LIE ALGEBRAS ALL OF WHOSE MAXIMAL SUBALGEBRAS HAVE CODIMENSION ONE

by DAVID TOWERS

(Received 28th March 1980)

Let \mathfrak{X} denote the class of finite-dimensional Lie algebras L (over a fixed, but arbitrary, field F) all of whose maximal subalgebras have codimension 1 in L. In (2) Barnes proved that the solvable algebras in \mathfrak{X} are precisely the supersolvable ones. The purpose of this paper is to extend this result and to give a characterisation of all of the algebras in \mathfrak{X} . Throughout we shall place no restrictions on the underlying field of the Lie algebra.

Precisely, the result we shall prove is

Theorem 1. The Lie algebra $L \in \mathfrak{X}$ if and only if $L/\phi(L) = S \oplus R$, where $\phi(L)$ is the Frattini ideal of L, S is a 3-dimensional simple ideal of $L/\phi(L)$ isomorphic to $L_1(0)$ (see below), or is $\{0\}$, and R is a supersolvable ideal of $L/\phi(L)$ (possibly $\{0\}$).

If U is a subalgebra of L we denote by U_L (the core of U) the largest ideal of L contained in U; if $U_L = 0$ we say that U is core-free. We shall need the following classification of Lie algebras with core-free subalgebras of codimension 1 which is given by Amayo in (1).

Theorem 2. (Amayo (1), Theorem 3.1). Let L have a core-free subalgebra of codimension 1. Then either (i) dim $L \leq 2$, or else (ii) $L \approx L_m(\Gamma)$ for some m and Γ satisfying certain conditions (see (1) for details).

We shall also need the following properties of $L_m(\Gamma)$ which are given in (1).

Theorem 3. (Amayo (1)). (i) If m > 1 and m is odd, then $L_m(\Gamma)$ has only one subalgebra of codimension 1.

(ii) If m > 1 and m is even, then $L_m(\Gamma)$ has precisely two subalgebras of codimension 1.

(iii) $L_1(\Gamma)$ has a basis $\{u_{-1}, u_0, u_1\}$ with multiplication $u_{-1}u_0 = u_{-1} + \gamma_0 u_1$ ($\gamma_0 \in F$, $\gamma_0 = 0$ if $\Gamma = \{0\}$), $u_{-1}u_1 = u_0$, $u_0u_1 = u_1$.

(iv) If F has characteristic different from 2 then $L_1(\Gamma) \cong L_1(0)$.

(v) If F has characteristic 2 then $L_1(\Gamma) \cong L_1(0)$ if and only if γ_0 is a square in F.

DAVID TOWERS

Using the above we can deduce

Lemma 4. Let $L \in \mathfrak{X}$ and suppose that M is a maximal subalgebra of L. Then either (i) dim $L/M_L \leq 2$, or else (ii) $L/M_L \approx L_1(0)$.

Proof. Clearly M/M_L is a core-free subalgebra of L/M_L of codimension 1. Suppose that dim $L/M_L > 2$. Then, by Theorem 2, $\overline{L} = L/M_L \cong L_m(\Gamma)$. Furthermore, it follows easily from Theorem 3(i) and (ii) that m = 1. Suppose that $\overline{L} \not\cong L_1(0)$. Theorem 3(iii), (iv) and (v) implies that F has characteristic 2 and \overline{L} has a basis $\{u_{-1}, u_0, u_1\}$ with $u_{-1}u_0 = u_{-1} + \gamma_0 u_1, u_{-1}u_1 = u_0, u_0u_1 = u_1$, where γ_0 is not a square in F. But a simple calculation how verifies that the subalgebra spanned by u_{-1} is maximal, contradicting the fact that $L \in \mathfrak{X}$. The result follows.

One more lemma is needed; namely

Lemma 5. Suppose that $L = S_1 \oplus S_2$ where S_1 and S_2 are 3-dimensional simple ideals of L, each isomorphic to $L_1(0)$. Then $L \notin \mathfrak{X}$.

Proof. Pick a basis u_{i0} , u_{i1} , $u_{i(-1)}$ for S_i (i = 1, 2) such that $u_{i(-1)}u_{i0} = u_{i(-1)}$, $u_{i0}u_{i1} = u_{i1}$, $u_{i(-1)}u_{i1} = u_{i0}$. It is easily checked that the subalgebra of L spanned by $u_{10} + u_{20}$, $u_{11} + u_{21}$, $u_{1(-1)} + u_{2(-1)}$ is maximal.

Proof of theorem 1. (a) Suppose first that $L \in \mathfrak{X}$. If L is solvable, it is supersolvable ((2), Theorem 7), so suppose further that L is not solvable. Factor out $\phi(L)$, so we may assume that $\phi(L) = 0$. There is a maximal subalgebra M of L such that L/M_L is not solvable (since otherwise $(L^2)^2 = L^{(3)} \subset \phi(L) = 0$ and L is solvable). By Lemma 4, $L/M_L \cong L_1(0)$.

Let K be any maximal subalgebra of L and suppose that $M_L \notin K$. Then $L = M_L + K$. Put $B = M_L + K_L$. Since L/M_L is simple, $B = M_L$ or B = L. The former implies that $M_L = K_L \subset K$, a contradiction; so $L = B = M_L + K_L$. Now $L/(M_L \cap K_L) \cong (M_L/(M_L \cap K_L)) \oplus (K_L/(M_L \cap K_L)) \cong (L/K_L) \oplus (L/M_L)$, so $L/K_L \not\equiv L_1(0)$ (by Lemma 5). Hence dim $L/K_L \leq 2$, and so $L^{(3)} \subset K_L \subset K$. We have proved that either $M_L \subset K$ or else $L^{(3)} \subset K$. Thus, $M_L \cap L^{(3)} \subset K$ for all maximal subalgebras K of L. It follows that $M_L \cap L^{(3)} \subset \phi(L) = 0$; in particular, $M_L^{(3)} = 0$ and M_L is solvable.

If $M_L = 0$ we are done. If $M_L \neq 0$, $M_L \neq \phi(L)$, and so there is a maximal subalgebra Nof L such that $L = M_L + N$. As above, $L = M_L + N_L$. Put $D = N_L^{(3)} + M_L$. Then $N_L^{(3)} \cong D/M_L$ which is an ideal of L/M_L , and so $N_L^{(3)} = 0$ or else $N_L^{(3)} \cong L_1(0)$. The former is impossible since this would imply that L were solvable. Hence D = L and L = S + R, where $R = M_L$ is solvable, $S = N_L^{(3)} \cong L_1(0)$ and $L^{(3)} \cap R = 0$. Furthermore, $SR = S^2R \subset S(SR) = S^2(SR) \subset L^{(3)} \cap R = 0$, giving $L = S \oplus R$. Finally, R is supersolvable by Theorem 7 of (2).

(b) Now suppose that $\overline{L} = L/\phi(L) = S \oplus R$. By Theorem 7.3 of (3), $\overline{L} = (A+B) \oplus S$ where $A = A_1 \oplus \ldots \oplus A_n$ is the sum of the minimal abelian ideals of \overline{L} and B is abelian. Since R = A + B is supersolvable, dim $A_i = 1$ for $1 \le i \le n$.

https://doi.org/10.1017/S0013091500016540 Published online by Cambridge University Press

218

Let M be a maximal subalgebra of \overline{L} . If $A \notin M$, then there is an A_i $(1 \le i \le n)$ such that $A_i \notin M$. But then $\overline{L} = A_i + M$ and M has codimension 1 in \overline{L} . So assume that $A \subset M$.

Suppose that $B \notin M$. Then there is an element $b \in B$ such that $b \notin M$. But $B\overline{L} \subset A \subset M$, so L = M + U where U is spanned by b. Thus, again, M has codimension 1 in \overline{L} . Finally, if $R \subset M$, it is clear that M has codimension 1 in \overline{L} .

Remark. It is clear from the proof of Theorem 1 that for any $L \in \mathfrak{X}$ we can pick a basis $\{a_1, \ldots, a_n, b_1, \ldots, b_m, u_{-1}, u_0, u_1\}$ such that

$$u_{-1}u_0 = u_{-1}, \quad u_0u_1 = u_1, \quad u_{-1}u_1 = u_0$$

and

$$a_i b_j = \lambda_{ij} a_i$$
 for some $\lambda_{ij} \in F$ $(1 \le i \le n, 1 \le j \le m),$

all other products being zero.

Acknowledgement. The author would like to thank the University of California at Berkeley for their hospitality while this work was being done.

REFERENCES

(1) R. K. AMAYO, Quasi-ideals of Lie algebras II, Proc. London Math. Soc. (3) 33 (1976), 37-64.

(2) D. W. BARNES, On the cohomology of soluble Lie algebras, Math. Z. 101 (1967), 343-349.

(3) D. A. TOWERS, A Frattini theory for algebras, Proc. London Math. Soc. (3) 27 (1973), 440-462.

DEPARTMENT OF MATHEMATICS University of Lancaster Lancaster LA1 4YL England

and

Department of Mathematics University of California Berkeley CA 94720 USA