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Abstract

We introduce further finite groups which can be presented with an equal
number of generators and relations.

1. Introduction

Finite groups with zero deficiency include cyclic groups, certain metacyclic
groups [5] and other classes of finite groups given in [2], [3] and [4]. In this
paper we present a further class of two-generator, two-relation groups which we
show are finite and hence introduce the smallest non-metacyclic p-group with
zero deficiency. We also present a three-generator, three-relation finite group.

The groups presented are defined as;

p,y) = {a,b\c-1ac = a",b2 = aV,c = a-'b'^b},]^ ¥= 1,7 £ 0
and

G = {a,b,c Ib'tab = a'1^,^1^ = b-lc\a~lca = <rV}.

2. Finiteness of G (a, P, y)

The relations are:

(1) c- 1 ac = a«, f « | * l ,

(2) b2 = a V , 7 ^ 0 ,

(3) b-'ab = ac.

Conjugation of (3) by b implies

b~2ab2 = acb~lcb whence (2) yields

c~yacy = acb~1cb which together with (1) gives

(4) b~lcb = c - V " 1 .
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Conjugation of (1) by b yields

a1'*''cc? = (ac)x which with (1) gives, in conjunction with (3) and (4),

(5) a«-«v + .+a7= c-i(acyt Whereby (1) yields

(6) c*"1 = a . * - * * 1 - * 1 — - « • for a > i, o r

(7) c"-1 = a ^ - ^ + 1 + « + « 2 + - + « 1 " a
) for a < - 1, whence, from (1),

(8) a«l«-il- i — i a n ( j hence G is a finite group with order dividing

In the special case with a = — 3, ft = 4 and y = 2 then (7) gives c~4 = a9 6

whence (1) implies

(9) a1 6 = 1, c4 = 1.

However conjugation of (2) by b gives

a4c2 = a 1 2 c " 2 whence

(10) a8 = 1.

Hence G( - 3, 4, 2) is a group of order dividing 64. In fact G( - 3, 4, 2) is
group number 240 in [1] and since this group is the only non-metacyclic 2-group
of order at most 64 with trivial Schur multiplicator then G( — 3, 4, 2) is the
smallest non-metacyclic p-group with zero deficiency.

3. Finiteness of G

The relations are

(11) b~lab = a~lbA, c~lbc = b ' V , a~lca = c"^4 ; whence

b~yab2 = b-*ab4 or

(12) b~2ab2 = a. Similarly

(13) c~2bc2 = b and

(14) a~2ca2 = c.

We use the identity

(15) [a, b,ca][c,a)6
c][fc,c,afc] = l

where \_x,y~\ denotes x~1>'~1x>' and xy denotes y"1^^.

We have
(16) [a, b, ca] = [a"2b4, c ' ^ 4 ] = b~8clb
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which with the other equations equivalent to (16) together with (15) give, since
the subgroup generated by a2, b2 and c2 is abelian,

(17) a8b8cs = 1.

Since [b8c8, b] = 1 then [a8, ft] = 1 whence (11) yields a16 = b32 = c6 4

= a128 whence

(18) a112 = 1.

(19) Similarly b112 = c112 = 1, whence G is a finite group with order

dividing 7.211, since b16 = c32.
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