

≤ exp{−Ns} +
∫
KM∩MN

1 (Z)
P

N
ζ (d(μN(T), �(s)) ≥ δ)℘N(dζ )

≤ exp{−Ns} + sup
ζ∈KM∩MN

1 (Z)

P
N
ζ (μN ∈ Sm0 (�,M))

+
∫
KM∩MN

1 (Z)
P

N
ζ (μN /∈ Sm0 (�,M), d(μN(T), �(s)) ≥ δ)℘N(dζ )

≤ exp{−Ns} + exp{−N(s − γ /2)}
+
∫
KM∩MN

1 (Z)
P

N
ζ (μN /∈ Sm0 (�,M), d(μN(T), �(s)) ≥ δ)℘N(dζ );

(6.4)

here the first equality follows since ℘N is invariant to time shifts, the first inequality follows
from the choice of M, and the third inequality follows from (6.3).

To bound the integrand in the third term above, let T ′ ≥ T1 and ζ ′ ∈ K(�). Choose 0<
δ′ < δ (depending on T and s, and not on ζ ′ and T ′) such that ρ(ϕ1, ϕ2)< δ′/2 implies

d(ϕ1(T ′), ϕ2(T ′))< δ/2 whenever ϕ1 ∈ D([0, T ′],M1(Z)) and ϕ2 ∈�[0,T ′]
ζ ′ (s). The existence

of such a δ′ can be justified via arguments similar to those used in the proof of Lemma 4.2; see
the paragraph before (4.2). Note that if a trajectory ϕ on [0, T ′] with initial condition ϕ(0) = ζ ′

is such that ρ(ϕ, �[0,T ′]
ζ ′ (s))< δ′/2, then there exists a trajectory ϕ′ ∈�[0,T ′]

ζ ′ (s) such that
ρ(ϕ, ϕ′)< δ′/2. By the choice of δ′, we have d(ϕ(T ′), ϕ′(T ′))< δ/2. By Lemma 6.2, we find
that d(ϕ′(T ′), �(s)) ≤ δ′/2. Hence, by the triangle inequality, d(ϕ(T ′), �(s))< δ/2 + δ′/2< δ.
The contrapositive of the above statement is

d(ϕ(T ′), �(s)) ≥ δ⇒ ρ(ϕ, �[0,T ′]
ζ ′ (s)) ≥ δ′/2.

We therefore conclude that

P
N
ζ ′ (d(μN(T ′), �(s)) ≥ δ) ≤ P

N
ζ ′ (ρ(μN, �

[0,T ′]
ζ ′ (s)) ≥ δ′/2) (6.5)

for all T ′ ≥ T1, ζ ′ ∈ K(�) ∩MN
1 (Z), and N ≥ 1.
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Note that the integrand in the last term of (6.4) can be bounded above by

P
N
ζ (μN /∈ Sm0 (�,M), d(μN(T), �(s)) ≥ δ)

= P
N
ζ (μN(m) ∈ K(�) for some m = 1, 2, . . . ,m0, d(μN(T), �(s)) ≥ δ)

≤
m0∑

m=1

sup
ζ ′∈K(�)∩MN

1 (Z)

P
N
ζ ′ (d(μN(T − m), �(s)) ≥ δ)

≤
m0∑

m=1

sup
ζ ′∈K(�)∩MN

1 (Z)

P
N
ζ ′ (ρ((μN(t), 0 ≤ t ≤ T − m), �[0,T−m]

ζ ′ (s)) ≥ δ′/2), (6.6)

where the first inequality follows from the strong Markov property of μN and the second
inequality follows from (6.5) by the choice of T . By the uniform LDP upper bound in
Theorem 2.1, for each m = 1, 2, . . .m0, there exists N(m) ≥ N2 such that

P
N
ζ ′ (ρ((μN(t), 0 ≤ t ≤ T − m), �[0,T−m]

ζ ′ (s)) ≥ δ′/2) ≤ exp{−N(s − γ /2)}
for all ζ ′ ∈ K(�) ∩MN

1 (Z) and N ≥ N(m). Put N3 = max{N(m),m = 1, 2, . . . ,m0,N1,N2}.
Then (6.6) yields

P
N
ζ (μN /∈ Sm0 (�,M), d(μN(T), �(s)) ≥ δ) ≤ m0 exp{−N(s − γ /2)}

for all ζ ∈ KM ∩MN
1 (Z) and N ≥ N3. Substitution of this back in (6.4) yields

℘N{ζ ∈M1(Z):d(ζ, �(s)) ≥ δ} ≤ exp{−Ns} + (m0 + 1) exp{−N(s − γ /2)}
for all N ≥ N3. Finally, choose N0 ≥ N3 such that 1 + (m0 + 1) exp{Nγ /2} ≤ exp{Nγ } for all
N ≥ N0. Then the above display becomes

℘N{ζ ∈M1(Z):d(ζ, �(s)) ≥ δ} ≤ exp{−N(s − γ )}
for all N ≥ N0. This completes the proof of the lemma. �

7. Proof of Theorem 1.1

We now complete the proof of Theorem 1.1.

• (Compactness of level sets.) For any s> 0, by Lemma 5.4, the set �(s) = {ξ ∈
M1(Z) : V(ξ ) ≤ s} is a compact subset of M1(Z).

• (LDP lower bound.) Given γ > 0, δ > 0, and ξ ∈M1(Z), by Lemma 4.2, there exists
N0 ≥ 1 such that

℘N{ζ ∈M1(Z) : d(ζ, ξ )< δ} ≥ exp{−N(V(ξ ) + γ )}
for all N ≥ N0.

• (LDP upper bound.) Given γ > 0, δ > 0, and s> 0, by Lemma 6.3, there exists N0 ≥ 1
such that

℘N{ζ ∈M1(Z) : d(ζ, �(s)) ≥ δ} ≤ exp{−N(s − γ )}
for all N ≥ N0.

This completes the proof of Theorem 1.1.
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8. Two counterexamples

In this section, for the two non-interacting counterexamples described in Section 1.1, we
prove that the quasipotential is not equal to the relative entropy with respect to the correspond-
ing globally asymptotically stable equilibrium. These two counterexamples are (i) a system of
non-interacting M/M/1 queues, and (ii) a system of non-interacting nodes in a wireless local
area network (WLAN) with constant forward transition rates. We detail the proofs in the case
of non-interacting M/M/1 queues. Similar arguments carry over to the case of a non-interacting
WLAN system with constant forward transition rates as well.

8.1. A system of non-interacting M/M/1 queues

Recall the system of non-interacting M/M/1 queues described in Section 1.1.1. Recall the
relative entropy from (1.4) and the process-level large deviations rate function from (2.8). Also
recall the function ϑ defined in (1.6) and the compact sets KM , M> 0, defined in (2.1). Define
the quasipotential

VQ(ξ ) := inf{SQ
[0,T](ϕ|ξ∗

Q), ϕ(0) = ξ∗
Q, ϕ(T) = ξ, T > 0}, ξ ∈M1(Z),

where SQ is defined by (2.8) with E replaced by EQ and Lζ replaced by LQ for each ζ ∈M1(Z).
We first prove that the quasipotential VQ is not finite outside K. The key property used

for this is the fact that the attractor ξ∗
Q has geometric decay. As a consequence, 〈ξ∗

Q, ϑ〉<∞.
Using this property, we first show that if ξ /∈ K, then the associated quasipotential evaluated
at ξ cannot be finite. This is shown by producing a lower bound for the cost of any trajectory
starting at ξ∗

Q and ending at ξ /∈ K from the rate function in (2.8).

Lemma 8.1. If ξ ∈M1(Z) is such that ξ /∈ K, then VQ(ξ ) = ∞.

Proof. Fix ξ ∈M1(Z). Let T > 0 and ϕ ∈ D([0, T],M1(Z)) be such that ϕ0 = ξ∗
Q and ϕT =

ξ . For each n ≥ 1, define fn by

fn(z) =
⎧⎨⎩

z, if z ≤ n,
2n − z, if n + 1 ≤ z ≤ 2n,
0, if z> 2n,

and define f∞(z) = z for each z ∈Z . Note that the purpose of fn is to approximate f∞ using
C0(Z) functions so that we can insert them into (2.8). We first assume that 〈ξ, f∞〉 = ∞. In
particular, ξ /∈ K. Using the function fn in place of f in the right-hand side of (2.8), we have

SQ
[0,T](ϕ|ξ∗

Q) ≥ 〈ϕT , fn〉 − 〈ξ∗
Q, fn〉 −

∫
[0,T]

〈ϕu, LQfn〉 −
∫

[0,T]

∑
(z,z′)∈EQ

τ (fn(z′) − fn(z))λz,z′ϕu(z)du

= 〈ϕT , fn〉 − 〈ξ∗
Q, fn〉 −

∫
[0,T]

∑
(z,z′)∈EQ

(exp{fn(z′) − fn(z)} − 1)λz,z′ϕu(z)du,

where λz,z+1 = λf , z ∈Z , and λz,z−1 = λb, z ∈Z \ {0}. Noting that fn(z′) − fn(z) is either 1, 0,
or −1 for each (z, z′) ∈ EQ, we have∑

(z,z′)∈EQ

(exp{fn(z′) − fn(z)} − 1)λz,z′ϕu(z) ≤ 2(e − 1)λb

for each u ∈ [0, T]. Hence the above becomes

SQ
[0,T](ϕ|ξ∗

Q) ≥ 〈ϕT , fn〉 − 〈ξ∗
Q, fn〉 − 2(e − 1)λbT .
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Note that 〈ξ∗
Q, f∞〉<∞. Hence, letting n → ∞ and using the monotone convergence theorem,

we conclude that SQ
[0,T](ϕ|ξ∗

Q) = ∞.
We now assume that ξ /∈ K is such that 〈ξ, f∞〉<∞. Let T > 0 and ϕ ∈ D([0, T],M1(Z))

be such that ϕ0 = ξ∗
Q and ϕT = ξ . Without loss of generality, we can assume that

supt∈[0,T]〈ϕt, f∞〉<∞; otherwise the argument in the above paragraph shows that

SQ
[0,T](ϕ|ξ∗

Q) = ∞. Define

ϑn(z) =
⎧⎨⎩
ϑ(z), if z ≤ n,
ϑ(2n − z), if n + 1 ≤ z ≤ 2n,
0, if z> 2n.

Using ϑn in the right-hand side of (2.8), we get

SQ
[0,T](ϕ|ξ∗

Q) ≥ 〈ξ, ϑn〉 − 〈ξ∗
Q, ϑn〉 −

∫
[0,T]

∑
(z,z′)∈EQ

(exp{ϑn(z′) − ϑn(z)} − 1)λz,z′ϕu(z)du.

Noting that ϑn(z′) − ϑn(z) can be bounded above by 1 + log (z + 1) for each (z, z′) ∈ EQ, it
follows that∑

(z,z′)∈EQ

(exp{ϑn(z′) − ϑn(z)} − 1)λz,z′ϕu(z) ≤ 2λb(e( sup
t∈[0,T]

〈ϕt, f∞〉 + 1) − 1)

for each u ∈ [0, T]. Hence the above display becomes

SQ
[0,T](ϕ|ξ∗

Q) ≥ 〈ξ, ϑn〉 − 〈ξ∗
Q, ϑn〉 − 2λb(e( sup

t∈[0,T]
〈ϕt, f∞〉 + 1) − 1)T .

As before, letting n → ∞, using the monotone convergence theorem, and noting that ξ∗
Q ∈ K,

we conclude that SQ
[0,T](ϕ|ξ∗

Q) = ∞.
Since ξ /∈ K, T > 0, and ϕ ∈ D([0, T],M1(Z)) such that ϕ0 = ξ∗

Q and ϕT = ξ are arbitrary,
the proof of the lemma is complete. �

We now prove the main result of this section, namely, that the quasipotential VQ is not equal
to the relative entropy I(·‖ξ∗

Q).

Proposition 8.1. Let ξ ∈M1(Z) be such that 〈ξ, f∞〉<∞ and ξ /∈ K. Then I(ξ‖ξ∗
Q)<∞ and

V(ξ ) = ∞. In particular, V 	= I(·‖ξ∗
Q).

Proof. By the Donsker–Varadhan variational formula (see Donsker and Varadhan [14,
Lemma 2.1]), for any ξ ∈M1(Z) and any bounded function f on Z , we have

I(ξ‖ξ∗
Q) ≥ 〈ξ, f 〉 − log

⎛⎝∑
z∈Z

exp{f (z)}ξ∗
Q(z)

⎞⎠ .

Recall the definition of fn and f∞ from the proof of Lemma 8.1. Let β̄ > 0 be such that∑
z∈Z exp{β̄z}ξ∗

Q(z)<∞. Replacing f by β̄fn in the above display, letting n → ∞ and using
the monotone convergence theorem, we arrive at

β̄〈ξ, f∞〉 ≤ I(ξ‖ξ∗
Q) + log

⎛⎝∑
z∈Z

exp{β̄z}ξ∗
Q(z)

⎞⎠ .
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It follows that

{ξ ∈M1(Z) : I(ξ‖ξ∗
Q)<∞} ⊂ {ξ ∈M1(Z) : 〈ξ, f∞〉<∞}.

On the other hand, since 〈ξ∗
Q, f∞〉<∞, it is easy to check that {ξ ∈M1(Z) : I(ξ‖ξ∗

Q)<∞} ⊃
{ξ ∈M1(Z) : 〈ξ, f∞〉<∞}.

Let ξ ∈M1(Z) be such that 〈ξ, ϑ〉 = ∞ and 〈ξ, f∞〉<∞. Then the above yields I(ξ‖ξ∗
Q)<

∞. By Lemma 8.1, we see that VQ(ξ ) = ∞. This completes the proof of the proposition. �

8.2. A non-interacting WLAN system with constant forward rates

Recall the model described in Section 1.1.2. Define the quasipotential

VW (ξ ) := inf{SW
[0,T](ϕ|ξ∗

W ), ϕ0 = ξ∗
W , ϕT = ξ, T > 0}, ξ ∈M1(Z),

where SW is defined by (2.8) with E replaced by EW and Lζ replaced by LW for each ζ ∈
M1(Z). We now state the main result for this non-interacting WLAN.

Proposition 8.2. Let ξ ∈M1(Z) be such that 〈ξ, f∞〉<∞ and ξ /∈ K. Then I(ξ‖ξ∗
W )<∞ and

V(ξ ) = ∞. In particular, VW 	= I(·‖ξ∗
W ).

We have the following lemma. The proof is similar to the proof of Lemma 8.1, noting that
〈ξ∗

W , ϑ〉<∞, and it is left to the reader.

Lemma 8.2. If ξ ∈M1(Z) is such that ξ /∈ K, then VW (ξ ) = ∞.

Using the above lemma, we can now prove Proposition 8.2 along similar lines to the proof
of Proposition 8.1 in the previous section.

Appendix A. Proofs of Section 2

A.1. Compactness of level sets of S[0,T]

Proof of Lemma 2.1. Fix T > 0, s> 0, and K ⊂M1(Z) compact. Given ν ∈ K, ϕ ∈�[0,T]
ν (s),

and a finite set B ⊂Z , if we choose f (t, z) = 1{z∈B} for all t ∈ [0, T], then (2.6) yields

ϕt(B) − ϕr(B) =
∫

[r,t]

∑
(z,z′)∈E

(f (z′) − f (z))(1 + hϕ(u, z, z′))λz,z′ (ϕu)ϕu(z)du

for all 0 ≤ r< t ≤ T . Note that we may take hϕ ≥ −1; otherwise the rate function would be
infinite as per (2.7) and the definition of τ ∗ in (2.4). Therefore, we get

|ϕt(B) − ϕr(B)| ≤
∫

[0,T]

∑
(z,z′)∈E

(1 + hϕ(u, z, z′)) × 1{u∈[r,t]}λz,z′ (ϕu)ϕu(z)du. (A.1)

Noting that

sup

⎧⎨⎩
∫

[0,T]

∑
(z,z′)∈E

τ ∗(hϕ(u, z, z′))λz,z′ (ϕu)ϕu(z)du, ϕ ∈�[0,T]
ν (s), ν ∈ K

⎫⎬⎭≤ s,

it follows that the family {1 + hϕ, ϕ ∈�[0,T]
ν (s), ν ∈ K} is uniformly integrable. That is,

sup

{∫
[0,T]

(1 + hϕ(u, z, z′)) × 1{1+hϕ≥M}λz,z′ (ϕu)ϕu(z)du, ϕ ∈�[0,T]
ν (s), ν ∈ K

}
→ 0
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as M → ∞. Hence for any M> 0, using the boundedness of the transition rates (from
Assumption (A2)), (A.1) yields

|ϕt(B) − ϕr(B)|
≤ 2Mλ(t − r) +

∫
[0,T]

∑
(z,z′)∈E

(1 + hϕ(u, z, z′)) × 1{1+hϕ≥M}λz,z′ (ϕu)ϕu(z)du

for all 0 ≤ r< t ≤ T , and B ⊂M1(Z). It follows that

sup
ϕ∈∪ν∈K�

[0,T]
ν (s)

sup
t,r : |t−r|≤δ

d(ϕt, ϕr)

≤ 2Mλδ + sup
ϕ∈∪ν∈K�

[0,T]
ν (s)

sup
t,r : |t−r|≤δ

∫
[0,T]

∑
(z,z′)∈E

(1 + hϕ(u, z, z′))

× 1{1+hϕ≥M}λz,z′ (ϕu)ϕu(z)du.

Letting δ→ 0 first and then M → ∞, we arrive at

lim
δ↓0

sup
ϕ∈∪ν∈K�

[0,T]
ν (s)

sup
t,r : |t−r|≤δ

d(ϕt, ϕr) = 0.

Hence it follows that ∪ν∈K�
[0,T]
ν (s) is precompact in D([0, T],M1(Z)) (see, e.g., Billingsley

[4, Theorem 12.3]).
To show that ∪ν∈K�

[0,T]
ν (s) is closed, let {ϕn, n ≥ 1} ⊂ ∪ν∈K�

[0,T]
ν (s) and suppose that

ϕn → ϕ̄ in D([0, T],M1(Z)). Note that, for any f ∈ C1
0([0, T] ×M1(Z)), the mapping

ϕ �→
{

〈ϕT , fT〉 − 〈ϕ0, f0〉 −
∫

[0,T]
〈ϕu, ∂ufu〉du

−
∫

[0,T]
〈ϕu, Lϕu fu〉du −

∫
[0,T]

∑
(z,z′)∈E

τ (fu(z′) − fu(z))λz,z′(ϕu)ϕu(z)du

}

is continuous on D([0, T],M1(Z)), and hence the mapping

ϕ �→ sup
f ∈C1

0([0,T]×Z)

{
〈ϕT , fT〉 − 〈ϕ0, f0〉 −

∫
[0,T]

〈ϕu, ∂ufu〉du

−
∫

[0,T]
〈ϕu, Lϕu fu〉du −

∫
[0,T]

∑
(z,z′)∈E

τ (fu(z′) − fu(z))λz,z′(ϕu)ϕu(z)du

}

is lower semicontinuous on D([0, T],M1(Z)) (see, e.g., Berge [1, Theorem 1, p. 115]). Hence

S[0,T](ϕ̄|ϕ̄(0)) ≤ lim inf
n→∞ S[0,T](ϕn|ϕn(0)) ≤ s,

and it follows that ∪ν∈K�
[0,T]
ν (s) is closed. Consequently, ∪ν∈K�

[0,T]
ν (s) is a compact subset

of D([0, T],M1(Z)). �
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A.2. Uniform LDP for μN
νN

: proof of Theorem 2.1

In this section we prove Theorem 2.1. In the case of a finite state space (i.e., when Z is a
finite set), the LDP for the family {μN

νN
,N ≥ 1}, whenever νN → ν in M1(Z) as N → ∞, was

proved in [7, Theorem 3.1] under suitable assumptions. The main assumption required in the
proof of [7, Theorem 3.1] was the boundedness of the ‘total outgoing jump rate’ across all the
states, which also holds in our countable-state-space case under Assumptions (A1)–(A3). So,
to prove the LDP for the family {μN

νN
,N ≥ 1}, whenever νN → ν in M1(Z) as N → ∞, one

can go through the steps in [7, Section 5] verbatim; we reproduce the important steps here for
the sake of completeness. Once this LDP is proved, we then show the uniform LDP over the
class of compact subsets of M1(Z) using [8, Propositions 1.12 and 1.14].

A.2.1. LDP for {μN
νN
,N ≥ 1} when νN → ν in M1(Z). We first introduce some notation. Let

{(XN
n (t), t ∈ [0, T]), 1 ≤ n ≤ N} denote the joint evolution of the states of all the particles. This

is a Markov process on ZN with the infinitesimal generator acting on functions f on ZN given
by

(z1, . . . , zN) �→
N∑

n=1

∑
z′n∈{zn+1,0}

(f (z1, . . . , z′
n, . . . , zN) − f (z1, . . . , zN))λzn,z′n (emp(z1, . . . , zN)),

where emp(z1, . . . , zN) := 1
N

∑N
n=1 δzn ∈MN

1 (Z). Define the empirical measure

�N := 1

N

N∑
n=1

δXN
n (·);

�N is an M1(D([0, T],Z))-valued random variable. Let σ : M1(D([0, T],Z)) →
D([0, T],M1(Z)) denote the canonical projection map. Note that μN(t) = σt(�N), t ∈ [0, T].
Similarly, let {(X̄N

n (t), t ∈ [0, T]), 1 ≤ n ≤ N} denote the evolution of the independent particles,
where each particle executes a Markov process with the infinitesimal generator L̄ defined in
(3.1). Define the corresponding empirical measure �̄N by

�̄N := 1

N

N∑
n=1

δX̄N
n (·).

Let PN
νN

(resp. P̄N
νN

) denote the law of �N (resp. �̄N) with initial condition νN ∈MN
1 (Z) (i.e.,

1
N

∑N
n=1 δXN

n (0) = νN). These are probability measures on M1(D([0, T],Z)); i.e., PN
νN
, P̄N

νN
∈

M1(M1(D([0, T],Z))).
Note that PN

νN
� P̄N

νN
. For x ∈ D([0, T],Z) and μ ∈ D([0, T],M1(Z)), define

h(x;μ) :=
∑

t∈[0,T]

1{x(t)	=x(t−)} log

(
λx(t−),x(t)(μt)

λ̃x(t−),x(t)

)
−
∫

[0,T]

∑
z′∈Z :

(x(t−),z′)∈E

(
λx(t−),z′ (μt) − λ̃x(t−),z′

)
dt,

where {̃λz,z′ , (z, z′) ∈ E} are the non-interacting rates defined by

λ̃z,z′ :=
{
λ/(z + 1) if z′ = z + 1,

λ if z′ = 0, z ≥ 1.
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Also, define

h(Q) :=
∫

D([0,T],Z)
h( · ;σ (Q)) dQ, Q ∈M1(D([0, T],Z)). (A.2)

Using Girsanov’s theorem, it is straightforward to check that

dPN
νN

dP̄N
νN

(Q) = exp{Nh(Q)}, Q ∈M1(D([0, T],Z)).

We now introduce some notation related to path spaces. Define ψ : D([0, T],Z) →
{0, 1, . . .} by

ψ(x) =
∑

t∈[0,T]

1{x(t)	=x(t−)};

ψ(x) is the number of discontinuities in x. Since Z is a countable set, it follows that ψ(x)<∞
for all x ∈ D([0, T],Z) ([4, Chapter 3, Lemma 1]). Define

X := {x ∈ D([0, T],Z) :ψ(x)<∞, (x(t − ), x(t)) ∈ E whenever x(t) 	= x(t − ), t ∈ [0, T]},
and equip X with the subspace topology. Since Z is countable, we have that ψ is continuous
on X . Define

‖f ‖ψ := sup
x∈X

|f (x)|
1 +ψ(x)

, for f : X →R.

Then, define

Cψ (X ) := {f : X →R such that f is continuous and ‖f ‖ψ <∞}
and

M1,ψ (X ) :=
{

Q ∈M1(X ) :
∫
X
ψ dQ<∞

}
.

M1,ψ (X ) is a subset of Cψ (X )∗, the algebraic dual of Cψ (X ), and we equip it with the weak∗
topology. This is the coarsest topology on M1,ψ (X ) where we say QN → Q in M1,ψ (X ) as
N → ∞ if and only if∫

X
f dQN →

∫
X

f dQ as N → ∞, for all f ∈ Cψ (X ).

Recall P̄z, z ∈Z , from Section 3. For each ν ∈M1(Z), define J : M1(X ) → [0,∞] by

J(Q) := sup
f ∈Cψ (X )

⎡⎣∫
X

f dQ −
∑
z∈Z

ν(z) log
∫
X

exp{f } dP̄z

⎤⎦ . (A.3)

By [7, Lemma 5.3], we also have

J(Q) = sup
f ∈Cb(X )

⎡⎣∫
X

f dQ −
∑
z∈Z

ν(z) log
∫
X

exp{f } dP̄z

⎤⎦ , (A.4)
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where Cb(X ) is the space of bounded and continuous functions on X equipped with the
supremum norm.

We first state a lemma for the LDP for the family {P̄N
νN
,N ≥ 1} on M1,ψ (X ) whenever

νN → ν in M1(Z) as N → ∞. Its proof follows verbatim from that of [7, Lemma 5.1].

Lemma A.1. (LDP for the non-interacting system [7, Lemma 5.1].) Let νN → ν in M1(Z)
as N → ∞. Then the family {P̄N

νN
,N ≥ 1} satisfies the LDP on M1,ψ (X ) with rate function J

defined in (A.3).

Next, we provide two necessary conditions for the finiteness of J as defined in (A.3).

Lemma A.2. (Finiteness of J [7, Lemma 5.2].) If J(Q)<∞, then we have Q ∈M1,ψ (X ) and
Q ◦ σ−1

0 = ν.

Proof. Let Q be such that J(Q)<∞. The proof of Q ◦ σ−1
0 = ν follows verbatim from [7,

Lemma 5.2]. For the first assertion, since ψ ∈ Cψ (X ), from the definition of J in (A.3), we have

J(Q) ≥
∫
X
ψ dQ −

∑
z∈Z

ν(z) log
∫
X

exp{ψ} dP̄z. (A.5)

Note that, for each z ∈Z , under P̄z (see (3.1)), the number of jumps on [0, T] is stochastically
dominated by a Poisson random variable with parameter (λ+ λ)T ≤ 2λT . Therefore,∫

X
exp{ψ} dP̄z ≤

∑
k≥0

exp{k}exp{−2λT}(2λT)k

k! = c1 <∞,

where c1 is some constant independent of z. Therefore,∑
z∈Z

ν(z) log
∫
X

exp{ψ}dP̄z <∞.

Hence, from (A.5), using J(Q)<∞, we conclude that∫
X
ψ dQ<∞.

It follows that Q ∈M1,ψ (X ). �
The next lemma is required to prove the continuity of h on M1,ψ (X ).

Lemma A.3. (See [7, Lemma 5.7] for the finite-state-space case.) Suppose that Q ∈M1(X ) is
such that J(Q)<∞. Then

lim
α→0

sup
t∈[0,T]

∫
X

sup
u∈[t−α,t+α]∩[0,T]

1{X(u)	=X(u−)} dQ(X) = 0.

Proof. Let P ∈M1(X ) denote the mixture distribution defined by dP := ∑
z∈Z ν(z)dP̄z.

Since J(Q)<∞, it follows that Q � P. Indeed, using Jensen’s inequality, we have∑
z∈Z

log
∫
X

exp{f } dPz ≤ log
∫
X

exp{f } dP for any f ∈ Cb(X ),
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and hence, from (A.4) and the Donsker–Varadhan variational formula for I(Q‖P), we conclude
that

I(Q‖P) ≤ J(Q). (A.6)

Since J(Q)<∞, the above implies that I(Q‖P)<∞. This shows Q � P. Hence, with Kt,α =
{x ∈X : x(u) 	= x(u−) for some u ∈ [t − α, t + α] ∩ [0, T]}, we have∫

X
sup

u∈[t−α,t+α]∩[0,T]
1{X(u)	=X(u−)} dQ(X) = Q(Kt,α)

=
∫
X

(
dQ

dP

)
1{Kt,α} dP

≤
∥∥∥∥(dQ

dP

)∥∥∥∥
τ∗,P

‖1{Kt,α}‖τ,P, (A.7)

where the last inequality follows from the Hölder inequality in Orlicz spaces. Here, ‖ · ‖τ,P is
the Orlicz norm defined by

‖f ‖τ,P := inf

{
a> 0 :

∫
X
τ

( |f (x)|
a

)
dP(x) ≤ 1

}
.

Similarly, ‖f ‖τ∗,P is defined as above with τ replaced by τ ∗.

Consider
∥∥∥( dQ

dP

)∥∥∥
τ∗,P

. Note that there exists a u0 ≥ 1 such that τ ∗(u) ≤ 2u log u for all u ≥
u0. Therefore, ∫

X
τ ∗
(

dQ

dP

)
dP ≤ τ ∗(u0) + 2

∫
X

(
dQ

dP

)
log

(
dQ

dP

)
dP

= τ ∗(u0) + 2I(Q‖P)

≤ τ ∗(u0) + 2J(Q)

<∞,

where the second inequality follows from (A.6) and the third inequality follow from the
assumption that J(Q)<∞. Since τ ∗(u/a) ≤ τ ∗(u)/a for a ≥ 1 (by Jensen’s inequality), this
shows that ∥∥∥∥(dQ

dP

)∥∥∥∥
τ∗,P

< c2 <∞ for some c2 that does not depend on t. (A.8)

Next, consider ‖1{Kt,α}‖τ∗,P. Note that, under P, the number of jumps in [t − α, t + α] ∩
[0, T] is stochastically dominated by a Poisson random variable with parameter 2α(λ+ λ) ≤
4αλ. Therefore, P(Kt,α) ≤ 1 − exp{−4αλ} ≤ 4αλ. Since τ (1{Kt,α}/a) = τ (1/a)1{Kt,α} for any
a> 0, we have ∫

X
τ
(
1{Kt,α}/a

)
dP = τ (1/a)P(Kt,α) ≤ τ (1/a)4αλ.

Therefore, if we choose a = 1/(τ−1(1/4αλ)), the right-hand side of the above display
becomes 1. This shows that

‖1{Kt,α}‖τ∗,P ≤ 1

τ−1(1/4αλ)
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for all t. Hence, by (A.7), (A.8), and the previous display, we get

sup
t∈[0,T]

∫
X

sup
u∈[t−α,t+α]∩[0,T]

1{X(u)	=X(u−)} dQ(X) ≤ c2

τ−1(1/4αλ)
→ 0 as α→ 0.

This completes the proof of the lemma. �
Next, we argue the continuity of the projection map σ .

Lemma A.4. (Continuity of σ [7, Lemma 5.8].) Let Q ∈M1(X ) be such that J(Q)<∞. Then
σ : M1(D([0, T],Z)) → D([0, T],M1(Z)) is continuous at Q.

Proof. Let Q ∈M1(X ) be such that J(Q)<∞. By Lemma A.2, it follows that Q ∈
M1,ψ (X ). In [21, Lemma 2.8], for the case when ν = δz0 for some z0 ∈Z , it is shown that
σ : M1(D([0, T],Z)) → D([0, T],M1(Z)) is continuous at Q whenever Q ∈M1,ψ (X ). (This
continuity is shown in [21] when M1(D([0, T],Z)) is equipped with the usual weak topology
and D([0, T],M1(Z)) is equipped with the stronger uniform topology. Since the Skorokhod
topology on D([0, T],M1(Z)) is coarser than the uniform topology, it follows that σ is con-
tinuous.) For general ν ∈M1(Z), by using the result of Lemma A.3 and following the proof
of [21, Lemma 2.8] verbatim, we arrive at the continuity of σ . �

Finally, we have that h is continuous on M1,ψ (X ).

Lemma A.5. Assume (A1), (A2), and (A3). Then the mapping h defined in (A.2) is continuous
on M1,ψ (X ).

Proof. Using Lemma A.3, Lemma A.4, and Assumptions (A1)–(A3), the proof of [21,
Lemma 2.9] holds verbatim. �

The above lemmas give us the LDP for the family {μN
νN
,N ≥ 1} on D([0, T],M1(Z))

whenever νN → ν in M1(Z) as N → ∞.

Proposition A.1. Assume (A1), (A2), and (A3). Suppose that νN → ν in M1(Z) as N → ∞.
Then the family {μN

νN
,N ≥ 1} satisfies the LDP on D([0, T],M1(Z)) with rate function

S[0,T](·|ν) defined in (2.5).

Proof. Let νN → ν in M1(Z) as N → ∞. By Lemma A.1, we have that {P̄N
νN
,N ≥ 1}

satisfies the LDP on M1,ψ (X ) with rate function J. Since h is continuous on the set {Q ∈
M1,ψ (X ) : J(Q)<∞} (by Lemma A.5), from Varadhan’s lemma, one can conclude (see the
proof of [7, Theorem 3.1]) that the family {PN

νN
} satisfies the LDP on M1,ψ (X ) with rate func-

tion Q �→ J(Q) − h(Q). By Lemma A.4, since σ is continuous (with the usual weak topology
on M1(D([0, T],Z))) at Q when J(Q)<∞, it follows that the restriction of σ to M1,ψ (X )
is also continuous (with respect to the stronger topology on M1,ψ (X )) at Q when J(Q)<∞.
Therefore, using the generalised contraction principle (e.g., [13, Theorem 4.2.23]), the LDP
for the family {μN

νN
,N ≥ 1} on D([0, T],M1(Z)) follows. The rate function for this LDP can

be shown to admit the form given in (2.5) (see, e.g., the proof of [21, Theorem 3.1]). �
A.2.2. Uniform LDP for {μN

νN
,N ≥ 1} over the class of compact subsets of M1(Z).

Proposition A.1 establishes the LDP for the family {μN
νN
,N ≥ 1} whenever νN → ν in M1(Z)

as N → ∞. We now extend this to the uniform LDP on the class of compact subsets of M1(Z).
Towards this, we rely on [8, Propositions 1.12 and 1.14]. Although our definition of the uni-
form LDP (Definition 2.2) has initial conditions lying in A ∩MN

1 (Z) (unlike the definition
of the uniform LDP in [8, Definition 1.13], where the initial conditions do not depend on the
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parameter N), we can use straightforward modifications of the arguments in [8, Propositions
1.12 and 1.14] to prove the desired uniform LDP. We provide an outline of these arguments
here.

We first provide a definition of the uniform Laplace principle over the class of compact
subsets of M1(Z). Recall the definition of the rate function S[0,T] in (2.5). For ν ∈M1(Z) and
g ∈ Cb(D([0, T],M1(Z))), define

F(ν, g) := − inf
ϕ∈D([0,T],M1(Z))

[
g(ϕ) + S[0,T](ϕ|ν)

]
.

Definition A.1. We say that the family {μN
νN
,N ≥ 1} of D([0, T],M1(Z))-valued random vari-

ables defined on a probability space (�,F , P) satisfies the uniform Laplace principle over
the class A of subsets of M1(Z) with the family of rate functions {S[0,T](·|ν), ν ∈M1(Z)},
S[0,T](·|ν) : D([0, T],M1(Z)) → [0,+∞], ν ∈M1(Z), if the following hold:

• (Compactness of level sets.) For each K ⊂M1(Z) compact and s ≥ 0,
⋃
ν∈K �ν(s) is

a compact subset of D([0, T],M1(Z)), where �ν(s) := {ϕ ∈ D([0, T],M1(Z)) : ϕ0 =
ν, S[0,T](ϕ|ν) ≤ s};

• (Uniform Laplace asymptotics.) For any A ∈A and g ∈ Cb(D([0, T],M1(Z))), we have

lim
N→∞ sup

νN∈A∩MN
1 (Z)

∣∣∣∣ 1

N
log EνN

[
exp{−Ng(μN

νN
)}]− F(νN, g)

∣∣∣∣= 0.

This is a modification of [8, Definition 1.11] to the case when the initial conditions are only
allowed to lie in A ∩MN

1 (Z). We have the following result.

Lemma A.6. (See [8, Proposition 1.12].) Assume (A1), (A2), and (A3). Then the fam-
ily {μN

νN
,N ≥ 1} satisfies the uniform Laplace principle over the class of compact subsets

of M1(Z) with the family of rate functions {S[0,T](·|ν), ν ∈M1(Z)}, S[0,T](·|ν) : D([0, T],
M1(Z)) → [0,+∞], ν ∈M1(Z).

Proof. By Lemma 2.1, we have that for each K ⊂M1(Z) compact and s ≥ 0,
⋃
ν∈K �ν(s)

is a compact subset of D([0, T],M1(Z)), where �ν(s) := {ϕ ∈ D([0, T],M1(Z)) : ϕ0 =
ν, Iν(ϕ) ≤ s}.

To show the uniform Laplace asymptotics, let g ∈ Cb(D([0, T],M1(Z))). By
Proposition A.1, whenever νN → ν in M1(Z) as N → ∞, we have that the family
{μN
νN
,N ≥ 1} satisfies the LDP on D([0, T],M1(Z)) with rate function S[0,T](·|ν). Therefore,

by Varadhan’s lemma (e.g., [13, Theorem 4.3.1]), we have

lim
N→∞

1

N
log EνN

[
exp{−Ng(μN

νN
)}]= F(ν, g). (A.9)

Define

FN(ν′
N, g) := 1

N
log Eν′

N

[
exp{−Ng(μN

ν′
N

)}
]
, ν′

N ∈MN
1 (Z).

Using (A.9), we now show that the mapping ν �→ F(ν, g) is continuous. To show this conti-
nuity, it suffices to show that given any ε > 0 there exists δ > 0 such that, for all ν′ ∈M1(Z)
such that d(ν′, ν)< δ and ν′

N ∈MN
1 (Z) such that ν′

N → ν′ as N → ∞, we have

|FN(ν′
N, g) − F(ν, g)|< ε for all large enough N.
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Indeed, if this is true, sending N → ∞ in the above display and using (A.9), we arrive at
|F(ν′, g) − F(ν, g)|< ε, which shows the continuity of ν �→ F(ν, g). We now prove the above
statement using contraposition. Suppose the above statement is not true. Then there exist
ε > 0 and a sequence {νN} with νN ∈MN

1 (Z) and νN → ν as N → ∞ such that |FN(νN, g) −
F(ν, g)|> ε. Using (A.9), we get |F(ν, g) − F(ν, g)|> ε > 0, which is a contradiction. This
establishes the continuity of the mapping M1(Z) � ν �→ F(ν, g).

Since ν �→ F(ν, g) is continuous, using (A.9), by the same arguments as in [8,
Proposition 1.12], one can show that for any compact subset K of M1(Z), we have
supνN∈K∩MN

1 (Z) |FN(νN, g) − F(ν, g)| → 0 as N → ∞. This shows that the family {μN
νN
,N ≥

1} satisfies the uniform Laplace principle over the class of compact subsets of M1(Z) with the
family of rate functions {S[0,T](·|ν), ν ∈M1(Z)}. �

We can now complete the proof of Theorem 2.1 using the arguments in [8, Proposition
1.14].

Proof of Theorem 2.1. By Lemma A.6, the family {μN
νN
,N ≥ 1} satisfies the uniform Laplace

principle D([0, T],M1(Z)) over the class of compact subsets of M1(Z) with the family of rate
functions {S[0,T](·|ν), ν ∈M1(Z)}. Restricting the initial conditions to MN

1 (Z) and following
the proof of [8, Proposition 1.14] verbatim, we conclude that the family {μN

νN
,N ≥ 1} satisfies

the uniform LDP on M1(D([0, T],Z)) over the class of compact subsets of M1(Z) with the
family of rate functions {S[0,T](·|ν), ν ∈M1(Z)}. �

Acknowledgements

The authors thank two anonymous referees for carefully reading the manuscript and
providing valuable comments that improved the paper.

Funding information

The authors were supported by a grant from the Indo-French Centre for Applied
Mathematics on a project titled ‘Metastability phenomena in algorithms and engineered sys-
tems’. The first author was supported in part by a fellowship grant from the Centre for
Networked Intelligence (a Cisco CSR initiative), Indian Institute of Science, Bangalore;
and in part by the Office of Naval Research under the Vannevar Bush Faculty Fellowship
N0014-21-1-2887.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

References

[1] BERGE, C. (1997). Topological Spaces: Including a Treatment of Multi-valued Functions, Vector Spaces, and
Convexity. Dover, Mineola, NY.

[2] BERTINI, L. et al. (2002). Macroscopic fluctuation theory for stationary non-equilibrium states. J. Statist. Phys.
107, 635–675.

[3] BERTINI, L. et al. (2003). Large deviations for the boundary driven symmetric simple exclusion process. Math.
Phys. Anal. Geom. 6, 231–267.

[4] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd edn. John Wiley, New York.
[5] BODINEAU, T. AND GIACOMIN, G. (2004). From dynamic to static large deviations in boundary driven

exclusion particle systems. Stoch. Process. Appl. 110, 67–81.
[6] BORDENAVE, C., MCDONALD, D. AND PROUTIERE, A. (2010). A particle system in interaction with a rapidly

varying environment: mean field limits and applications. Networks Heterog. Media 5, 31–62.

https://doi.org/10.1017/apr.2023.55 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.55


On the rate function of the invariant measure of countable-state mean-field models 1003

[7] BORKAR, V. S. AND SUNDARESAN, R. (2012). Asymptotics of the invariant measure in mean field models
with jumps. Stoch. Systems 2, 322–380.

[8] BUDHIRAJA, A. AND DUPUIS, P. (2019). Analysis and Approximation of Rare Events. Springer, New York.
[9] CERRAI, S. AND PASKAL, N. (2022). Large deviations principle for the invariant measures of the 2D stochastic

Navier–Stokes equations with vanishing noise correlation. Stoch. Partial Differential Equat. 10, 1651–1681.
[10] CERRAI, S. AND RÖCKNER, M. (2004). Large deviations for stochastic reaction–diffusion systems with

multiplicative noise and non-Lipschitz reaction term. Ann. Prob. 32, 1100–1139.
[11] CERRAI, S. AND RÖCKNER, M. (2005). Large deviations for invariant measures of stochastic reaction–

diffusion systems with multiplicative noise and non-Lipschitz reaction term. Ann. Inst. H. Poincaré Prob.
Statist. 41, 69–105.

[12] DAWSON, D. A. AND GÄRTNER, J. (1987). Large deviations from the McKean–Vlasov limit for weakly
interacting diffusions. Stochastics 20, 247–308.

[13] DEMBO, A. AND ZEITOUNI, O. (2010). Large Deviations Techniques and Applications, 2nd edn. Springer,
Berlin, Heidelberg.

[14] DONSKER, M. D. AND VARADHAN, S. R. S. (1975). Asymptotic evaluation of certain Markov process
expectations for large time, I. Commun. Pure Appl. Math. 28, 1–47.

[15] DURRETT, R. (2019). Probability: Theory and Examples, 5th edn. Cambridge University Press.
[16] ETHIER, S. N. AND KURTZ, T. G. (2005). Markov Processes: Characterization and Convergence. John Wiley,

New York.
[17] FARFÁN, J., LANDIM, C. AND TSUNODA, K. (2019). Static large deviations for a reaction–diffusion model.

Prob. Theory Relat. Fields 174, 49–101.
[18] FREIDLIN, M. I. AND WENTZELL, A. D. (2012). Random Perturbations of Dynamical Systems, 3rd edn.

Springer, Berlin, Heidelberg.
[19] KHASMINSKII, R. (2012). Stochastic Stability of Differential Equations. Springer, Berlin, Heidelberg.
[20] KUMAR, A., ALTMAN, E., MIORANDI, D. AND GOYAL, M. (2006). New insights from a fixed point anal-

ysis of single cell IEEE 802.11 WLANs. In Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, Institute of Electrical and Electronics Engineers, Piscataway, NJ,
pp. 1550–1561.

[21] LÉONARD, C. (1995). Large deviations for long range interacting particle systems with jumps. Ann. Inst. H.
Poincaré Prob. Statist. 31, 289–323.

[22] LÉONARD, C. (1995). On large deviations for particle systems associated with spatially homogeneous
Boltzmann type equations. Prob. Theory Relat. Fields 101, 1–44.

[23] LIPTSER, R. (1996). Large deviations for two scaled diffusions. Prob. Theory Relat. Fields 106, 71–104.
[24] MARTIROSYAN, D. (2017). Large deviations for stationary measures of stochastic nonlinear wave equations

with smooth white noise. Commun. Pure Appl. Math. 70, 1754–1797.
[25] MCKEAN, H. P. (1967). Propagation of chaos for a class of non-linear parabolic equations. In Stochastic

Differential Equations (Lecture Series in Differential Equations 7), Catholic University, Washington, DC,
pp. 41–57.

[26] MEYN, S. P. et al. (2015). Ancillary service to the grid using intelligent deferrable loads. IEEE Trans.
Automatic Control 60, 2847–2862.

[27] MUFA, C. (1994). Optimal Markovian couplings and applications. Acta Math. Sinica 10, 260–275.
[28] PUHALSKII, A. (2019). Large deviations of the long term distribution of a non Markov process. Electron.

Commun. Prob. 24, article no. 35.
[29] PUHALSKII, A. A. (2016). On large deviations of coupled diffusions with time scale separation. Ann. Prob. 44,

3111–3186.
[30] PUHALSKII, A. A. (2020). Large deviation limits of invariant measures. Preprint. Available at

https://arxiv.org/abs/2006.16456.
[31] SALINS, M., BUDHIRAJA, A. AND DUPUIS, P. (2019). Uniform large deviation principles for Banach space

valued stochastic differential equations. Trans. Amer. Math. Soc. 372, 8363–8421.
[32] SALINS, M. AND SPILIOPOULOS, K. (2021). Metastability and exit problems for systems of stochastic

reaction–diffusion equations. Ann. Prob. 49, 2317–2370.
[33] SOWERS, R. (1992). Large deviations for the invariant measure of a reaction–diffusion equation with non-

Gaussian perturbations. Prob. Theory Relat. Fields 92, 393–421.
[34] SOWERS, R. B. (1992). Large deviations for a reaction–diffusion equation with non-Gaussian perturbations.

Ann. Prob. 20, 504–537.
[35] VERETENNIKOV, A. Y. (2000). On large deviations for SDEs with small diffusion and averaging. Stoch.

Process. Appl. 89, 69–79.
[36] YASODHARAN, S. AND SUNDARESAN, R. (2023). Large time behaviour and the second eigenvalue problem

for finite state mean-field interacting particle systems. Adv. Appl. Prob. 55, 85–125.

https://doi.org/10.1017/apr.2023.55 Published online by Cambridge University Press

https://arxiv.org/abs/2006.16456
https://doi.org/10.1017/apr.2023.55

	Introduction
	Two counterexamples
	Non-interacting M/M/1 queues.
	Non-interacting nodes in a wireless network.

	Assumptions and main result
	Assumptions.
	Main result.

	Discussion and future directions
	Related literature
	Organisation

	Preliminaries
	Frequently used notation
	Notation related to the dynamics.

	Process-level large deviations

	Invariant measure: existence, uniqueness, and exponential tightness
	The LDP lower bound
	Properties of the quasipotential
	A characterisation of finiteness of the quasipotential
	Continuity
	Compactness of the lower level sets of the quasipotential

	The LDP upper bound
	Proof of Theorem 1.1
	Two counterexamples
	A system of non-interacting M/M/1 queues
	A non-interacting WLAN system with constant forward rates

	Proofs of Section 
	Compactness of level sets of
	Uniform LDP for 
	LDP for 
	Uniform LDP for 


	Acknowledgements
	Funding information
	Competing interests
	References

