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0. Introduction
Ergodic theory is one of several fields of mathematics where the name Vladimir
Abramovich Rokhlin (spelled also 'Rochlin' and 'Rohlin') is well known to the
specialists. That name is attached to some very often used theorems, but the goal
of this paper is not just to remind the reader of these theorems. I put them in the
context of the general development of ergodic theory during the thirty years 1940-70.
Most of all, I want to emphasize that Rokhlin was not only a researcher producing
powerful results but also a founder of schools at the two best Universities in the
USSR. For at least 10 years (1958-68) these schools dominated ergodic theory. This
paper is not biographical. Rokhlin's life certainly deserves a better biographer.
However, I mention certain circumstances of a non-mathematical nature where it
seems to be appropriate.

This paper is divided into three sections corresponding to three easily distinguish-
able periods in Rokhlin's work in ergodic theory. The first section called BE (before
entropy) corresponds to the first period which lasted from 1940 to 1949. It was
devoted to axiomatization, spectral invariants, and mixing properties. The following
9 years were a quiet period in ergodic theory. In particular, Rokhlin was working
in topology and apparently did not plan to return to ergodic theory. In 1958, A.
Kolmogorov introduced a new invariant: the entropy of a measure preserving
transformation. This started a new era in ergodic theory that I will call ET (entropy
theory) and attracted Rokhlin back to the area. The second section of this paper is
devoted to the results of the seminar organized by Rokhlin at the Moscow State
University and covers approximately 1958-1959. We also follow the later history of
several important problems formulated in this seminar. Finally, the third section is
devoted to Rokhlin's seminar at the Leningrad State University in 1960-1970.

D. Ornstein's paper [22] on the isomorphism of Bernoulli automorphisms with
equal entropy started yet another period in ergodic theory. This period can be
characterized by the development of methods of more combinatorial nature that
were harder to formalize. Many old problems were solved by these methods. At
this point the center of pure ergodic theory or rather Bernoulli theory moved to the
West. Perhaps this was one of the reasons why Rokhlin stopped doing active research
in the area. Besides, he was busy proving his famous results in 4-dimensional
topology.
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1. BE
Rokhlin obtained his first results in ergodic theory in 1940 when he was a student
at Moscow University. They were published in short from only seven years later in
[25,27]. Yet later the results of [25] appeared in detail in [28]. During these seven
years the author of the results fought the German Army with the Moscow University
Volunteer Brigade, was captured, survived, finished the war with the Red Army in
Berlin, was jailed by his compatriots as a survivor of a POW camp, and eventually
released, having surprisingly preserved his ability to fruitfully do mathematics.

In [28], Rokhlin solved some problems suggested to him by Kolmogorov. First
of all, he characterized the measure spaces isomorphic (measure-theoretically) to
an interval with the Lebesgue measure augmented by a sequence of points of positive
measure. The notion of such a space (called Lebesgue space) was to become a
fundamental concept of ergodic theory. According to [28], a space X with a measure
lx(fi(X) — 1) is a Lebesgue space if and only if there exists a countable basis (An)^=0

of the cr-algebra of measurable sets of X which separates points and such that X
is complete with respect to it. The latter condition means that Pl̂ =o Bn ^ 0 for
every choice Bn = An or Bn = X\An. A similar characterization of Lebesgue spaces
was given by P. Halmos and J. von Neumann in [10].

Secondly, Rokhlin developed the theory of measurable partitions. He defined a
measurable partition of X as a partition generated by a countable system of
measurable sets. Equivalently, it is the partition into preimages of points under a
measure preserving mapping of (X, (A) onto another Lebesgue space. The main
property of a measurable partition f is that it affords a canonical system of measures
on its elements. This means that each element C of £ can be provided with a
Lebesgue measure fic such that for every (measurable) set A c X

where /JL$ is the measure induced by fx on the factor space X/l- (of all elements
C). It turns out that the measurable partitions allow a complete classification. In
the most important case where fx is continuous every (measurable) partition with
continuous measures on its elements is isomorphic to the partition of the unit square
into vertical intervals.

Rokhlin observed that the set of all measurable partitions provided with the
natural order (f < 77 if 17 is a refinement of £) is a complete lattice. Of course here
as virtually everywhere else in measure theory the folowing convention is applied:
the objects which are different only on a set of measure 0 are identified. The
importance of that observation would become completely clear only in entropy
theory.

In the same year when his first results were published, Rokhlin published the
papers [29,30]. There, he summed up his activity in ergodic theory, not planning
to work in this area any more. The paper [29] is an exposition of the theory of
measure-preserving transformations overlapping with similar expositions by E. Hopf
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[14] and P. Halmos [13]. The precise and exhaustive style of the paper became
typical of all other expositions by Rokhlin.

Among Rokhlin's own results from this paper there are two that influenced the
further development of ergodic theory most significantly. The first one is the theorem
about the strong approximation of an aperiodic automorphism by periodic
automorphisms. More precisely, we let d be the metric on the group of all automorph-
isms of a Lebesgue space X defined by d( T, S) = /J.(X e X | Tx # Sx). Halmos proved
in [12] that for every aperiodic automorphism T and every natural number p there
exists an automorphism 5 of period p such that d{ T, S) < 4/p. Rokhlin showed that
instead of 4/p one can put \/p + e for every positive e. This result became funda-
mental in the approximation theory developed by A. Katok and A. Stepin [18].

Another important result of the paper is the theorem about mixing automorphisms.
Let us recall that an automorphism T is said to be mixing if for every pair (A, B)
of measurable sets limn̂ oo ix(T"A n B) = fiA • fiB. Every mixing automorphism has
a continuous spectrum. Rokhlin's theorem states that the mixing automorphisms
form a set of first category in the set of all automorphisms provided with metric d.
Earlier, Halmos [12] proved that the set of automorphisms with continuous spectrum
is an everywhere dense Gs. Hence, roughly speaking, a typical automorphism has
a continuous spectrum but is not mixing.

Since the beginning of his work in ergodic theory Rokhlin was interested in a
special class of transformations: the endomorphisms of compact commutative
groups. Since a compact group G with a countable basis of open sets provided with
Haar measure /A is a Lebesgue space and any epimorphism T of G preserves fj., T
can be studied from the point of view of ergodic theory. Conditions of ergodicity
of such an endomorphism T on a commutative group had already been obtained
by Rokhlin in 1941. They were also published by Halmos in [11]. In [30], Rokhlin
published his proof of these conditions. He also defined a new invariant of an
endomorphism: the mixing of order r for every positive integer r. If r = 1 this is the
usual mixing. As an example he proved that an endomorphism of a compact
commutative group is the mixing of all orders.

Rokhlin hoped that the mixing of order greater than one was not a spectral
invariant. This question which stimulated a lot of important work in ergodic theory
is still open. It is not even known if the usual mixing implies the mixing of higher
orders. The most recent result in this direction was obtained by S. Kalikow. A
weaker version of it was published in [63]. Also a similar notion of 'weakly mixing
of order r' was studied by H. Furstenberg in [62].

2. ET, Moscow seminar
In 1958, Kolmogorov [19,20] introduced a new invariant of an automorphism T
of a Lebesgue space: the entropy h(T) of T. Kolmogorov's definition (or rather
Sinai's modification in [42]) amounts to the following. For a partition £ of the space
into sets Ax, A2,... of positive measure the entropy //(£) is defined by
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Now, for an automorphism T let

(

and

where the supremum is taken with respect to all finite partitions. Kolmogorov proved
that if a finite entropy partition £ is a generator of T, i.e. V-<x> T"g = e (the partition
into points), then /i(T, f) = /ii(T) is independent of £ (see also [42]). The identity
h(T) = ht(T) was proved by Rokhlin [36]. This immediately gives examples of
non-isomorphic Bernoulli schemes. The Kolmogorov-Sinai definition can be easily
generalized to endomorphisms.

Kolmogorov's discovery started a new era in ergodic theory and attracted Rokhlin
back to this field. From October 1958 to May 1959 Rokhlin ran an ergodic theory
seminar in the Department of Mechanics and Mathematics of the Moscow University
(without being employed by the University). Many young talented mathematicians
such as L. Abramov, I. Girsanov, B. Gurevich, L. Meshalkin, M. Pinsker, and Ya.
Sinai took part in the seminar. The results proved by Rokhlin himself and by other
participants of the seminar are presented in Rokhlin's expository paper [32].

First of all, several basic properties of entropy were proved. Among them are
(1) h(T") = \n\h(T) for an arbitrary integer n [42];
(2) h(Sx T) = h(T) + h(S) where Sx T is the direct product of the automorphisms

S and T [31];
(3) h(S)<h(T) for every factor automorphism S of T [31];
(4) h(TA) = h(T)/fj,(A) where TA is the automorphism induced by T on the sub-

space A such that /i(lX=-co T"A) = 1 [1].
Secondly, the problem of computing h(T) for an automorphism T without an

explicitly given generator was considered. In [32], there are several examples of
conditions on a sequence (£„) of partitions that guarantee the convergence h (T, f„) -»
h(T). For example [31], if (£„) is an increasing sequence and \/n£n = e then
lim h(T, £„) = h(T). Using a similar condition, Sinai [42] computed the entropy of
certain automorphisms of the torus, which started a series of interesting examples
from topology and algebra.

Another natural question was to study relations between the entropy and the
spectrum of an automorphism. In [31], Rokhlin proved that every automorphism
with positive entropy has a Lebesgue component of infinite multiplicity in its
spectrum. He also characterized the automorphisms with zero entropy without using
the entropy and showed that they form a dense Gs in the space of automorphisms.

Introducing his new invariant, Kolmogorov at the same time introduced a new
class of automorphisms that he called 'quasi-regular'. Later Rokhlin started to call
them Kolmogorov automorphisms. An automorphism T is a Kolmogorov
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automorphism if there exists a partition £ such that

T£>£, V T"t=e, A T"{=V, (*)
n = —oo n = — oo

p being the trivial partition into one set. Pinsker in [24] proved that every Kolmogorov
automorphism has completely positive entropy, i.e. h(T, £)>0 for every partition
£ This condition turned out to be easier to work with than (*). For instance, it is
obvious that if an automorphism has completely positive entropy then its inverse
and all its factor automorphisms have this property. At the same time, similar
implications for the Kolmogorov automorphisms are quite non-trivial and are usually
deduced from the Rokhlin-Sinai theorem [41] (see page 614). Pinsker also proved
in [24] that an arbitrary automorphism T has a unique maximal partition ir = ir(T)
such that Tn = IT and the factor automorphism Tw has zero entropy.

The factor endomorphism S of a Kolmogorov automorphism T with respect to
a partition £ satisfying (*) has the property A"=o S~"e = v. Rokhlin built a theory
of these endomorphisms in [33], naming them exact endomorphisms. It turned out
that interesting examples of exact endomorphisms can be found not only in probabil-
ity theory but also in topological algebra (endomorphisms of tori) and in number
theory. A beautiful example of the last type considered by Rokhlin is the Gauss
endomorphism. It is given on the unit interval with the measure

H(A)

by the formula

Tx

-flf if
In 2 JA l+x

~x U
where [a] is the integer part of a number a. It turned out that the endomorphism
F is exact and h(T) = 7r2/6(ln 2)2. This formula is closely related to continued fraction
theory.

Finally, the participants of the seminar studied the notion of entropy for a
(measurable) flow, i.e. a one-parameter group {S,},sR of automorphisms. Kol-
mogorov defined its entropy as

*({Sf}) = s u p ^ , f>0.

Abramov in [2] proved that h(S,) = \t\h(Si), te R, whence h({S,}) = h(Sl). Kol-
mogorov also defined a new class of flows. A flow {5,} is called a Kolmogorov flow
if there exists a partition £ such that S,£ < Suf for t < u,

V S,£=e and A S,£;=i>.
—oo< t <co — oo<f <oo

Kolmogorov [19] and Sinai [44] proved that such a flow has Lebesgue spectrum of
infinite multiplicity, Rokhlin proved that it is a mixing of all orders. Since the notion
of a Kolmogorov flow came from probability theory it was an exciting problem to
find examples of those flows among classical dynamical systems. Sinai [44] proved
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that the geodesic flow on compact manifolds of constant negative curvature is a
Kolmogorov flow and computed the entropy of the flow.

Summing up in [32] the results of the seminar, Rokhlin stated several problems
which determined the future development of the area. We will consider several of
them.

2.1. Isomorphism problem
Is entropy a complete invariant on the class of automorphisms with completely
positive entropy? On the class of Bernoulli automorphisms? Do these two classes
coincide?

All these questions were solved by D. Ornstein, the second one positively [22],
the third and hence the first one negatively [23]. That was a beginning of yet another
new era in ergodic theory.

2.2. Kolmogorov automorphisms
Is any automorphism with completely positive entropy a Kolmogorov auto-
morphism?

This question was solved positively in the paper [41] by Rokhlin and Sinai. They
studied certain classes of invariant partitions satisfying more general conditions
than (*). A partition £ is said to be extremal with respect to an automorphism T if

The main result in [41] is the existence for every automorphism T of an extremal
partition £ such that h(T,£) = h(T). If T has completely positive entropy then
7T(T)=V and (**) is equivalent to T being a Kolmogorov automorphism.

2.3. Generators
Does every ergodic automorphism with finite entropy have a generator with finite
entropy?

The problem was solved affirmatively by Rokhlin [36,38]. He introduced a metric
on the set Z of all partitions with finite entropy such that Z is complete in this
metric. The main theorem of [36] says that if T is an aperiodic automorphism with
finite entropy then the complement of the set of generators of T in the set of
partitions £ e Z such that h(T,g) = h(T) is of the first category. The existence of
generators with finite entropy follows immediately. An easier theorem from [36]
states that every aperiodic automorphism has a countable or finite generator. Similar
results are proved for endomorphisms.

Later W. Krieger [67] generalized these results. He proved that every ergodic
automorphism T has a generator with [eh(T)] + l elements.

2.4. Automorphisms of compact groups
If an endomorphism of a compact group is ergodic does it have completely positive
entropy?
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Rokhlin [37] proved that this is true for commutative groups. Yuzvinsky [55]
generalized the result to arbitrary compact groups. Several papers [3,7,42,57] are
devoted to the calculation of the entropy of a group endomorphism. The hardest
technical problem was solved by Arov in [7]. The most general result is contained
in Yuzvinsky's paper [57].

2.5. Entropy of a skew product
If U is an automorphism of a space X and {Sx}xeX is a measurable family of
automorphisms of a space Y then the formula T(x,y) = (Ux,Sxy) defines an
automorphism of X x Y. This automorphism T is said to be the skew product with
the base U and the fibers Sx. The problem is to express h(T) in terms of some
characteristics of U and Sx.

This problem was solved by Abramov and Rokhlin in [5] and by R. Adler in [6].
If f is a partition of Y with finite entropy and xeX then we let

n - l

hu(S, £) = lim — H(g") dx,

and

hu(S) = sup hu(S,t).

As it is shown in [5], h(T) = h(U) + hu(S). If in particular U is the identity then
h(T) = \x h{Sx) dx. This formula was proved earlier by Rokhlin in [31] and by K.
Jacobs in [15].

3. ET, Leningrad seminar
In 1960, A. Alexandrov, at that time the Rector of the Leningrad University, offered
Rokhlin a position in the Department of Mathematics and Mechanics. It was the
beginning of a new period for both Rokhlin and the Department. Being the second
best Department of Mathematics in the country, it had had no specialists in ergodic
theory and topology prior to 1960. The ergodic theory seminar, which Rokhlin
immediately organized, attracted several young mathematicians already well-known
in other areas of mathematics. This group included I. Ibragimov (probability theory),
A. Kagan (statistics), B. Makarov, V. Sudakov, A. Vershik (all functional analysis),
and L. Abramov who followed Rokhlin to Leningrad and started to work in
mathematical economics. Although most of the participants of the seminar did not
work in ergodic theory, Rokhlin's influence is clearly noticeable in a number of
their papers such as [16,17,21,48]. For A. Vershik, ergodic theory became one of
the (many) areas of interest for a long time. He developed an elegant theory of
Gaussian systems [49,50], solved the long standing problem about a measurable
realization of a continuous flow [51], and started the theory of sequences of
measurable partitions and their non-measurable limits [52,53].
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The seminar was also a good school for University students. Two of them wrote
their PhD theses under Rokhlin's supervision and continued to work in the seminar.
R. Belinskaya proved the existence of a derived automorphism with a quasi-discrete
spectrum [8] and then followed Vershik in the study of the partition into orbits
denned by an automorphism [9]. Yuzvinsky studied endomorphisms on groups and
homogeneous spaces [54,55,57-59]. Besides the above mentioned results on
endomorphisms of compact groups he also considered Halmos' problem about
transformations of locally compact but non-compact groups. Can a (Haar) measure-
preserving automorphism of such a group be ergodic [13]? It was proved in [54,58]
and also in [64-66] that the answer is negative if the group is either commutative
or connected. The negative result in the general case was obtained only recently by
N. Aoki [61]. Yuzvinsky also proved that automorphisms with a simple spectrum
form an everywhere dense Gs in the space of all automorphisms [56] and followed
Vershik in the study of sequences of partitions [60].

Rokhlin himself continued to work in ergodic theory from 1960 to 1967. Besides
the already mentioned results he has also provided an axiomatic definition of entropy
[35]. His lecture course [39] on entropy theory is still the best text for a first reading
on the subject. This lecture course was the last of Rokhin's publications on ergodic
theory. He kept encouraging others to work in the area, attended the seminar, and
tried to understand the new methods discovered by Ornstein, but his active research
became completely devoted to the topology of 4-dimensional manifolds and real
algebraic curves.
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