LIE ALGEBRAS ALL OF WHOSE MAXIMAL SUBALGEBRAS HAVE CODIMENSION ONE

by DAVID TOWERS

(Received 28th March 1980)

Let \mathfrak{X} denote the class of finite-dimensional Lie algebras L (over a fixed, but arbitrary, field F) all of whose maximal subalgebras have codimension 1 in L. In (2) Barnes proved that the solvable algebras in \mathfrak{X} are precisely the supersolvable ones. The purpose of this paper is to extend this result and to give a characterisation of all of the algebras in \mathfrak{X}. Throughout we shall place no restrictions on the underlying field of the Lie algebra.

Precisely, the result we shall prove is
Theorem 1. The Lie algebra $L \in \mathfrak{X}$ if and only if $L / \phi(L)=S \oplus R$, where $\phi(L)$ is the Frattini ideal of L, S is a 3-dimensional simple ideal of $L / \phi(L)$ isomorphic to $L_{1}(0)$ (see below), or is $\{0\}$, and R is a supersolvable ideal of $L / \phi(L)$ (possibly $\{0\}$).

If U is a subalgebra of L we denote by U_{L} (the core of U) the largest ideal of L contained in U; if $U_{L}=0$ we say that U is core-free. We shall need the following classification of Lie algebras with core-free subalgebras of codimension 1 which is given by Amayo in (1).

Theorem 2. (Amayo (1), Theorem 3.1). Let L have a core-free subalgebra of codimension 1. Then either (i) $\operatorname{dim} L \leqq 2$, or else (ii) $L \cong L_{m}(\Gamma)$ for some m and Γ satisfying certain conditions (see (1) for details).

We shall also need the following properties of $L_{m}(\Gamma)$ which are given in (1).

Theorem 3. (Amayo (1)). (i) If $m>1$ and m is odd, then $L_{m}(\Gamma)$ has only one subalgebra of codimension 1.
(ii) If $m>1$ and m is even, then $L_{m}(\Gamma)$ has precisely two subalgebras of codimension 1.
(iii) $L_{1}(\Gamma)$ has a basis $\left\{u_{-1}, u_{0}, u_{1}\right\}$ with multiplication $u_{-1} u_{0}=u_{-1}+\gamma_{0} u_{1}\left(\gamma_{0} \in F\right.$, $\gamma_{0}=0$ if $\Gamma=\{0\}$), $u_{-1} u_{1}=u_{0}, u_{0} u_{1}=u_{1}$.
(iv) If F has characteristic different from 2 then $L_{1}(\Gamma) \cong L_{1}(0)$.
(v) If F has characteristic 2 then $L_{1}(\Gamma) \cong L_{1}(0)$ if and only if γ_{0} is a square in F.

Using the above we can deduce
Lemma 4. Let $L \in \mathfrak{X}$ and suppose that M is a maximal subalgebra of L. Then either (i) $\operatorname{dim} L / M_{L} \leqq 2$, or else (ii) $L / M_{L} \cong L_{1}(0)$.

Proof. Clearly M / M_{L} is a core-free subalgebra of L / M_{L} of codimension 1. Suppose that $\operatorname{dim} L / M_{L}>2$. Then, by Theorem $2, \bar{L}=L / M_{L} \cong L_{m}(\Gamma)$. Furthermore, it follows easily from Theorem 3(i) and (ii) that $m=1$. Suppose that $\bar{L} \not \equiv L_{1}(0)$. Theorem 3(iii), (iv) and (v) implies that F has characteristic 2 and \bar{L} has a basis $\left\{u_{-1}, u_{0}, u_{1}\right\}$ with $u_{-1} u_{0}=u_{-1}+\gamma_{0} u_{1}, u_{-1} u_{1}=u_{0}, u_{0} u_{1}=u_{1}$, where γ_{0} is not a square in F. But a simple calculation how verifies that the subalgebra spanned by u_{-1} is maximal, contradicting the fact that $L \in \mathfrak{X}$. The result follows.

One more lemma is needed; namely
Lemma 5. Suppose that $L=S_{1} \oplus S_{2}$ where S_{1} and S_{2} are 3-dimensional simple ideals of L, each isomorphic to $L_{1}(0)$. Then $L \notin \mathfrak{X}$.

Proof. Pick a basis $u_{i 0}, u_{i 1}, u_{i(-1)}$ for $S_{i}(i=1,2)$ such that $u_{i(-1)} u_{i 0}=u_{i(-1)}, u_{i 0} u_{i 1}=$ $u_{i 1}, u_{i(-1)} u_{i 1}=u_{i 0}$. It is easily checked that the subalgebra of L spanned by $u_{10}+$ $u_{20}, u_{11}+u_{21}, u_{1(-1)}+u_{2(-1)}$ is maximal.

Proof of theorem 1. (a) Suppose first that $L \in \mathfrak{X}$. If L is solvable, it is supersolvable ((2), Theorem 7), so suppose further that L is not solvable. Factor out $\phi(L)$, so we may assume that $\phi(L)=0$. There is a maximal subalgebra M of L such that L / M_{L} is not solvable (since otherwise $\left(L^{2}\right)^{2}=L^{(3)} \subset \phi(L)=0$ and L is solvable). By Lemma 4, $L / M_{L} \cong L_{1}(0)$.

Let K be any maximal subalgebra of L and suppose that $M_{L} \not \subset K$. Then $L=M_{L}+K$. Put $B=M_{L}+K_{L}$. Since L / M_{L} is simple, $B=M_{L}$ or $B=L$. The former implies that $M_{L}=K_{L} \subset K, \quad$ a contradiction; so $\quad L=B=M_{L}+K_{L}$. Now $\quad L /\left(M_{L} \cap K_{L}\right) \cong$ $\left(M_{L} /\left(M_{L} \cap K_{L}\right)\right) \oplus\left(K_{L} /\left(M_{L} \cap K_{L}\right)\right) \cong\left(L / K_{L}\right) \oplus\left(L / M_{L}\right)$, so $L / K_{L} \neq L_{1}(0)$ (by Lemma 5). Hence $\operatorname{dim} L / K_{L} \leqq 2$, and so $L^{(3)} \subset K_{L} \subset K$. We have proved that either $M_{L} \subset K$ or else $L^{(3)} \subset K$. Thus, $M_{L} \cap L^{(3)} \subset K$ for all maximal subalgebras K of L. It follows that $M_{L} \cap L^{(3)} \subset \phi(L)=0$; in particular, $M_{\mathrm{L}}^{(3)}=0$ and M_{L} is solvable.

If $M_{L}=0$ we are done. If $M_{L} \neq 0, M_{L} \notin \phi(L)$, and so there is a maximal subalgebra N of L such that $L=M_{L}+N$. As above, $L=M_{L}+N_{L}$. Put $D=N_{L}^{(3)}+M_{L}$. Then $N_{L}^{(3)} \cong$ D / M_{L} which is an ideal of L / M_{L}, and so $N_{L}^{(3)}=0$ or else $N_{L}^{(3)} \cong L_{1}(0)$. The former is impossible since this would imply that L were solvable. Hence $D=L$ and $L=S+R$, where $R=M_{L}$ is solvable, $S=N_{L}^{(3)} \cong L_{1}(0)$ and $L^{(3)} \cap R=0$. Furthermore, $S R=S^{2} R \subset$ $S(S R)=S^{2}(S R) \subset L^{(3)} \cap R=0$, giving $L=S \oplus R$. Finally, R is supersolvable by Theorem 7 of (2).
(b) Now suppose that $\bar{L}=L / \phi(L)=S \oplus R$. By Theorem 7.3 of (3), $\bar{L}=(A+B) \oplus S$ where $A=A_{1} \oplus \ldots \oplus A_{n}$ is the sum of the minimal abelian ideals of \bar{L} and B is abelian. Since $R=A+B$ is supersolvable, $\operatorname{dim} A_{i}=1$ for $1 \leqq i \leqq n$.

Let M be a maximal subalgebra of \bar{L}. If $A \not \subset M$, then there is an $A_{i}(1 \leqq i \leqq n)$ such that $A_{i} \notin M$. But then $\bar{L}=A_{i}+M$ and M has codimension 1 in \bar{L}. So assume that $A \subset M$.

Suppose that $B \notin M$. Then there is an element $b \in B$ such that $b \notin M$. But $B \bar{L} \subset A \subset$ M, so $L=M+U$ where U is spanned by b. Thus, again, M has codimension 1 in \bar{L}.

Finally, if $R \subset M$, it is clear that M has codimension 1 in \bar{L}.
Remark. It is clear from the proof of Theorem 1 that for any $L \in \mathfrak{X}$ we can pick a basis $\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}, u_{-1}, u_{0}, u_{1}\right\}$ such that

$$
u_{-1} u_{0}=u_{-1}, \quad u_{0} u_{1}=u_{1}, \quad u_{-1} u_{1}=u_{0}
$$

and

$$
a_{i} b_{j}=\lambda_{i j} a_{i} \quad \text { for some } \quad \lambda_{i j} \in F \quad(1 \leqq i \leqq n, 1 \leqq j \leqq m),
$$

all other products being zero.
Acknowledgement. The author would like to thank the University of California at Berkeley for their hospitality while this work was being done.

REFERENCES

(1) R. K. Amayo, Quasi-ideals of Lie algebras II, Proc. London Math. Soc. (3) 33 (1976), 37-64.
(2) D. W. Barnes, On the cohomology of soluble Lie algebras, Math. Z. 101 (1967), 343-349.
(3) D. A. Towers, A Frattini theory for algebras, Proc. London Math. Soc. (3) 27 (1973), 440-462.

Department of Mathematics
University of Lancaster
Lancaster LA1 4YL
England
and
Department of Mathematics
University of California
Berkeley
CA 94720
USA

