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QUARTIC ALGEBRAS 

CARLA FARSI AND NEIL WATLING 

ABSTRACT. In this paper we study the fixed point algebra of the automorphism of 
the rotation algebra ty,9 = p/q with p, q coprime positive integers, given by u —-* v"1, 
v —•+ u. We give a general characterization of the fixed point algebra, determine its 
A'-theory and consider the related crossed-product algebra &% XT Z4. 

1 

1.1. Introduction. In a series of papers [3], [4] the fixed point subalgebra of the rotation 
algebra,.% under the action of the automorphism a: u —• u~\ v —• v~l, referred to as 
the 'flip', was extensively studied. We wish to consider another fixed point subalgebra 
of the rotation algebra. This is defined using the automorphism r: u —• v~], v —•> u which 
has the property that r2 = a, hence we refer to this as the 'square root of the flip'. If 
we let J^ denote this subalgebra and ^ that of the flip, by the property above, we have 
J3Ç C 9§. In this paper we will study the case where 0 is rational and in a separate paper 
in preparation that of general 0 [6]. In other papers [7], [8] we will also study the fixed 
point subalgebras of the finite order automorphisms of Jfy induced by SL(2, Z), when 0 
is rational. The question whether J3J is an AF algebra still remains unresolved. 

Our main result is a description of J3J in the case 0 = p/q. Here we will not give 
the precise result, see Theorem 3.2.5 for this, but just say the following. Let Qo? ^ i and 
Q2 be three distinct points on the sphere S2 and associated to each point Q/ is a set of 
projections {P[.} in Mq, the q x q complex matrices. Then J3J is, up to isomorphism, the 
C*-algebra of continuous functions from S2 to Mq such that/(Q/) commutes with {/*[}. 

For example, when q = 1 J^ is the algebra of continuous functions on S2 and when 
q = 2 J?§ is the algebra of continuous functions from S2 to Mi such that the functions 
take values in the subalgebra M\ 0 M\ at the three points Q/. 

Interestingly we made use of the classical result in analytic number theory, 

*=0 

2nik2/q . 

(1 +i)y/q, q = 0 (mod 4), 

y/q, q=\ (mod 4), 
0, q = 2 (mod 4), 

iyfq, q = 3 (mod 4). 

This was originally proved by Gauss [9], [10], and later by several people using different 
methods, see [2], [13], [1] and [14] for example. It is referred to as a Gaussian sum and 
together with some generalizations it played a key role in the proof. 
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1168 CARLA FARSI AND NEIL WATLING 

As with J3#, note that tf$ is independent of p. A simple corollary of the main result is 
the calculation of the #-theory of J3J. 

COROLLARY 1.1.1. Let 6 = p/q, where /?, q are coprime positive integers. Then the 
K-theory ofJ^ is given by 

q=\ q = 2 q = 3 q = A q>4 

K0{^) Z2 Z5 Z7 Z8 Z9 

*i(*J) 0 0 0 0 0 

We also consider the related algebra Jfy XT Z4 and prove the following. 

THEOREM 1.1.2. Let 6 = p/q, where p,q coprime positive integers and let Q; / = 
0, 1,2 be any three distinct points of the 2-sphere S2. Then the crossed product algebra 
J%Q XT Z4 is isomorphic to the following subalgebra of the O-algebra C(S2, M4q): 

Sfy x r Z4 = {f G C(52, M4q) I /(Q/) commutes with P., ij = 0, 1,2}, 

where Pj-, /,y = 0, 1,2, are self adjoint projections in M4q with PQ = PQ = 0. The dimension 
ofP^ is 2q, while the dimension ofPJ

i, i = 1, 2, j = 0, l ,2w a. 

The format of the paper is as follows. In Section 2 we give the basic notation and 
definitions we will use. In Section 3 we introduce the automorphisms and state the 
main result on the description of J^. In Section 4 we give the scheme of the proof with 
Section 5 giving the results from analytic number theory and detailing the calculations 
necessary. Finally in Section 6 we consider the crossed product algebra Jfy xT Z4. 

We would like to take this opportunity to thank Professor George Elliott for suggesting 
we look at fixed point subalgebras and his helpful comments throughout this work. We 
would also like to thank the Mathematics Department at the University of Toronto where 
this work was carried out. 

2. The rotation algebra. 

2.1. Introduction. This section will give a characterization of the rotation algebra Jfy, 
6 rational, see for example [4] or [12], which we will use, together with some additional 
notation. 

2.2. Notation. Assume that 9 = p/q, where /?, q are coprime positive integers with 

1 < p < q — 1. Let p = e2m0, UJ = e~ and define the following q x q matrices: 

U0 = (6i
ipl)ij=o,..,q-X = 

1 0 0 ••• 0 

OpO ••• 0 

0 0 p2 • • • 0 

00 0 rfl~X 
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Vo = (<$f -1 (mod q) 
' IV=0, - ,<7-1 " 

ro = (*U- )ij=0,-q-i (mod^)^V=0'-«^-l 

0 1 0 

0 0 1 

0 0 0 

1 0 0 

1 0 0 -
0 0 0 -

0 0 0 -

• 0 0 
• 0 0 

• 0 1 

• 0 0 

0 0 0 

0 0 1 

0 1 0 

0 0 1 ••• 0 0 0 

0 1 0 ••• 0 0 0 

* - ^ - s 

1 1 1 

1 p p-

9 l p 2 "4 

1 

1 ffl-1 p2(^l) 

Now UQ, Vb, WQ are unitary and TQ is a self-adjoint unitary. Also 

, ( 9 - O 2 

and 

£// = e« Vj where k = (j — i) mod g 

<7 n=0 

So Uo and Vb generate Mq, the algebra of q x q matrices. Hence we can define four 
automorphisms of Mq, or£-, i = 0, 1,2 and 7o by: 

a0(U0)=V0\ a0(V0) = U0, 

ai(l/o)=f/o, a1(V0) = ^V0, 

a2(f/0) = uUo, a2(Vb) = V0, 

7o(f/o) = ^"1 , 7o(Vo) = V5"1, 

Then, if we use the convention that, for a unitary matrix U, Ad U denotes the automor­
phism of Mq given by (Ad U)(A) = U*AU, A G Mq, we have 

<Xi = AdWi, i = 0, 1,2 

and 
7o = Adr0 
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where 

wl = u0
p =(<V)*,=o q-\ 

1 0 ••• 0 
0 LU ••• 0 

0 0 ••• ufl~x 

with pp' = — 1 (mod q), 0 < p' < q, 

W2 = VQ
PP = o v 

" 0 0 • • • 0 1 0 - • 0" 

0 0 • • • 0 0 1 - • 0 

0 0 • • • 0 0 0 - • 1 

1 0 • • • 0 0 0 - • 0 

0 1 • • • 0 0 0 - • 0 

0 0 • • • 1 0 0 - • o. 

with pp" = 1 (mod q), 0 < p" < q, and It G Mt is the t x t identity matrix. 

DÉFINITION 2.2.1. The rotation algebra jfy is the universal C*- algebra generated by 
two unitaries u and v satisfying vu = puv where p = e2md and 0 < 6 < 1. 

LEMMA 2.2.2. The rotation algebra fy, 0 = p/q, where p,q are coprime positive 
integers, can be described as 

^ H / e C ( [ 0 , l ] x [ 0 , l ] , A ^ ) 
f(x,l) = a{(f(x,0J), 0 < * < 1, 

f(Ly) = a2(my)), 0<y<\ 

with pointwise multiplication and involution. 

[0, 1] x [0, 1] is folded up according to the arrows: 

(0,1) (1,1) 

(0,0) (1,0) 
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REMARK 2.2.3. Using this description the generators u and v of J3# correspond to the 
functions: 

U(x,y) = LfU0, 

V(x,y) = o/Vb for (x,y) G [0, 1] x [0, 1], 

where uJ = e~. 

3. Fixed point subalgebras. 

3.1. Introduction. In this section we will state the main theorem concerning the fixed 

point algebra of the square root of the flip. 

3.2. The square root of the flip. The flip a is the automorphism of !AQ defined by 
- „ - i a(u) - u , a{v) = v 

REMARK 3.2.1. In the description of fy given in Lemma 2.2.2, a corresponds to the 

automorphism 

(of)(x,y) = (To(f(l-x,l-yj), 

where GQ is the automorphism of Mq determined by CTQ = a i c ^ l o , t n a t is> ^0(^0) = 
uj-lU0\a0(Vo) = u;-lV0

l. 

The fixed point algebra of the flip, Jtfj, is given in the following theorem from [4]. 

THEOREM 3.2.2. If p,q are coprime positive integers, then %% is a subalgebra of 

the C* -algebra C{S2,Mq) of continuous functions from the 2-sphere S2 into Mq. The 

subalgebra is determined up to isomorphism as follows: there are four distinct points UJI, 

i = 0, 1, 2, 3 in S2 and to each point uoi is associated a self-adjoint projection Pi in Mq. 

The dimensions of Pi are as follows 

dimPo = 
^ if q = 0 (mod 2) 

^y1 if q=\ (mod 2) 

and 

dim ^; = 
l if 

i= 1,2,3. 
= 0 (mod 2) 

^ if q=\ (mod 2) ' 

J^ is roughly obtained by 'gluing' the triangle 

r = {(x,y) \0<x<l,0<y<\, y<x} 

along its edges according to the arrows in the picture. (For further details see [4].) 

(0,1) A (1,1) 

(0,0) (1,0) 
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1172 CARLA FARSI AND NEIL WATLING 

The points a;,, / = 0,1,2, 3, correspond respectively to the points (0,0), (^, ^), (1, ^), 

(£,0)ofr. 
Our goal is to obtain a description for the fixed point algebra of another automorphism 

of.% 

DEFINITION 3.2.3. The square root of the flip r is the automorphism of jfy given by 

r(w) = v_1, r(v) = u. 

The reason for its name is the (obvious) property r2 = a. 

LEMMA 3.2.4. In the description of 5\% given in Lemma 2.2.2 r corresponds to the 

automorphism 

(rf)(x,y) = To(f(\-y,xj), 

where To is the automorphism ofMq given by 

r0 = a\oco, that is ,T0(£/O) = ^ " ^ o ^ ^o(Vo) = U0. 

PROOF. We have 

I/(*,;y) = ufU0 = Lfr0(V0) = TO(^VO) = r0(V(l - ?,*)), 

(V(x,j))_1 =^--%- 1 =^1->'^1V0-1 =o;1 -yro(t/o)=ro(f/(l-y,J:)). 

We can now state our main theorem, the proof of which will be presented in Section 4 
and Section 5. 

THEOREM 3.2.5. Let 6 = p/q, with p,q coprime positive integers and let Q/, / = 
0, 1, 2 be any three distinct points of the 2-sphere S2. Then the fixed point algebra of 
the automorphism r, J^, is isomorphic to the following subalgebra of the O -algebra 
C(S\Mq) 

J^ = {fe C(S2, Mq) | /(Q,-) commutes with PJ, ij = 0, 1, 2}, 

where P[., ij =0, 1,2, are s elf-adjoint projections in Mq. The dimensions ofPl
i are given 

by the following table: 
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&0 ^ Q2 

q = 0 (mod 4) 2 
1 
4 

2 
4 p? 

0 2z£ 
4 

2 
4 ^ 

0 9 
4 

9 
4 Pi 

q = 1 (mod 4) 2 
2zi 

4 4 V 
0 2_I 

4 
2=1 

4 
P\ 

0 9 - 1 
4 

9-1 
4 P] 

q = 2 (mod 4) 1 
2 

<Z±2 
4 

2=2 
4 Pi 

0 2=2 
4 

2=2 
4 

P\ 

0 <7-2 
4 

9+2 
4 P} 

q = 3 (mod 4) 2 
2+1 

4 

2+1 
4 Pi 

0 2 ^ 
4 

2=3 
4 P) 

0 9+1 
4 

9+1 
4 P] 

COROLLARY 3.2.6. Let 6 = p/q, where p, q are coprime positive integers. Then the 
K-theory of 5^ is given by 

q=\ q = 2 q = 3 q = 4 q>4 

Ko(^) Z2 Z5 Z7 Z8 Z9 

KiW) 0 0 0 0 0 

PROOF. From Theorem 3.2.5, ^ is a trivial C*-bundle over the 2-sphere S2. By 
applying the formula for K^(J^) given in [5] we obtain the result. • 

4. Proof of Theorem 3.2.5: scheme. 

4.1. Introduction. This section will begin the proof of the main theorem 3.2.5. After 
some preliminary results we will give the scheme of the proof leaving the necessary 
calculations to Section 5. 

LEMMA 4.1.1. Let a,, / = 0, 1, 2 and To be the automorphisms of Mq defined in 2.2. 
Then 

a{a0 = a0a2 \ OCQOC\ = a2a0, a07o = ^ o « o , <*o = ^o, 

a\a2 = a2ûri, 7o«i = aiho, To«2 = oc2
xlo, 7o = 1-

PROOF. Straightforward calculation. • 

As a consequence of Lemmas 3.2.4 and 4.1.1 we obtain that a fixed point of r satisfies 

/(*,*) = (rf)(x,x) = r0(/(l -x,xj) = ala0(f(l -x,xj), 

f(x, 0) = {of){x, 0) = axa21Q(f(\ - x, 0) for x 6 [0, 1]. 

The latter equality involves a = r2 and thus is already present in the computation 
of ^ ( [ 4 ] ) . 
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1174 CARLA FARSI AND NEIL WATLING 

Hence it is possible to identify the fixed point algebra 5§ as the algebra 

^= \feC(T,Mq) 
f(x,x) =ala0(f(\ - * , * ) ) , 

/ ( x , 0 ) = a , a 2 7 o ( / ( l - x , 0 ) ) 

where T is the triangle 

T = {(X,y) G [0, 1] x [0, 1] | y < min{x, 1 - x}} 

The identification is by restricting/ G ̂  from the square to the triangle. 

REMARK 4.1.2. At the three points of T: (0,0), (\, \) and (±, 0), the values of/ G 2$ 
are restricted to a subalgebra of Mq described as follows: 

1. At (0,0):{AEMq \ a0(A) = A} since 

a, (/(0, 0)) =/(0, 1) = (r/)(0, 1) = r0(/(0, 0)) = a,a0( /(0, 0)). 

2. At (^, ^) : {A G M^ | aia0(A) = A} since 

/(ï.ï)-w(ï.5)"»(f(5.ï))-«.^(^)). 

3. At (±, 0) : {A G M^ | a27o(A) = M since 

/(i,o) = „V,(i,»)=^(/(.,I)))=TJ(/(i,)) 

= ^ ^ i / ( 2 ^ 0 ) = a i a 2 ^ a 1 ( / ( - , 0 ) ) = a 2 7 o ( / ( - , 0 ) ) . 

Here we have used the definition of r and Lemma 4.1.1. 

REMARK 4.1.3. For a unitary matrix W, the algebra 

{AeMq\ W*AW = A} 

is isomorphic to 

{A eMq I D*AD=A}, 

where D is the matrix of the eigenvalues of W. The latter algebra is clearly determined 
by the dimensions of the eigenspaces of W. 

REMARK 4.1.4. Since a$ = 1 and a0 = Ad Wo, W% = filq, where \i G T. By direct 

computation WQ = To hence [i is 1. Similarly (WoWi)4 = ff'p"Iq. Therefore the only 

eigenvalues of Wo and WQW\ = p~~^~ WQW\ are ±1 and ±/. 
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4.2. Scheme of the proof. J^ can also be described in the following way. Its spectrum can 
be obtained by folding the triangle T along the axis x = j and joining the corresponding 
edges. jÇ can then be identified with an algebra of functions from S2 into Mq, continuous 
except on a tree Y on S2, the one corresponding to the edges of T. 

f ^V 

(0,0) (1,0) 

(0,0) = (1,0) 

(5,0) 

To prove Theorem 3.2.5 it is still necessary to show the following: 

(1) The C*-algebra J^ is isomorphic to the C*-algebra 

«o(/"(0,0)) =/(0,0),a,or0(f(^ 5)) = /(5> 5), 
a27o(/"(5,0))=/(^,0). 

2 = /GC(SZ ,M,) 

(2) The dimensions of the projections at the three points (0,0), (\,\) and (^, 0) are as 
specified. 

To do (1) we will construct a map 77: S2 —• Uq/T = Aut(Mq) which is continuous in 
S2 — Y and has the following limits on the edges of the tree Y 

a\a0(a2lo) = a0
 l 

a0(a0
l) = 1 

f1 1) 
^2' 2} 

(0,0) = (1,0) 

(i,0) 

Moreover, to insure the triviality of the bundle over S2, we need the sum of the 
winding numbers £ r of 77: s 1—> U(s) around the three singular points (i.e., around Y) to 
be an integer multiple of q. The isomorphism 77 from *B to ^ is then given by 

(f]f)(s) = f}(s)f(s), fe<B,ses2-Y, 

where fj(s) = Ad U(s). 
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Along the edges of the tree Y, the values of rj: s »—> U(s) are given by 

t (M) 

r w 2 w w , = p-JLf-Wçl
x r0w2 

f (0,0) 

nw2 

i (̂ .0) 

To go (counterclockwise) around the circle sections we use the following paths 
1. ( \, 0): let PQ be the spectral projection of the self-adjoint unitary To W2 correspond­

ing to the eigenvalue - 1 . Define U(i) = (1 - P0) + e27Ti{t/2+tnQ)P0, with t G [0, 1], n0 G Z 
(cf. [4], (3.40), (3.41).) Note that U(0) = 1 and U(\) = 1 - 2P0 = F0W2 as required. 

2. ( | , | ) : let go, Gb Qi be the projections onto the — 1, +/, — / (resp.) eigenspaces 
~ -P'P" -P'P" 

of WQW\ = p 4 WoW\ (cf. 4.1.3). (We introduced the phase factor p 4 to normalize 
WoWx.) 
Then U(t) = r0W2W(t), where 

WW = 1 - (GO + Gl + G2) + ^27r/(r/2+m»r)Go + ^ ' W ^ i O g j + ^27r«-(3f/4+m20Ô2ï 

with f G [0, 1], m/ GZ,/ = 0,1,2. Note that W(0) = 1 and W(\) = W^W\. 
3. (0,0): let #o7 #1, #2 be the projections onto the —1, +/, —/ (resp.) eigenvalues of 

W^.Then 

U(t) = 1 - (R0 +/?i +/e2) + é>'(1T£+w-r))/?o + e2™<ir£+<i<1-'»fl1 

with f G [0,1], £, G Z, / = 0,1,2. Note that U(0) = W0\ U(\) = 1. 
To compute Xy (i.e., the winding number of 77 around Y) we first compute the winding 

number Z(, 0) of the path U(t) = (1 - P0) + e2iri(t/2+tno)PQ, t G [0, 1], around ( | , 0): 

Z(i.0) = ^ [T r a c e( l n W ) - l n ^(0))] = ^Trace[27ri(^ + n0)p0 ~ o] 

= ( -+n 0 jd im/ > o, 

since 
ln U(t) = ln[l + ( -1 + e2^+no)t)P0} = 2ixi(- + n0)tP0. 

Analogously one computes the winding numbers around (5,5) and (0, 0). Then we have 

+ tt0jdimPo+ ( - +mo) dim Go + (7 + m i ) d i m Q i + (7 + m 2 j dimQ2 

( - + £0) dimPo + ( - + U) dim/?! + ( - + £2) dim/fe] + V^f- + *o U 
Aq 
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The last term in ZY came from unwinding the phase factor p^*~. In fact, the path 

c{t) = e^pp'p"it-\)^itk^ t G [Q? 1 ] ? ko e z c ( Q ) = p^f^ c ( 1 ) = ^ 

has winding number 

Trace (pp'p" \ 
[lnc(l)-lnc(0)] = P ^ - + ^ o U . 2717 V 4g 

To finish the proof of Theorem 3.2.5 we need to compute the dimension of the spectral 
projections of Wo and WoW\ (as the ones of ToW2 are given in [4]) and to show that 
Sy is an integer multiple of q for some choice of the integer parameters no, ko, m,, £i9 

i = 0 , l ,2 . 

5. Proof of Theorem 3.2.5: calculations. 

5.1. Introduction. Here we will present the necessary calculations to complete the proof 
of theorem 3.2.5. We will consider 4 cases depending on the congruence of q mod 4, but 
first detail some results from analytic number theory which we will use. 

THEOREM 5.1.1 ([11]). LetGip, q) = Zq
m=o e2lTipm2^ wherep,qare integers, If(p, q) = 

1, then: 

1. G(p,l)= l,G(p,2) = 0and 

(l + iP)2a/2 for a even, a > 0, 
C(r> 2a} — 

| e™p/*2(a+l)'2 for a odd, a > 1. 

2. For q odd G(/?, g) = (p\q)G(l, q), where (/?|g) is the Jacobi symbol. 
3. For all q, G(l,q) = "Eqy/q , where 

^ . ( • • O - i ^ P 
1 + / q = 0 (mod 4) 

1 q = 1 (mod 4) 

0 (7 = 2 (mod 4) 

/ q = 3 (mod 4) 

4. (*b *2) = 1 => G(p, *i*2) = G(pkuk2)G(pk2, ki). 

COROLLARY 5.1.2. ///?, g are positive integers and (p1q)= 1 //z^n 
i) G(p, g) = (p|#)G(l, #) */<? w odd, 

//J G(p, q) = 0ifq = 2 (mod 4), 

' ( 1 + ^ 0 / ( 1 + 0 if a even, 
eni(p-\)r/4 if a Odd, 

ifq = 0 (mod 4), where q = 2ar with r odd. 

LEMMA 5.1.3. Let Wo be the matrix defined in 2.2 then, 

Tmœ(Wo) = ^FG(p,q). 

G(p,q) = (p\r)G(\,q)^ /(p_1)r/4 
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PROOF. W0=j=q(p
l%.So 

Trace(Wo) = 4 = E f = 4 = E ^ ' ^ = 4 = G ^ *>• 

LEMMA 5.I.4. Let WQW\ be the matrix defined in Remark 4.1.4 then, 

|Trace(ttWi)|2 = 

0, ifq = 0 (mod 4), 

1, ifq=l (mod 4), 

2, ifq = 2 (mod 4), 

1, ifq = 3 (mod 4), 

PROOF. 

Hence 

Trace(UWi) = Traced * w0W\) 

Trace(ttWi) 
-p p 

= P * 
q-\ 

-r £ Pk^ 
\Ja k=0 

q-\ 

Vq k=oe 
'Xixipk2 j qVlixik I q 

| Trace(ttWi)|2 = -J2 e2lxipkl Iq+2lTlk Iq • £ e-2^ipt2/q-2irif./q 
q k=o ?=o 

= - Ë E 6 > ^ + 2 f ) + 1 ] / « , where J = k - I 
q d=o i=o 

_ _ sr^ lixipd /q+2nid/q sr^ AiridpC/q 

q d=0 1=0 

Now the inner sum is zero unless q\2dp, or q\2d as (/?, q) - 1, in which case it is q. 
If q is odd then d = 0 is the only non-zero contribution and the double sum is equal 

tog. 
If q is even then d = 0, q/2 give non-zero contributions and the double sum is equal 

toq(l-ipq). 
These facts give the result as stated. • 

LEMMA 5.1.5. 

Trace(WWi)2 2 JO, ifq even , 

1, ifq odd. 
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PROOF. (W 0 WI) 2 = p^-ToW2W\ and the trace of this matrix is given in [4] 
(Wi i in the notation of that paper). • 

5.2. q = 0 (mod 4). 

REMARK 5.2.1. For the calculations that follow it is convenient to write G(/?, q) = 
iAy/q{ 1 +/), where A G {0, 1, 2, 3} depending on/? and q, rather than the more complicated 
expression given in Corollary 5.1.2. 

PROPOSITION 5.2.2. The dimensions of the four eigenspaces of Wo are given in the 
following table. 

A = 0 A = l A = 2 A = 3 
q+4 q q q+4 

eigenvalue-1 \ ^ & f 
g q—4 q—4 
4 4 4 

i 2Z* 1 1 

eigenvalue +1 

eigenvalue — ] 

eigenvalue +/ | 
eigenvalue — / 4 4 4 4 

PROOF. Let 

m = dim +1 eigenspace of Wo 

n = dim — 1 eigenspace of Wo 

u = dim +/ eigenspace of Wo 

v = dim — / eigenspace of H^ 

Since q is even Trace(To) = 2. Now To is a self adjoint unitary so the dimension of 
the +1 eigenspace of To is ^ and the dimension of the —1 eigenspace of r 0 is ^ . 
However WQ = To, therefore 

q+2 , q-2 
(*) m + n= and u + v = —-—. 

We will now demonstrate the result for A = 0. The other cases may be shown in a similar 
fashion. If A = 0 thenTrace(W0) = ^G(p, q) = 1 +/. ButTrace(W0) = (m-n) + i(u- v), 

(**) so m — n = 1 and u — v = 1. 

Solving (*) and (**) gives the result. • 

PROPOSITION 5.2.3. The dimensions of the four eigenspaces of WoW\, are all equal 
to qj\. 

PROOF. Let 

m - dim + 1 eigenspace of WoW\ 

n - dim — 1 eigenspace of WoW\ 

u - dim+/ eigenspace of WoW\ 

v = dim — / eigenspace of WoW\ 
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Then from Lemma 5.1.4 

(m - nf + (u - v)2 = 0, 

that is,m = n and u = v. From Lemma 5.1.5, 

(m + n) — {u + v) = 0 

and we also have 
(m + n) + (u + v) = g. 

Solving these equations gives the result. • 

REMARK 5.2.4. This proves the dimensions of the projection at the three distinct 
points are as given in Theorem 3.2.5. 

It remains to be shown. 

PROPOSITION 5.2.5. Zy can be made an integer multiple of q. 

PROOF. Using Proposition 5.2.2 and 5.2.3 together with dim(P0) = § [4], we have 

(l
+f W<?/4,A = 0, 

(PP'P 

4 
q/4, A = 0 ,3} (1 \ jq/4, A = 2, 3 

4 + M 1 2=1, A = 0,1 

(7/4, A = 0,1 

. 4 ' 

Putting mi = It i = 0, 1, 2 we have 

< + *){'£ *.!., V 4 * 
+ k0\q 

*-G-V>-{ÎU:Î:"} 
0, A = 2, 3 

( i+mO, A = 0, 1 
+ < ' ! - ~ ^ * - n i f + 1 ( |+m 2 ) , A = 2, 3 

0, 
3 
4 

A = 0,1 
+ — — + £o<7-

We now need to observe the following facts. 

(i) If p = 1 (mod 4) then/?/?'//' = 3 (mod 4). 
(ii) If/7 = 3 (mod 4) then/?////' = 1 (mod 4). 

These follow easily from the definitions of p' and/?", given that/?,/?7 and/?" are all odd 
in this case. We also note that 

A = 0, 2 : 

A = 1,3 

p = 1 (mod 4), 

> p = 3 (mod 4). 

This follows by studying the formula for G(/?, q) given in Corollary 5.1.2 together with 
that in Remark 5.2.1 in more detail. 
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We will now demonstrate the case A = 0. The others follow similarly. So Zy = 

(\ + n0)q/2 + (\ + m\) + EEf- + k0q. However, by the above, pp'p" = 3 (mod 4) so 

PP'p" 3 . . 
—-— = - + r, where t is an integer. 

Therefore 

-= ( - + r c o ) 4 / 2 + ( - + m i ) + - + r + £0<7 

= - + /ÎOX + 1 + m\ + t + A;ô . 

Choose m\ = —( | + 1 + 0? «o = 0 and we are finished. 

5.3. $ = 1 (mod 4). 

PROPOSITION 5.3.1. The dimensions of the four eigenspaces of Wo are as follows: 

q+l+2(p\q) 
dim + 1 eigenspace 

dim —1 eigenspace = 

dim ± / eigenspace 

4 
q+l-2(p\q) 

4 
q - \ 

4 

PROOF. Trace ( r 0 ) = 1, Trace(W0) = -feGfo?) = -k (p |? )G( l , ? ) = (p\q). Now 

argue as in Proposition 5.2.2. 

COROLLARY 5.3.2. 

Dtt(Wo) = (p\q)(-i)isTî. 

PROOF. 

q+\-2(p\q) q-\ 2(\-(p\q)) (q-\) 

Det(Wo) = ( - l ) " ^ - = ( - l ) - ( - l ) ^ — = (-i) — (p\q). 

PROPOSITION 5.3.3. The dimensions of the four eigenspaces of W^W\ are as follows: 

q+ 1 + 2 V 
dim + 1 eigenspace 

dim — 1 eigenspace = 

dim ± / eigenspace 

where V = (p\q)(—iYpp . M?te /7z£tf s/fice g /s 6>dd a£ /east one' ofp,p' andp" is even so 

V = ±\. 

4 
q+ 1 - 2 V 

4 
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PROOF. This is an adaptation of Schur's proof of the formula for G( 1, q), (see [13], 
p. 207 for example). 

We know 

| Trace(HWi)|2 = ^ bY Lemma 5.1.4 and 

Trace(WWi)2 = 1, by Lemma 5.1.5. 

So if m, n, w, v are defined as the dimensions of the +1, — 1, /, —/ eigenspaces respec­
tively we have the following 

(m — n)2 + (u — v)2 = 1. 

Hence either „ or ~, , . In either case 
{ u— V = 0 J l M — V = ± 1 J 

Trace(WoWi) = Vr\ with V = ±1 and rj = 1 or /. 

We therefore have the following equations 

(1) m + n + u + v = q 

(2) m — n + i(u — v) = Vr\ 

(3) m — n — i(u — v) = Vr\~ 

(4) m + n — (u + v) = 1 

[(1) + (4 ) ] - [ (2 )+ (3)] gives 

4n = q+ 1 — V(ri + r/_1). 

Therefore r\ - 1, since n is an integer, and 

4 + 1 + 2 V 
m = 

4 
<?+ 1 - 2 V 

It remains to show that V = {p\q)ippp . To do this we will examine Det(WoWi). 
Now 
But 
NowDet(W0V¥i) = ( - l ) 2 ± 1 ^ =(- l ) £ 4 i ( - l ) 2 i V : i =(-/)£y iV. 

Det(WWi) =Det(p—W0Wl) 

= pZJr1^DQt(W0)Da(Wl) 

= (-ir'p"(p\q)(-i)^. 

Hence V = (p\q)(-iyp'p". 

It remains to show 

PROPOSITION 5.3.4. XY can be made an integer multiple ofq. 
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PROOF. Using Proposition 5.3.1 and 5.3.3 together with dim(P0) = ^ Î L we have 

1 . \ , iWo , (X \(q+l-2V\ , (\ t \ ( q - \ ) ZY = (\+"o)(q ~ D/2+ (1 +m0) f *
 + ^ 2 V] + Q +"»i)! 

4 

+ - + m2 
4 

/3 ^ f a 
+ 

Putting mi = it i = 0,1,2 we have 

/i ^ ( g - i ) ( v - ^ k ) ) / i \ ^ P " , 
ÏY=(-2+n0)— ^ + m o j + _ _ + A M . 

CASE 1 : pp'p" = 0 (mod 4). So V = (p\q) and 2E^f- = <£^ +1, where f is an integer. 
Therefore 

1 , x ( i - 1 l ) fa-l) 

-( l+n 0) + *o? + r. 

f l \(q-l) (q-l) 

( 9 - 1 ) , 
2 

However, (q — l ) /2 and <? are coprime thus Zy can take any integral value. 

CASE 2: pp'p" = 2 (mod 4). So V = -(p\q) and ^f- = ^ + t, where f is an 
integer. Therefore 

= ^M+no^}l+m(p\q)+t+koq, 

and (q — l ) /2 and (7 are coprime so we are finished. 

Alternatively: let mo = —T^-T—, no = 0 then Ly = k$q. m 

5.4. 4 = 2 (mod 4). 

PROPOSITION 5.4.1. The dimensions of the four eigenspaces of Wo are as follows: 

q + 2 
dim=bl eigenspace = 

dim ±/ eigenspace = 

4 
* - 2 

4 

PROOF. Trace (r0) = 2, Trace (W0) - 0. Now argue as in Proposition 5.2.2. 

COROLLARY 5.4.2. 

Det(W0) = ( - l ) ^ 
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PROPOSITION 5.4.3. The trace of W$W\ is determined up to sign by the congruence 
ofpp'p" mod 4. 

If pp'p" = 1 (mod 4) then Trace(WoWi) = ±(1 - /). 

If pp'p" = 3 (mod 4) then Trace(UWi) = ±(1 + 0-

Note that/?,/?' and//' are all odd as q = 2 (mod 4) so these are the only possibilities. 

PROOF. | Trace(W0Wi)|2 = 2, by Lemma 5.1.4, so (m — n)2 + (u — v)2 = 2 where 
m, n, M, v are defined as usual. 

Therefore m — n = ±1 and u — v = ±1 . Let Trace(WoWi) = U + iV where U = ±1 , 
V = ±1. Then 

m + /i + w + v = g, 

m + n — u — v = 0, since Trace(WoWi)2 = 0, 

m — AT + /(w — v) = U + iV. 

r™ r q+2U q-2U q+2V q-2V T T 

Therefore m = iL^—, n = -̂4—, u = iL^—, v = -̂4—. Hence 

Det(HWi) =(-\)^(i)^(-i)^ 

= (-1) 2 '2 

However 
Det(HWi) = De t fp^ - W0W\) 

= p^*Det(W0)Det(Wi) 
= (-iyp'p"(~\)^.(-l)^ 

i) pp'p" = 1 (mod 4) 

q = 2 ( m o d 8 ) , - / - ( - l ) ^ = 
u+v 

q ~ 6 (mod 8), +/ • (—1) 2 = +/ 

So in either case, that is q = 2 (mod 4), ^±^ = 2/Î, where AI is an integer. 
But f/ = =bl,V = =blsowe must have n = 0 and £/ = — V. Therefore we have two 
possibilities Trace( Wo W\) = ±(1 — /). 

ii) pp'p" = 3 (mod 4) : 

q = 2 (mod 8), - / • ( - 1 ) ^ = +/ 

q = 6 (mod 8 ) , / - ( - l ) ^ = - / 

So in either case, ^y- = 2n + 1, where rc is an integer. 
But U = ±1 , V = ±1 , henceji = 0 or - 1 and £/ = V = 1 or U = V = - 1 . Therefore 

have two possibilities Trace(WoWi) = ±(1 + /). 
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COROLLARY 5.4.4. The dimensions of the four eigenspaces of WoW\ are determined 
as follows: 

q + 2U 
dim+1 eigenspace = 

dim — 1 eigenspace = 

dim +/ eigenspace = 

dim — / eigenspace = 

4 
q-W 

4 
q + 2V 

4 
q-2V 

where 

withU,V=±\. 

U=-V if pp'p" = 1 (mod 4) 

U = +V if pp'p" = 3 (mod 4), 

REMARK 5.4.5. This does not determine the eigenspaces uniquely however for The­
orem 3.2.5 it is sufficient. 

PROPOSITION 5.4.6. Zy can be made an integer multiple ofq. 

PROOF. Using Propositions 5.4.1 and 5.4.3, Corollary 5.4.4 together with dimCP0) = 
\ [4] we have 

1 
^ = ( 2 + " ° ) f + G + m 0 ) 

(q-2U) | / l 
4 V4 

/ I \{q + lV) (5 \ Aq~2V) 

(± + <. ^ — + W V 4 

Putting nii = i,i = 0,1,2 we have 

1 \ « i\ \(U+l) i\ 

+ l ^ + * o k 

/e 

4q 

(V-I) pp'p" 
+hq 

CASE 1 : pp'p" = 1 (mod 4). So U = -V and £E^ = ^ ^ + f where t is an integer. 

Therefore 

^ 1 ,q / I \ ( - V + l ) / l \ (V+1) 

-3 \ ( V - 1 ) ( 9 - D 
U + m i ) -

[-+m2)-

= (1 +A2o)- + ( m 0 - m 2 ) 

2 4 + f + *o? 

( V - l ) . (V+l) 
• + m\- + t + koq 

Regardless of the sign of V, no, mo, m\ and mi can be chosen so that 

q ( V - l ) (V+l) 
(1 + n0)- + (m0 - m2)—-— + mx — - — + t = 0 

hence Zy is a multiple of q. 
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CASE 2: pp'p" = 3 (mod 4). So U = V and ^f = ^ + t where t is an integer. 
Therefore 

(V+l ) / l A(V+1) 
' mi *, . ( ! •*)§- ( + . . ) ^ + (I + 2 

3 \ ( V - 1 ) (4+1) 
T + ™2 J — - — + —-— + t + k0q 
q (V+l) ( V - l ) 

= (1 +^o)^ +(wi - r a 0 ) — (m2+ 1 ) — - — + t + k0q, 

which is the same as Case 1 so we are finished. 

5.5. q = 3 (mod 4). 

PROPOSITION 5.5.1. The dimensions of the four eigenspaces of Wo are as follows: 

q+\ 
dim±l eigenspace = 

dim +/ eigenspace = 

dim — / eigenspace = 

4 
g - l + 2 ( p [ g ) 

4 
4 - 1 -2(p\q) 

4 

PROOF. Trace(ro) = 1, Trace(H^o) = (p\q)i. Now argue as in Proposition 5.2.2. • 

COROLLARY 5.5.2. 

Det(Wo) = (p\q)(-i)^ 

PROOF. 
q+\ q-\+2(p\q) q-\-2(p\q) 

Det(Wo) = (—1)—(0—^—(—0—^— 
= ( - 1 ) 2 ( - ; ) 2 =(p\q)(-i) 2 . 

• 

PROPOSITION 5.5.3. The dimensions of the four eigenspaces of WQW\ are as follows: 

dim±l eigenspace -

dim +/ eigenspace = 

dim — / eigenspace = 

vWiere V = (p|^)(-iT^ , / . 

PROOF. Following the same argument as in Proposition 5.3.3 and using the same 
notation we see rj - i in this case, so 

9 + 1 
m = n = 

q-
4 

- 1+2V 

q-
4 

- 1 - 2 V 

u = 

4 
<?- 1+2V 

~4 
q-l-2V 
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and V = (p\q){-ifp'p" by considering Det(WbWi). • 

PROPOSITION 5.5.4. Ey can be made an integer multiple ofq. 

PROOF. Using Propositions 5.5.1 and 5.5.3 together with dim(P0) = (q - l ) / 2 [4], 
we have 

1 \(q-l) (\ \(q+D (\ \(q-l+2V) 
' " i . . . . i + m j 

/ I \ ( ^ - i j / I U ? + i ) 
= (2+noJ-^--l2+moJ-4~ + V 4 - - y 4 

3 \{q-\-2V) 
+ m2 

+ 

4 V 4 
3 Jq-l+2(p\q)) 

( * ' » ) ! 

( • ' 0 : 
4 

Putting m, = li, i = 0,1,2 we have 

_ / l \ ( ? - l ) / l \{V + (p\q)) (3 \{V + (p\q)) pp'p" 
& =(2+ B o)—+(4+ m i) 2 - ( Ï H i -2— i + - r + * M -

CASE 1 : /?//// ' = ° ( m o d 4 ) . So V = (p\q) and ^ ^ = ̂ ±U + f, where t is an integer. 
Therefore 

( ^ - ( P k ) ) , , v , 7 (q-l) 
- i L _|_ (p\q)(m\ — m2) + t + koq + «o 

Let m2-mi = [(q fq)) + f]/(p|?) and n0 = 0, then Z r = £0<?. 

CASE 2: pp'p" = 2 (mod 4). So V = -(p\q) and ^f- = &zl> + fj where f is an 
integer. Therefore 

y = V2 J — 2 — — 4 — + r + ÂW 

= ( l + « o ) - ^ 2 — + ' + *<)$ 

Using the fact that (q — l ) / 2 and (7 are coprime we are finished. • 

This completes the proof of Theorem 3.2.5. 

6. The crossed product. 

6.1. Introduction. Here we will give a characterization of the crossed product algebra 

ty Xr Z4. 
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6.2. The crossed product algebra. 

THEOREM 6.2.1. Let 6 = p/qy withp, q coprimepositive integers and let Q,-, / = 0, 1,2 

be any three distinct points of the 2-sphere S2. Then the crossed product algebra !AQ X T Z4 

is isomorphic to the following subalgebra of the C*-algebra C(52, M^q) : 

5\Q X r Z4 = {/ G C(S2, MAq) I f(Sli) commutes with p(, ij = 0, 1, 2 . } , 

where Pj., ij = 0 ,1 ,2 , are self-adjoint projections in M$q with Pl
0 = P^ = 0. The 

dimension of PQ is 2g, while the dimension of P[, / = 1, 2,7 = 0, 1, 2, is g. 

PROOF. Let z be the canonical unitary in J3# xT Z4 implementing r. Then the left 

regular representation of 

Ao *TZ4 

is given by 

%e 3 A i 
T(A) 

r\A) 

T\A) 

ZA3z\ 

" 0 0 0 1 " 
1 0 0 0 

0 1 0 0 

0 0 1 0 

If we denote by 

T(A) = 
r(A) 

T\A) 

T\A) 

, A G 4 

and 

Z = 

0 0 0 1 

1 0 0 0 

0 1 0 0 

0 0 1 0 

we have that 

9k Xr Z4 = {G = T(A) + T(B)Z+T(QZ2 + T(D)Z3 | A, B, C, D G J^} , 

where a generic element of !AQ x r Z4 has the form 

G = 

A D C B 

r(B) r{A) r(D) r(C) 

T2(C) T2{B) T2(A) T2(D) 

T\D) T\C) T3(B) T\A) 
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REMARK 6.2.2. If we change coordinates in M4 by means of the automorphism 

Ad ft where E = -
2 

1 1 1 1 

1 - 1 - 1 1 

1 1 - 1 - 1 
1 - 1 i -i 

we have 

Z = (Ad E)(Z) = 

and 

(Ad£)(G): 

Loft £ift £3 ft X2F3 

Xift Xoft £2 ft £3^3 

E2ft £3 ft ^oft Lift 

£3 ft ^2ft ^ i f t ^oft 

where we put 

ft = A + £ f C + D, 

ft = = A -B + C - A 
F2 = A + /# -- C - i D , 

F3 = A--iB - c + ;D, 

So = 1 + T 4 • r 2 + r 3 , 

£1 = = 1 2 
-T + T ~ - r 3 , 

I 2 = 1 + IT ~ r 2 - - / r 3 , 

1 3 = : 1 -- IT ~ - r 2 + /T3. 

Therefore if we denote by 

<§(<E) = {A G Jfy I r(A) = £A}, £ = - 1 , ±Z, 

it follows that a generic element G of fy x r Z4 has the form 

Ao ft Q A) 
5, A, Di C, 
D2 C2 A2 ft 
C3 D3 ft A3 

with 

A, G ^T, ft 6 ^ r ( - l ) , G E S%{i), Dj G ^ T ( - 0 , / = 0, 1, 2, 3. 
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REMARK 6.2.3. In the representation given in 6.2.1 of jfy x r Z4 the projection P [15] 
such that P(!A$ XT Z4)P = J^, is given by 

P = 

1 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

We can identify J^(£), *E = — 1, ±i, in the following way (cf Section 4) 

f I f(x, x) = <Ea\a0(f( 1 — JC, x)) 
Jti(<E)=\feC(T,Mq)\

 V > ; x 

where 7 is the triangle 

T= {(x,y)e [0,1] x [0,1] | v<min{;c, 1 - J C } } . 

Therefore 

xTZ4^ lfeC(T,M4q) 
f(x,x) = (criao ® AdZ)(/(l - * ,* ) ) 1 
/ ( x , 0 ) = ( a 1 a 2 7 o ^ ( A d Z ) 2 ) ( / ( l - x , 0 ) ) J ' 

The fiber over each point of T is M4q with the exception of the three points QQ = (^, 0), 
Qi = (±±) ,Q 2 = (0,0) where we have the subalgebras 

{A £ M4q I A(Ut 0 ZY>) = (Ut ® Zr')A}, i = 0, 1,2, 

where 7, = 
2, / = 0 
1, ' = 1 , 2 , and 

^o = r0w2(ata0), 
f / ^WV^atQi ) , 

i/2 = W i ( a t f i 2 ) . 

This proves that the dimensions of the projections Pj
i at the points Qy, i = 0, 1,2, are as 

stated. We can now proceed as in the proof of Theorem 3.2.5 to show that the bundle 
over S2 is trivial. Define a map f): S2 — Y —> M4q by 

ri = r]( 

where 
T:S* —>U4/T = AutM4 

which goes from I4 to Z2 on the circle around (^,0), from Z2 to Z on the circle around 
( | , | ) , and back from Z to 74 on the circle around (0,0). 

Since the winding number of the map T is zero, by the same argument used for J^ 
(see Sections 4 and 5) we can prove that the winding number of fj is an integral multiple 
of Aq. 

This finishes the proof of Theorem 6.2.1. • 
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