Distortion in the group of circle homeomorphisms

JULIUSZ BANECKI \dagger and TOMASZ SZAREK $\dagger \ddagger$
\dagger Institute of Mathematics Polish Academy of Sciences, Abrahama 18, 81-967 Sopot, Poland
(e-mail: juliusz.banecki@autonomik.pl, tszarek@impan.pl)
\ddagger Faculty of Physics and Applied Mathematics, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland

(Received 5 October 2021 and accepted in revised form 6 January 2022)

Abstract

Let G be the group $\operatorname{PAff}_{+}(\mathbb{R} / \mathbb{Z})$ of piecewise affine circle homeomorphisms or the group $\operatorname{Diff}^{\infty}(\mathbb{R} / \mathbb{Z})$ of smooth circle diffeomorphisms. A constructive proof that all irrational rotations are distorted in G is given.

Key words: homeomorphisms, distortion, rotation
2020 Mathematics Subject Classification: 37C85 (Primary); 57M60 (Secondary)

1. Introduction

Let G be a group with some finite generating set \mathcal{G}. We define the metric $d_{\mathcal{G}}$ on G by taking $d_{\mathcal{G}}\left(g_{1}, g_{2}\right)$ to be the infimum over all $k \geq 0$ such that there exist $f_{1}, \ldots, f_{k} \in \mathcal{G}$ and $\epsilon_{1}, \ldots, \epsilon_{k} \in\{-1,1\}$ satisfying $g_{2}=f_{1}^{\epsilon_{1}} \cdots f_{k}^{\epsilon_{k}} g_{1}$.

Now let H be an arbitrary group. An element $f \in H$ is called distorted in H if there exists a finitely generated subgroup $G \subset H$ containing f such that

$$
\lim _{n \rightarrow \infty} \frac{d_{\mathcal{G}}\left(f^{n}, \mathrm{id}\right)}{n}=0
$$

for some (and hence every) generating set \mathcal{G}. Since the limit always exists, it is enough to verify it for some subsequence. The notion of distortion comes from geometric group theory and was introduced by Gromov in [7].

The problem of the existence of distorted elements in some groups of homeomorphisms has been intensively studied for many years (see [2, 3-6, 8, 10, 11]). Substantial progress has been achieved for groups of diffeomorphisms of manifolds. In particular, Avila [1] proved that rotations with irrational rotation number are distorted in the group of smooth diffeomorphisms of the circle. In this note we give a constructive proof that all irrational rotations are distorted both in the group of piecewise affine circle homeomorphisms,

PAff $_{+}(\mathbb{R} / \mathbb{Z})$, and in the group of smooth circle diffeomorphisms, $\operatorname{Diff}^{\infty}(\mathbb{R} / \mathbb{Z})$. The result gives an answer to Question 11 in [9] (see also Question 2.5 in [5]). So far it has not even been known whether there exist distorted elements in $\operatorname{PAff}_{+}(\mathbb{R} / \mathbb{Z})$. Now from $[8]$ it follows that each distorted element is conjugate to a rotation.

From now on let G be either $\operatorname{PAff}_{+}(\mathbb{R} / \mathbb{Z})$ or $\operatorname{Diff}^{\infty}(\mathbb{R} / \mathbb{Z})$. We say that $g \in G$ is trivial on some set if there exists a non-empty open set $I \subset[0,1)$ such that $g(x)=x$ for $x \in I$. The set of all homeomorphisms in G which are trivial on some set will be denoted by $G_{\text {triv }}$. By T we denote the set of all rotations, and let T_{α} be the rotation with rotation number α.

This paper is devoted to the proof of the following theorem.
Theorem. All irrational rotations are distorted in G.

2. Proofs

We first formulate two lemmas and deduce the theorem. The proofs of the lemmas will be given at the end of the paper.

Lemma 1. For any irrational rotation T_{α} and $g \in G_{\text {triv }} \cup T$ there exist a finite generating set $\mathcal{G}_{g} \subset G$ and a constant $C>0$ such that

$$
d_{\mathcal{G}_{g}}\left(T_{\alpha}^{n} g T_{\alpha}^{-n}, \mathrm{id}\right) \leq C \log n \quad \text { for all } n \geq 1
$$

Lemma 2. In G there exist $g_{1}, \ldots, g_{l} \in G_{\text {triv }} \cup T$ and $k, k_{1}, \ldots, k_{l} \in \mathbb{Z}$ with $k \neq k_{1}+$ $\cdots+k_{l}$, such that for each sufficiently small $\beta>0$ the element $x=T_{\beta}$ satisfies

$$
\begin{equation*}
x^{k_{1}} g_{1} x^{k_{2}} g_{2} \cdots x^{k_{l}} g_{l}=x^{k} \tag{1}
\end{equation*}
$$

Proof of the theorem. Fix an irrational rotation T_{α}. From Lemma 2 it follows that in G there exists an equation of the form (1) such that $x=T_{\beta}$, for all sufficiently small β, is its solution. Let $\mathcal{G}=\mathcal{G}_{g_{1}} \cup \cdots \cup \mathcal{G}_{g_{l}}$, where $\mathcal{G}_{g_{i}}, i=1, \ldots, l$, are finite generating sets derived from Lemma 1 for T_{α}. We may rewrite equation (1) in the form

$$
\begin{equation*}
x^{k_{1}} g_{1} x^{-k_{1}} x^{k_{2}+k_{1}} g_{2} x^{-k_{2}-k_{1}} \cdots x^{k_{1}+\cdots+k_{l}} g_{l} x^{-k_{1}-\cdots-k_{l}}=x^{k-k_{1}-\cdots-k_{l}} . \tag{2}
\end{equation*}
$$

Let β_{0} be a positive constant such that $x=T_{\beta}$ for $\beta \in\left(0, \beta_{0}\right)$ satisfies (2). Set $m:=$ $k-k_{1}-\cdots-k_{l}$, and let $\left(n_{i}\right)$ be an increasing sequence of integers such that $n_{i} \alpha \in$ $\left(0, \beta_{0}\right)(\bmod 1)$. From Lemma 1 it follows that

$$
d_{\mathcal{G}}\left(T_{\alpha}^{n_{i}\left(k_{1}+\cdots+k_{j}\right)} g_{j} T_{\alpha}^{-n_{i}\left(k_{1}+\cdots+k_{j}\right)}, \mathrm{id}\right) \leq C_{j} \log n_{i} \quad \text { for all } i \geq 1 \text { and } j=1, \ldots, l .
$$

Since $x=T_{n_{i} \alpha}$ satisfies (2), we obtain

$$
d_{\mathcal{G}}\left(T_{\alpha}^{n_{i} m}, \mathrm{id}\right) \leq \sum_{j=1}^{l} C_{j} \log n_{i}:=C \log n_{i} \quad \text { for all } i \geq 1
$$

Hence

$$
\lim _{n \rightarrow \infty} \frac{d_{\mathcal{G}}\left(T_{\alpha}^{n}, \mathrm{id}\right)}{n}=\lim _{i \rightarrow \infty} \frac{d_{\mathcal{G}}\left(T_{\alpha}^{n_{i} m}, \mathrm{id}\right)}{n_{i} m} \leq \frac{C}{m} \lim _{i \rightarrow \infty} \frac{\log n_{i}}{n_{i}}=0
$$

and the proof is complete.

Proof of Lemma 1. The proof relies on the observation that for a given interval $I \subset$ $(0,1)$ there exists a finite generating set $\mathcal{G} \subset G$ such that for any $n \geq 1$ there exists a homeomorphism h_{n} with $d_{\mathcal{G}}\left(h_{n}\right.$, id) $\leq C \log n$ for some constant $C>0$ independent of n, and $h_{n}(x)=T_{\alpha}^{n}(x)$ for $x \notin I$. Without loss of generality we may assume that $I=(a, 1)$. Let $m \geq 1$ be an integer such that $a+2 / m<1$. Let $h \in G$ be any homeomorphism such that $h(x)=x / 2$ for $x \in[0, a+2 / m)$, and let $r(x)=x+1 / m$.

We shall define h_{n} by induction. Set $h_{0}=$ id. If n is odd we put $h_{n}=T_{\alpha} h_{n-1}$. If n is even, we take $s_{n}:=h_{n / 2} h$ and observe that $s_{n}((0, a))=(n \alpha / 2, a / 2+n \alpha / 2)$. Let $k \in$ $\{1, \ldots, m\}$ be such that $n \alpha / 2+k / m \in[0,1 / m)(\bmod 1)$. Then $r^{k} s_{n}((0, a)) \subset(0, a / 2+$ $1 / m)$. Therefore

$$
\begin{equation*}
h^{-1} r^{k} h_{n / 2} h(x)=2(x / 2+n \alpha / 2+k / m)=x+n \alpha+2 k / m=T_{\alpha}^{n}(x)+2 k / m \tag{3}
\end{equation*}
$$

for $x \in(0, a)$. Put $h_{n}:=r^{-2 k} h^{-1} r^{k} h_{n / 2} h$, and let $\mathcal{G}:=\left\{T_{\alpha}, h, r\right\}$. Note that

$$
d_{\mathcal{G}}\left(h_{n}, \mathrm{id}\right) \leq 3 m+3+d_{\mathcal{G}}\left(h_{\lfloor n / 2\rfloor}, \mathrm{id}\right) .
$$

Thus we obtain $d_{\mathcal{G}}\left(h_{n}, \mathrm{id}\right) \leq C \log n$. Finally, observe that for any $g \in G_{\text {triv }}$ such that $g(x)=\mathrm{id}$ on I we have

$$
\begin{equation*}
T_{\alpha}^{n} g T_{\alpha}^{-n}=h_{n} g h_{n}^{-1} . \tag{4}
\end{equation*}
$$

Indeed, from (3) and the definition of h_{n} and r it follows that $h_{n}(x)=T_{\alpha}^{n}(x)$ for $x \in(0, a)$, and

$$
\begin{equation*}
h_{n}((0, a))=T_{\alpha}^{n}((0, a))=(n \alpha, a+n \alpha) . \tag{5}
\end{equation*}
$$

Therefore, we have

$$
h_{n}^{-1}(x)=T_{\alpha}^{-n}(x) \in(0, a) \quad \text { for } x \in(n \alpha, a+n \alpha) .
$$

Since $g(x)=x$ for $x \in(a, 1)$ and g is a homeomorphism, we have $g((0, a))=(0, a)$.
To justify equality (4), first fix $x \in(n \alpha, a+n \alpha)$. Then we have

$$
h_{n}^{-1}(x)=T_{\alpha}^{-n}(x) \in(0, a)
$$

and

$$
\left(g h_{n}^{-1}\right)(x)=\left(g T_{\alpha}^{-n}\right)(x) \in(0, a) .
$$

Consequently, we obtain

$$
h_{n} g h_{n}^{-1}(x)=T_{\alpha}^{n} g T_{\alpha}^{-n}(x) \quad \text { for } x \in(n \alpha, a+n \alpha),
$$

by the fact that $h_{n}(x)=T_{\alpha}^{n}(x)$ for $x \in(0, a)$. On the other hand, if $x \notin(n \alpha, a+n \alpha)$, from (5) and the fact that T_{α}^{n} and h_{n} are homeomorphisms, we obtain

$$
T_{\alpha}^{-n}(x) \in(a, 1] \quad \text { and } \quad h_{n}^{-1}(x) \in(a, 1] .
$$

Since $g(x)=x$ for $x \in(a, 1]$, we have

$$
\left(T_{\alpha}^{n} g T_{\alpha}^{-n}\right)(x)=\left(T_{\alpha}^{n} T_{\alpha}^{-n}\right)(x)=x
$$

and

$$
\left(h_{n} g h_{n}^{-1}\right)(x)=\left(h_{n} h_{n}^{-1}\right)(x)=x .
$$

Thus equality (4) holds true.
Finally, we obtain

$$
d_{\mathcal{G}}\left(T_{\alpha}^{n} g T_{\alpha}^{-n}, \mathrm{id}\right) \leq C \log n .
$$

In the case where g is a rotation the conclusion of the lemma is obvious.
Proof of Lemma 2. Let $\beta \in\left(0,10^{-3}\right)$, and let $f_{1} \in G_{\text {triv }}$ be arbitrary such that

$$
f_{1}(x)=0.4+2(x-0.4) \text { for } x \in[0.4,0.6] \quad \text { and } \quad f_{1}(x)=x \text { for } x \in[0.9,1.1] .
$$

Set

$$
H_{1}=T_{2 \beta}^{-1} f_{1} T_{2 \beta} f_{1}^{-1}
$$

It is obvious that

$$
H_{1}(x)=x+2 \beta \text { for } x \in[0.41,0.79] \quad \text { and } \quad H_{1}(x)=x \text { for } x \in[0.91,1.09] .
$$

Define

$$
H_{2}=T_{1 / 2} H_{1}^{-1} T_{1 / 2} H_{1},
$$

and observe that

$$
H_{2}(x)=x-2 \beta \quad \text { for } x \in[0.95,1] .
$$

Simple computation gives

$$
T_{1 / 2} H_{2} T_{1 / 2} H_{2}=\mathrm{id.}
$$

Set

$$
H_{3}=T_{2 \beta} H_{2} .
$$

Then we have

$$
H_{3}(x)=x \quad \text { for } x \in[0.95,1]
$$

and

$$
\begin{equation*}
T_{2 \beta+1 / 2} H_{3} T_{-2 \beta-1 / 2} H_{3}=T_{4 \beta} . \tag{6}
\end{equation*}
$$

Take an arbitrary $f_{2} \in G_{\text {triv }}$ satisfying

$$
f_{2}(x)=2 x \quad \text { for } x \in[0,0.49],
$$

and define

$$
H_{4}=f_{2}^{-1} H_{3} f_{2}
$$

It is easy to see that

$$
H_{4}(x)= \begin{cases}H_{3}(2 x) / 2 & \text { for } x \in[0,1 / 2) \\ x & \text { for } x \in[1 / 2,1)\end{cases}
$$

Let

$$
\begin{equation*}
H_{5}=T_{1 / 2} H_{4} T_{1 / 2} H_{4} \tag{7}
\end{equation*}
$$

Observe that the graph of H_{5} is built from two scaled copies of H_{3}, that is,

$$
H_{5}(x)= \begin{cases}H_{3}(2 x) / 2 & \text { for } x \in[0,1 / 2) \\ H_{3}(2 x-1) / 2+1 / 2 & \text { for } x \in[1 / 2,1)\end{cases}
$$

Therefore, by (6) and (7), we finally obtain

$$
\begin{equation*}
T_{\beta+1 / 4} H_{5} T_{-\beta-1 / 4} H_{5}=T_{2 \beta} \tag{8}
\end{equation*}
$$

Indeed, this is easy to see if we realize that (8) is simply equation (6) rewritten in the new coordinates $(x / 2, y / 2)$. Subsequently plugging $H_{5}, H_{4}, H_{3}, H_{2}$ and H_{1} into formula (8), we have

$$
\begin{aligned}
& T_{\beta} T_{1 / 4} T_{1 / 2} f_{2}^{-1} T_{\beta}^{2} T_{1 / 2} f_{1} T_{\beta}^{-2} f_{1}^{-1} T_{\beta}^{2} T_{1 / 2} T_{\beta}^{-2} f_{1} T_{\beta}^{2} f_{1}^{-1} f_{2} T_{1 / 2} f_{2}^{-1} T_{\beta}^{2} T_{1 / 2} f_{1} T_{\beta}^{-2} \\
& \cdot f_{1}^{-1} T_{\beta}^{2} T_{1 / 2} T_{\beta}^{-2} f_{1} T_{\beta}^{2} f_{1}^{-1} f_{2} T_{\beta}^{-1} T_{-1 / 4} T_{1 / 2} f_{2}^{-1} T_{\beta}^{2} T_{1 / 2} f_{1} T_{\beta}^{-2} f_{1}^{-1} T_{\beta}^{2} T_{1 / 2} T_{\beta}^{-2} f_{1} T_{\beta}^{2} \\
& \cdot f_{1}^{-1} f_{2} T_{1 / 2} f_{2}^{-1} T_{\beta}^{2} T_{1 / 2} f_{1} T_{\beta}^{-2} f_{1}^{-1} T_{\beta}^{2} T_{1 / 2} T_{\beta}^{-2} f_{1} T_{\beta}^{2} f_{1}^{-1} f_{2}=T_{\beta}^{2} .
\end{aligned}
$$

Since $\beta \in\left(0,10^{-3}\right)$ was arbitrary, we obtain that each T_{β} sufficiently small satisfies equation (1) with the functions $g_{1}, \ldots, g_{l} \in\left\{f_{1}, f_{2}, f_{1}^{-1}, f_{2}^{-1}, T_{1 / 2}, T_{-1 / 2}, T_{1 / 4}, T_{-1 / 4}\right\} \subset$ $G_{\text {triv }} \cup \mathrm{T}$ and $k_{1}, \ldots, k_{l} \in \mathbb{Z}$. Obviously, some of the k_{i} are equal to 0 (k_{2}, for instance) but $k_{1}+\cdots+k_{l}=8$. Since $k=2$, the proof of the lemma is complete.

References

[1] A. Avila. Distortion elements in Diff ${ }^{\infty}(\mathbb{R} / \mathbb{Z})$. Preprint, 2008, arXiv:0808.2334.
[2] D. Calegari and M. Freedman. Distortion in transformation groups. Geom. Topol. 10 (2006), 267-293, with an appendix by Y. de Cornulier.
[3] L. Dinamarca and M. Escayola. Some examples of distorted interval diffeomorphisms of intermediate regularity. Ergod. Th. \& Dynam. Sys., to appear.
[4] H. Eynard-Bontemps and A. Navas. Mather invariant, distortion, and conjugates for diffeomorphisms of the interval. J. Funct. Anal. 281(9) (2021), 109149.
[5] J. Franks. Distortion in groups of circle and surface diffeomorphisms. Dynamique des Difféomorphismes Conservatifs des Surfaces: Un Point de vue Topologique (Panoramas et Synthèses, 21). Eds. S. Crovisier, J. Franks, J.-M. Gambaudo and P. Le Calvez. Société Mathématique de France, Paris, 2006, pp. 35-52.
[6] J. Franks and M. Handel. Distortion elements in group actions on surface. Duke Math. J. 131(3) (2006), 441-468.
[7] M. Gromov. Asymptotic invariants of infinite groups. Geometric Group Theory (Sussex, 1991) (London Mathematical Society Lecture Notes Series, 182). Vol. 2. Cambridge University Press, Cambridge, 1993, pp. 1-295.
[8] N. Guelmann and I. Liousse. Distortion in group of interval exchange transformations. Groups Geom. Dyn. 13 (2019), 795-819.
[9] A. Navas. Group actions on 1-manifolds: a list of very concrete open questions. Proc. Int. Congress of Mathematicians (Rio de Janeiro 2018). Vol. III. Invited Lectures. World Scientific, Hackensack, NJ, 2018, pp. 2035-2062.
[10] A. Navas. (Un)distorted diffeomorphisms in different regularities. Israel J. Math. 244(2) (2021), 727-741.
[11] L. Polterovich. Growth of maps, distortion in groups and symplectic geometry. Invent. Math. 150 (2002), 655-686.

