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ABSTRACT

We generalize the work of Bertolini and Darmon on the anticyclotomic main conjecture
for elliptic curves to modular forms of higher weight.
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Introduction

This is the continuation of our previous work [CH12| on the analytic side of Iwasawa theory
for modular forms over the anticyclotomic Z,-extension of imaginary quadratic fields, i.e. the
construction of p-adic L-functions and explicit interpolation formulas. The purpose of this paper
is to prove a one-sided divisibility relation towards the main conjecture in Iwasawa theory for
modular forms over anticyclotomic Z,-extensions by generalizing the proof of Bertolini and
Darmon [BDO05] for elliptic curves. To state our result precisely, we introduce some notation. Let
f € Sk(Tp(N)) be an elliptic new form of level N with g-expansion at the infinity cusp,

= Z an(f)qn

n>0

Let K be an imaginary quadratic field with absolute discriminant Dy . Decompose N = NtTN—,
where N7 is only divisible by primes split in K and N~ is only divisible by primes inert or
ramified in K. In this paper we assume that

N7 is the square-free product of an odd number of inert primes. (ST)
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Let p be a distinguished rational prime such that
ptNDg.

Fix an embedding ¢, : Q — C,. Let E = Q,(f) be the Hecke field of f in C,, i.e. the finite
extension of Q, generated by {a,(f)}.. Let O be the ring of integers of E and F be the residue
field. Henceforth, we assume that

f is p-ordinary, (ord)

i.e. the pth Fourier coefficient a,(f) is a unit in O. Let p; : Gq = Gal(Q/Q) — GL2(E)
be the p-adic Galois representation attached to f. We have det p; = eh=1 where ¢ : Gq —> Z,
is the p-adic cyclotomic character. We consider the self-dual Galois representation

p} = pr@e® M2 Gg - GLy(E). (0.1)

Let Vi = E®? be the representation space of p’}. By the ordinary assumption for f, there exists a
unique rank-one Gq,-invariant subspace F;r V; C Vy on which the inertia group of Gq, acts via
ek/2. We shall fix a Gq-stable lattice Ty C V; once and for all. Let Ay := V}/T} and let FiAfbe
the image of F,/Vy in Ay. Let K be the anticyclotomic Zy-extension of K. Let T' = Gal(Koo/ K)
and let A = O[I'] be the one-variable Iwasawa algebra over Q. In this paper we are interested in
the A-adic minimal Selmer group Sel(K, Af) for p}‘c. Recall that for each algebraic extension
L over K, the minimal Selmer group Sel(L, Ay) is defined by

Sel(L, Af) := ker{Hl(L,Af) — [[H (Lo, Ap)x [ H (Lo, Af/F;Af)},

vip vlp

where v runs over places of L and L, is the completion of L with respect to v. It is well known
that the Pontryagin dual Sel(Koo, Af)" of Sel(K o, Af) is a finitely generated A-module.

On the other hand, in [CH12, Theorem A] we construct a theta element 65, € A obtained
by the evaluation of a p-ordinary definite quaternionic modular form at Gross points, and define
a complex number 2y y- € C* attached to (f, N7) such that for every finite-order character
X : I' = ppee of conductor p”, the anticyclotomic p-adic L-function Ly(Ke, f) := 0% satisfies
the following interpolation formula:

k:>2 L(f/K,x,k/2)

WL(E ) =T i

5 ep(f, )2 "o (f) (P Dk )* - uk\/Dr, (0.2)

where oy, (f) is the p-adic unit root of the Hecke polynomial X2 —a,(f)X +p*~1, ug = #(0%)/2
and ey (f, x) is the p-adic multiplier defined by

1 if n >0,
ep(f,x) = § (1= x(0)p* =22y ()= (1 = x(@)p* 2 (f)71) if n.=0 and p = pp is split,
1—p*2a,(f)2 if n =0 and p = p is inert.

In general, this complex number {24 y— belongs to {2y - O, where {2 is Hida’s canonical period.
Recall that
I e A

! np(N)
where || f||p () is the Petersson norm of f and 7;(NNV) is the congruence number of f among
forms in Si(T'o(N)).
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The main aim of this paper is to prove under certain hypotheses a one-sided divisibility result
towards the anticyclotomic main conjecture asserting an equality between the characteristic
power series charySel(Ks, Af)¥ and the p-adic L-function L,(K«, f). To describe our
hypotheses explicitly, we need to introduce some notation. Let p; be the residual Galois
representation of py. Throughout, we assume that the prime p satisfies the following hypothesis.

HyporhEsIS (CRT). (1) p > k+1 and #(FY)*1 > 5.

(2) The restriction of s to the absolute Galois group of Q(+/(—1)P—1/2p) is absolutely
irreducible.

(3) py is ramified at £ if either (i) | N~ and ¢2 =1 (modp) or (ii) £ || N* and £ = 1 (mod p).

(4) py restricted to the inertia group of Qy is irreducible if 2 | N and £ = —1 (mod p).

We will further assume that
a,(f)* # 1 (modp) if k=2 (PO)
Remark 1. (1) Under the hypothesis (CR™), it is proved in [CH12, Proposition 6.1] that
Qpn- =u-Qf for some u € O

if we further assume that py is ramified at all primes dividing N ™.

(2) (CR"2) implies that the definition of the Selmer group Sel(K, Af) does not depend on
the choice of the lattice T7.

(3) Note that (PO) is indeed equivalent to saying that a,(f)? # 1 (mod p). Moreover, it
implies that e, (f, 1) # 0 (mod p), where 1 is the trivial character. When f is attached to an elliptic
curve over Q, the same hypothesis is also used in [BD94, Assumption 2.15 and Proposition 2.16].

(4) Since N~ > 1 is square-free, f cannot be a CM form, and hence the hypothesis (CR™)
holds for all but finitely many primes p (but it is not known if there are infinitely many ordinary
primes for a given modular form f).

THEOREM 1. With the hypotheses (CR™') and (PO) for the prime p, we have
charsSel(Koo, Af)” D (Lp(Koo, f))-

Remark 2. (1) For the case k = 2, this theorem was proved by Bertolini and Darmon [BDO05]
with the hypotheses for f being p-isolated and the maximality of the image of the residual
Galois representation py. The former assumption was removed by Pollack and Weston [PW11].
We remove the assumption on the image of the residual Galois representation by looking carefully
into the Euler system arguments in [BD05].

(2) It is expected that the other divisibility follows from the work of Skinner and Urban [SU14]
on the three-variable main conjecture for f together with the generalization of Vastal’s result on
the vanishing of p-invariant of the p-adic L-function L,(K, f) [Vat03, CH12].

We obtain the following immediate consequence of Theorem 1 and [CH12, Theorem C].

COROLLARY 1. With the hypotheses in Theorem 1, the A-module Sel(K,, Ay) is cotorsion and
its p-invariant vanishes.

Combined with control theorems of Selmer groups and the interpolation formula of
L,(Kw, f), the above theorem yields the following consequence.
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COROLLARY 2. With the hypotheses in Theorem 1, if the central L-value L(f/K,k/2) is
non-zero, then the minimal Selmer group Sel(K, Ay) is finite and

(Lt

Fitto(Sel(K, Ay)) - [] Tame(f) 2 Qs N-

ON+

Gk
tor

where Tamy(f) = Fitto H' (K™, Tf), ¢ are the local Tamagawa ideals at £ | NT.

The reader might be aware of the missing local Tamagawa ideals at ¢ | N~ in view of the
Bloch-Kato conjecture. This discrepancy is due to the complex number ¢ y— being different
from the canonical period Qs in general. When k£ = 2 and N is square-free, it is proved in [PW11]
that the ratio Q2 y- /€y is precisely a product of local Tamagawa ideals at £ | N .

The proof of Theorem 1 relies on the existence of an Euler system together with the first
and second explicit reciprocity laws a la Bertolini and Darmon for the Galois module 7. This
is a generalization of the construction in [BDO05] for elliptic new forms of weight two. To explain
the main idea of the construction of the Euler system, we introduce some notation. Let @ be a
uniformizer of O and let A,, = A ®o O/w"O for a positive integer n. Let Ty,, = Ty/w"Ty and
Afp = ker{w" : Ay - Ay}. Following Bertolini and Darmon, we construct by the technique
of level-raising the Euler system &, for each n arising from Heegner points in various Shimura
curves with wildly ramified level at p. This Euler system &, is a collection of norm-compatible
cohomology classes kp(€)y, € HY (K, Tt,) for Koo/Ky,/K indexed by (¢, D), where ¢ is an
n-admissible prime for f (Definition 1.1) and D = (A, g) is an n-admissible form, a pair consisting
of A = N~ -5 with S a square-free product of an even number of n-admissible primes and a
weight-two p-ordinary eigenform ¢ on the definite quaternion algebra of discriminant A such
that Hecke eigenvalues of g are congruent to those of f modulo @w” (Definition 4.1). To each
n-admissible form D = (A, g), we can associate a finitely generated compact A,-module Xp, the
Pontryagin dual of the A-ordinary Selmer group for 7 ,,, and a theta element 0p € A,, obtained
by the evaluation of g at Gross points. The first reciprocity law gives a connection between
the Euler system rp(¢) and the theta element 6p, by which one can control the Selmer group
Xp in terms of fp, and the second reciprocity law is a kind of level-raising argument at two
primes, which provides a decreasing induction on theta elements (or rather p-adic L-functions).
The main novelty in this paper is to establish the connection between this Euler system &, and
the p-adic L-function L,(Ks, f) of f modulo @™ by the congruence between theta elements
attached to weight-two forms and higher-weight forms. A key observation is that when A = N,
we can construct an n-admissible form Dy = (N, go) such that Xp, = Sel(Ks, Af)" (mod ")
and ‘92D0 = Ly(Kw, f) (modw"™) (Proposition 6.13). We remark that we do not make use of
the congruence among (definite quaternionic) modular forms of different weights but rather
we exploit the congruence between the evaluations of modular forms of weight two and higher
weight at Gross points. Thus, our approach does not provide perspective for the two-variable
main conjecture in [LV11] by varying f in Hida families, despite the fact that Hida theory is also
a key tool used to avoid the technical difficulties arising from the use of Shimura curves with
wildly ramified level at p in our proof.

The hypothesis (CR™) is responsible for a freeness result of the space of definite quaternionic
modular forms as Hecke modules in [CH12, Proposition 6.1]. The application of this freeness
result is twofold. On the algebraic side, it is used crucially in the level-raising argument for the
construction of Euler system and in the proof of second reciprocity law. On the analytic side, it
implies the equality between two periods €2y and €2 x— up to a p-adic unit.The assumption (PO)
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roughly says that f is not congruent to an eigenform which is Steinberg at p. It is needed for
the application of the version of Thara’s lemma proved in [DT94]. The hypothesis (CR") is an
analogue of (CR) in [PW11] for the weight-two case. It might be weakened by a careful analysis
of the method of the proof of [CH12, Proposition 6.1]. However, it seems difficult to remove (PO)
unless one works out the p-adic Hodge theory used in [DT94] for the case of semi-stable
reduction.

Since we work in the higher-weight situation, one might look for the Euler system arising from
CM cycles on Kuga—Sato varieties over Shimura curves. Indeed, the first author in [Chil3] adopts
this construction and proves the first explicit reciprocity law for this Euler system without the
ordinary assumption for p. However, there remain issues to be addressed in arithmetic geometry
in order to prove the second explicit reciprocity law by a direct generalization of the proof of
Bertolini and Darmon, where the crucial ingredient is the surjectivity of the Abel-Jacobi map
from the supersingular part of the Jacobian of a Shimura curve over finite fields to the unramified
part of Galois cohomology Hﬁln(Kg,Tf,n) for n-admissible primes ¢. In this case, Bertolini and
Darmon are able to reduce this surjectivity to a version of Thara’s lemma proved in [DT94], while
in the higher-weight case, we do not even know the surjectivity of the Abel-Jacobi map from
the Chow groups to the unramified part of Galois cohomology.

This paper is organized as follows. In §1 we recall basic facts such as control theorems for
various Selmer groups. In §§2 and 3 we review the theory of p-adic modular forms on definite
quaternion algebras and Shimura curves. In §§4 and 5 we give the construction of the Euler
system and the proof of the explicit reciprocity laws. In §6 we carry out the Euler system
argument and prove the main results.

Notation. We fix once and for all an embedding ¢, : Q — C and an isomorphism ¢ : C ~ C,
for each rational prime ¢, where C, is the completion of the algebraic closure of Q. Let ¢y =
too : Q = C; be their composition. Let ordy : Cy — Q U {oo} be the (-adic valuation on Cy
normalized so that ord,(¢) = 1.

Denote by Z the profinite completion of the ring Z of rational integers. For each place g,
denote by Z, the g-adic completion of Z. If M is an abelian group, let M = M ®z Z and
My = M ®z Z4. If R is a commutative ring, let Mp = M ®z R.

If L is a number field or a local field, denote by Op, the ring of integers of L and by Gy,
the absolute Galois group. If L is a local field, denote by I, the inertia group and by L"" the
maximal unramified extension of L.

For a locally compact abelian group S, we denote by SV the Pontryagin dual of S.

The letter ¢ always denotes a rational prime.

We will retain the notation in the introduction. In this paper, in addition to (ST) and (ord),
we will assume that the prime p{ N Dy satisfies

p>k+1 and #(F)F ! >5. (CR*1)

1. Selmer groups

1.1 Galois cohomology groups
Let L be an algebraic extension of Q. For a discrete Gp-module M, we put

L@a @Hl L/\a 7 ILg? @Hl IL)\a a
[ Al
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where A runs over all primes of L dividing /. Denote by res, : H'(L, M) — H'(Ly, M) the
restriction map at £. Define the finite part of H'(Ly, M) by
Hg,(Le, M) = ker{H"(L¢, M) — H"(I1,, M)},
and define the singular quotient of H'(L,, M) by
Hgpg(Le, M) = H'(Lg, M)/ Hg, (Lg, M).

sing

The natural map induced by the restriction 9y : H*(L, M) — Hsling(Lg7 M) is called the residue
map. For k € HY(L, M) with 9;(k) = 0, we let

ve(s) € HE (Lg, M)

denote the image of k under the restriction map at £.

1.2 Selmer groups

We will retain the notation in the Introduction. Recall that we work with the self-dual Galois
representation pj := py ® e?7F/2: Gq — Aute Ty attached to the new form f € Spe¥(To(N)).
Then it is known that p}i satisfies the following properties:

(1) p} is unramified outside pN;

X;IEk/Q *

(2) the restriction of p’]‘c to Gq, is of the form ( 0 xR

Xp(Froby) = ap(f);

(3) for all ¢ dividing N exactly, the restriction of p; to Gq, is of the form (8 {), where 1
denotes the trivial character.

), where X, is unramified and

Here the third property is a result of Carayol [Car86].
Fix a uniformizer w of O. Let n be a positive integer. Let Ty, = Ty/w™ Ty and Ay, =
ker{w" : Ay — Ar}. As Gq-modules, we have T, ~ Ay, and Af, ~ Homo(T},, E/O(1)).

DEFINITION 1.1. A rational prime £ is said to be n-admissible for f if it satisfies the following
conditions:

(1) ¢ does not divide pN;
(2) ¢isinert in K/Q;
(3) p does not divide £2 — 1;
(4) @™ divides £F/2 + (+=2/2 _ ¢pa,(f) with ¢, € {£1}.
Let L/K be a finite extension. In what follows, we introduce a Gq,-invariant submodule

F;Af,n and define the ordinary part of Hl(Lg,Afvn) for ¢ a prime factor of pN~ or an
n-admissible prime. For the prime p, we let F; Vi C V be the E-rank-one Gq,-invariant
subspace on which the inertia group Iq, acts via ek/2. Let FpJr Ay be the image of F:j Vi in
Ay and F;Af,n = F;Af NAfpp. If ] N™, we let Ffo C Vy be the unique E-rank-one
subspace on which Gq, acts by either ¢ or 7y, where ¢ is the p-adic cyclotomic character
and 7y is the non-trivial unramified quadratic character of Gq,. Let FZFA ¢ be the image of
F ;Vf in Ay and F, £+ App = F;'Af N Aypp. If £ is n-admissible, then V; is unramified at ¢ and
(Froby — €¢)(Froby — €,f) = 0 on Ay, for the Frobenius Frob, of Gq,. We let F;Af’n C Ag,, be
the unique O/(w™)-corank-one submodule on which Frob, acts via the multiplication by ey¢. In
all cases, define the ordinary part of H'(Ly, Ay,,) by
Howa(Le, Afn) = ker{H' (L, Apn) — H'(Le, Apn/ Ff Apn)}-

The ordinary part ngd(Lg, T¢r) of HY(Ly, Tfr) can be defined in the same way.
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Let A be a square-free integer such that A/N~ is a product of n-admissible primes (so
N~ ] A) and let S be a square-free integer with (S, pAN) = 1.

DEFINITION 1.2, For M = A, or T},, we define the A-ordinary Selmer group Sel? (L, M)
attached to (f,n,A,S) to be the group of elements s in H'(L, M) satisfying the following
properties:

(1) O¢(s) =0 for all £{pAS;

(2) res(s) € HL (L, M) at the primes £ | pA;

(3) resy(s) is arbitrary at the primes ¢ | S.
When S = 1, we simply write Sela (L, M) for Selk (L, M).

Let m be a non-negative integer. Denote by H,, the ring class field of conductor p™. Let
Gm = Gal(H,,/K) and let Hy = J;_; Hp. Let K, = Koo N Hy, and Ty, = Gal(K,,/K). Then
Ko =Up | Knand I = lim T Let A = O[] =lim O['y] be the one-variable Iwasawa
algebra over O and let my be the maximal ideal of A. Let H' (K, Af,) = lim HY (K, At p)
and ﬁl(Koo,Tf,n) = lim HY(Ky,,Tfr), where the injective limit is taken with respect to the
restriction maps and the projective limit is taken with respect to the corestriction maps. The

local cohomology groups HY (Koo s, Afy) and I;T,l (Kso0, T4p,) for @ € {fin,sing,ord} are defined
in the same way. We define

SelA(KOO, Aﬁn) = h_r)n SelA(Km, Afm),

m

—~ S
Sela (Koo, Tn) =lim SelR (Ko, T,p)-

—~ S
Then Sela (Koo, Ayy) (respectively Seln(Koo,Tfr)) is a discrete (respectively compact) A-
module induced by the standard I'-action. Recall that Sel(K, Ay) is the minimal Selmer group
in the introduction.

PROPOSITION 1.3. Suppose that (CR™) holds. Then Sely- (Koo, Af) = lim ~Sely- (Koo, Apy) isa
A-submodule of Sel( K, Ay) with finite index. If Sely— (K, Ay) is A-cotorsion, then Sely- (Ko,
Ayp) = Sel(Kwo, Af).

Proof. This is shown in the proof of [PW11, Proposition 3.6]. Note that Sel(Kw, frn) [PWI11,
Proposition 3.6] is precisely our Sely- (Koo, Afp). O
1.3 Local cohomology groups and local Tate duality
We gather some standard results on the local cohomology groups in this subsection.

LEMMA 1.4. Suppose that ¢ # p. Then:

(1) if ¢ is split in K/Q, then

ﬁsling(KOO,fva,n) = {0}, Hi%n(KOO,K’Af,n) = {0}
(2) if ¢ is non-split in K/Q, then
ﬁsling(KOO,Eva,n) = Hs.ling(Kfva,n) @ A

and
Hi (Koo Agy) ~ Hom(HY,, (Ko, Tyn) @ A, E/O).

sing
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Proof. This is [BD05, Lemmas 2.4 and 2.5]. The argument there holds even if ¢ | N. O
LEMMA 1.5. If{ is n-admissible, then:
(1) HL, (K, Tty) and HE (K, Tf,) are both isomorphic to O /w"O;

sing
(2) H! (Koo 0, Typ) and ﬁén(Koo,& Ty.r) are free of rank one over A/w"A;
(3) we have the decompositions

sing

I/—jl (Koo,éa Tf,n) = ﬁén(Koo,Zv Tf,n) @ ﬁgrd(Koo,& Tf,n)v
Hl(Koo,b Af,n) = Hflm(Koo,Ea Af,n) D Hc}rd(Koo,Za Af,n)'

Proof. Since Ay, is unramified at ¢, we have a direct sum Ay, = F;Afm © F, Ay, as Gq,-
modules, where F,” Ay, = (Frob; — €,{)Ay,,. An easy calculation shows that

Hflin(K€7 Af,n) = Hl(Kélr/Kfy Af,n) = Hl (Kélr/Kfv F[Af,n) = FeiAf,n'
We thus have

HY (K, Apy) = HY (K, Fy Apy) @ HY (Ko, F)F Ap )
= Hg, (Ko, Apn) ® Hyq(Kp, Agy).

Combined with Lemma 1.4(2), the lemma follows immediately. O

Since Ay, and T}, are isomorphic to their Cartier duals, the pairing induced by the cup
product on the Galois cohomology gives rise to the collection of local Tate pairings at the primes
above ¢ over K,,:

(Ve s H (K, Tpn) X H (K, Apn) = E/O.

Taking the limit with m, we obtain a perfect pairing
(Vg HY (Koot Trn) X H (Koot Afp) = EJO.
These pairings are compatible with the action of A, so they induce an isomorphism of A-modules
HY (Koo, Trp) ~ H (Koot, Ap ).

The following result is well known.

PROPOSITION 1.6. Suppose that ¢ # p. H} (Koo, Afrn) and ﬁﬁln(Koo,g,Tﬁn) are orthogonal
complements under the pairing (, ). In particular, H} (Keo, Afy) and HL (Koo, Tt n) are

sing
the Pontryagin dual of each other.
Proof. This is well known. For example, see [Rub00, Proposition 1.4.3]. O

PROPOSITION 1.7. Suppose that ¢ is n-admissible or ¢ divides pN~—. Assume, further, that (PO)
holds and
py is ramified at £ if £ | N~ and > =1 (modp). (CR*3)

Then we have:

(1) HL y(Koo4, Apr) and ﬁ;rd(Koo,ean,n) are orthogonal complements under the local Tate
pairing;
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(2) if ¢ is n-admissible, then H} (Koo 4, Tf.,) and H!

ord (Koo e, Afpn) are the Pontryagin dual of
each other.

Proof. The assertions for n-admissible primes follow from Lemma 1.5 and Proposition 1.6. Let
¢ | N~. We prove part (1) for £. A simple calculation shows that

B(H (Ko, Agn)) = #(ASE0?, #(HD (Ko, Agp)) = #(AS5).

Therefore, it suffices to show that H! (K, As,) and H (K, Tyn) are orthogonal to each

other. If py is unramified at ¢, then ¢2 # 1 (modp) by (CR'3), and the orthogonality follows
from H?(Ky, O/w"O(e?)) = {0}. If py is ramified at ¢, then
HY K} /Ko, FF Apy) = Hiy(Kp, Agy) = Hog(Key Ag ).

Gk,

In addition, it is to easy to see that #(H} (Ky, Afy)) = #(A;,,°). This shows that H} (K,
Agpn) = H.

ord (K¢, Af ), and the assertion follows from Proposition 1.6.

We consider the case £ = p. Let L/K be a finite extension in K. By the following Lemma 1.8,
we have the duality (F,"Ayn)Y (1) ~ Appn/Ff App ~ On(xpe?7#/2) and by a simple calculation,
we find that H'(L,, F,f Ay,,) > H]

ord(Lps A ) and an exact sequence

0— H'(Lp, F,[ Apn) = H' (Ly, Agn) = H' (Ly, A /Ff Apr) — 0.
The assertion for £ = p now follows from H?(L,, O, (*)) = {0} for k > 1. O

LEMMA 1.8. Suppose that (PO) holds. Then HO(Ly,, Ag,/Ff Ay ) = {0}.

Proof. Let Tﬁn = Tfm/Fp*Tf,n. Let v be a place of L above p. Since L, (j,—1) and L}" are linear
disjoint, the cyclotomic character € : I, — Z; — F is surjective. If k > 2, then

(T}, = (On(e'M/2) ke = 0 = (T7,,)%% = {0}.

If k = 2, then the Frobenius Frob, acts on T, by a scalar ap(f)™, where ap(f) is the unit root
of the Hecke polynomial X2 — a,(f)X + p*~1and r, = 1 if p is split and r, = 2 if p is inert.
By (PO), a,(f)? — 1 is a p-adic unit. Then we find that

(Tp) P = (Tp)[(Froby)”” — 1] = (T, )[ap(F)™" = 1] = {0}
Here p® is the inertia degree of L, /K,. This completes the proof. O

1.4 Global reciprocity
By the global reciprocity law of class field theory, for x € f[l(Koo, Ttn) and s € HY (Koo, Af ),

we have
Z (resq(k),resq(s))q = 0.
q: prime

S
Since the local conditions of Selp(Koo,T¥rn) and Sela(Koo, Afy) are orthogonal at the

—~ S
primes not dividing S, if k belongs to Sels (Koo, T},,) and s belongs to Sela (Koo, Af ), then we
have

Y (04(r), v4(8))q = 0. (L.1)

qls
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1.5 Control theorem (I)
Let S be a square-free product of n-admissible primes. We prove control theorems for the discrete
Selmer groups Sel? (Koo, Af.). Let L/K be a finite extension in K.

PROPOSITION 1.9. Suppose that (PO) holds and
the residual Galois representation py : Gq — Autp(Ay,) is absolutely irreducible. (Irr)

Then:

(1) the restriction maps
Hl(K7 Af,n) N Hl (L, Af,n)Gal(L/K)7 Seli(K’ Af,n) — SGIZ(L, Af,n)Gal(L/K)

are isomorphisms;
(2) SelX (L, As,) = Sel (L, Af)[w"].

Proof. Since K« /Q is a Galois extension, by the residual irreducibility of p; we have Tﬁf“ =0,
and hence we have an isomorphism H'(K, A;,,) ~ HY(L, A;,,)%E/K) To show part (1), it
suffices to show:

(a) HYK}, App) — HY(LY, Ay,,) is injective for £ 4 pA; and
(b) HY (K¢, Afn/F, Asn) — HY(Lg, Ay /F, Ag,) is injective for £ | pA.
Since L/K is unramified outside p and anticyclotomic, for each place A of L above ¢ # p, we
have K" = LY. This verifies (a). Part (b) for £ | A follows from the fact that Ky = Ly for any
prime A of L above ¢ which is non-split in K. Part (b) for £ = p is an immediate consequence of
Lemma 1.8.

Part (2) can be proved in the same way. The natural map SelX (L, A;,,) < SelX (L, A;)[="]
is injective by virtue of the exact sequence

0—>Af7n—>Afi;Af—>0
and the fact that A?ﬁ C A?ﬁ‘” = 0. To show the surjectivity, it remains to show:
(al) HY (L}, Asy,) — HY (LY, Ay) is injective for £ 1 pA; and
(bl) HY(L¢, Appn/F, Afy) — HY(Lg, Af/F," Ay) is injective for £ | pA.

The injectivity in (al) and (bl) for £ # p can be seen from the fact that the actions of I g
and G, on Ay and Ay/F;" Ay respectively are trivial, and that in (bl) for ¢ = p follows from
Lemma 1.8. o

2. p-adic modular forms on definite quaternion algebras

2.1 Hecke algebras of quaternion algebras

Let B be a quaternion algebra over Q and let B=2B Rz Z be the profinite completion of B.
Denote by Ap the absolute discriminant of B. If ¥ is a positive integer, then B* = B(Z)XB(XZ),

where R N R =
BO* = {ze B* |2, =1vq| S} By ={ae B |z, =1vq{ ).

If 4 is an open compact subgroup of BX and z € B ¥, we denote by U, (respectively by x,) the

local component of U (respectively of b) for each prime g.
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The Hecke algebra H(B*,U) is the space of Z-valued bi-U-invariant functions on B* with
compact support, equipped with the convolution product

(% B)(z) = / a(y)Bly ") dy.

B

where dy is the Haar measure on B normalized so that vol(if, dy) = 1. For cach = € B, denote
by [UzxU] the characteristic function of the set Uzld. For each prime ¢, we set

Ty = (g ?) g = (g 2) € GLy(Q,). (2.1)

We fix an identification i : B(25) ~ My(Q(A8)). Let M be a positive integer with (M,
Ap) =1 and let R+ be the Eichler order in B of level M with respect to i. Suppose that

p1 Ap. For a non-negative integer n, we define a special open compact subgroup U v+ pn C B
by

Unp+ pn = {m € ]?i;\}Jr Ty = (8 2) (modp"),a,b e Zp} . (2.2)

Let U = Ups+ pn. Let ¥ := p"M*Ap. By definition, we have i : (E(E)X,Z/{(E)) ~ (GLg(Q(E)),
GLy(Z™)). Denote by Tg)(MJr) the subalgebra of H(B*,U) generated by [UzU] with = €
B®*_ Then

Ty (M) =2[T,, 5, 5, | at 3],

where T;, and S; are the standard Hecke operators at the prime ¢ given by
T, = Ui~ () U, Sy = Ui (=) U, (2.3)

We proceed to introduce Hecke operators at g | . If ¢ | Ap, choose m; € B with N(m) = q.
Define the Hecke operator U, at ¢ | M Ap by

Ug=UiNr)U] ifq| M, U,=UrU] ifq|Ag. (2.4)
If n =0, then U = ﬁfﬁ, and we define
_ Y
Tp(M™) = Z[{Ty, S0 57 | a4 21U, | ¢ | 8 = TR (M) [{U, | ¢ | S}, (2.5)

Suppose that n > 0. For the prime p, we define Hecke operators U, and (a) for each a € Z; by

U= i, @ =it (aw = (5 ) ccr@). o)

Let Tg(M™,p") be the (commutative) subring of H(B*,U) generated by Hecke operators at all
primes. Namely,

Tp(M*,p") = Z[{Ty, Sq. S | at S} AUG | ¢ | M AR} {Up, (a) | a € 2]
=T (MH){Uy. (a) | ¢ | Soa € 21, (2.7)

We call Tg(M™,p™) (Tp(M™) if n.=0) the complete Hecke algebra of level . For each prime
L, let ']I‘g)(M *,p") be the subring of Tg(M™,p") generated by Hecke operators at primes q # /.
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2.2 Definite quaternion algebras

We recall some notation from [CH12, §2.1]. Let K be the imaginary quadratic field with the
discriminant —Dg < 0 and let § = /—Dg. Write z — Z for the complex conjugation on K.
Define 6 € K by

0

_D'+s Dk if2fDx,
2 Dk/2 if2]| Dg.

Then O = Z + Z - 6 and 60 is a local uniformizer of primes that are ramified in K.
Let B be the definite quaternion algebra over Q with discriminant Ag. Suppose that

N~ | Ap,(Ag,NT)=1 and ptAg. (2.8)

Assume further that every prime factor of Ag/N~ is inert in K. Thus, we can regard K as a
subalgebra of B. Write T and N for the reduced trace and norm of B, respectively. Let p be the
prime of K above p induced by ¢, : K — C,. We choose a basis of B = K ® K - J over K such
that:

(a) J? =B € Q* with a square-free 3 < 0 and Jt =t.J for all t € K;
(b) Be(Z))* forall ¢| N* and 8 € Z) for q | Dk

The existence of such J can be seen as follows. We can always choose some J' € B* satisfying (a)
by the Noether—Skolem theorem, and the strong approximation theorem ensures the existence
of J = BJ’ with property (b) for some suitable 8 € K*. R

Fixing a square root 1/ € Q of 3, we require the fixed isomorphism i = quB ig : B(A5) ~
MQ(Q(AB)) chosen so that for each finite place ¢ | pN™, the isomorphism i, : By = B ®q Qg =~
M>(Q,) is given by

o) = ("0 ) =va () WEezn. e
and for each finite place ¢ { pN1TAp, iy : By ~ M(Q,) satisfies
iq(Ox ® Zq) C Ma(Zy). (2.10)
Hereafter, we shall identify B(AB)X with MQ(Q(AB)) via 7 and let
U=Un+ pn
be the open compact subgroup as in (2.2). By definition,
UDZY, Uy=GLy(Z) ifl{pN*tAg. (2.11)

2.3 p-adic modular forms

Let A be a p-adic ring. Let k > 2 be an even integer and let L;(A) = A[X, Y]r_2 be the space of
homogeneous polynomials of degree k — 2 over A. Let py : GLa(A) — Autg Lk (A) be the unitary
representation defined by

pe(h)P(X,Y) = det(h)"F=2/2. P((X,Y)h) (h e GLy(A),P(X,Y) € Li(A)).
Define the space S,? (U, A) of p-adic modular forms on B* of weight k and level U by

SPU,A) = {f : B\B* — Li(A) | f(bu) = pr(u, ") (b),u = (ug) € U}.
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The space SP (U, A) is equipped with Tg(NT,p")-action defined by

Uatd].f(0) = > flbuz) if x € BWX,
ueU /UNzUz 1
(a).f(b) = pr(d(a)) f(bd(a)) (a€Zy); (2.12)
GI0 = X )t (= (5 1) < om@n).

w€Uyp Up N pUpmy *

where py(m,) € Endg Ly (A) is defined by p(mp)P(X,Y) := P(pX,Y). If p is invertible in A,
then
Up-f(b) = pA2 Z pre(ump) f (bup).

w€lUy JUp MUy
We note that the operator Sy acts trivially and Uy is an involution if ¢ | A on SZ(U, A).
2.4 Modular forms of weight two

We shall write SB(U, A) = SP (U, A) for the space of A-valued modular forms of weight two and
level U. Denote by Xp(U) the finite set

Xg(U) := B*\B* JU.

For each b € B*, denote by [b]ys the point in Xp(U) represented by b. The Hecke algebra
Tr(N*,p") acts on the divisor group Z[Xp(U)] by Picard functoriality. By definition, we have
a canonical identification:

SBU,Z)={f: XpUU) - Z} ~ Z[XpU)). (2.13)

Define the Atkin—Lehner involution T, € Eé;N+) by Tnq = (pn?w (1)) ifg|p"N*tand 7,0 =1

if ¢t pN*. Then 7, normalizes U, and hence induces a right action on Xpz(U). Define a perfect
pairing (, )y : SPU, A)xSB (U, A) — A by

(frofdu= Y fO)fa(br) - #(B* nbub~)/Q*) " (2.14)

[blueXpU)
Then the action of Tg(NT,p") on SB(U, A) is self-adjoint with respect to (, )y Namely,

<tf1, f2>u = <f1,tf2>u for all t € TB(N+,pn).

3. Shimura curves

3.1 Notation

We recall some basic facts on the geometry of Shimura curves, following the exposition in [Nek12,
§1]. In this section, let £ NTAp be a rational prime which is inert in K and B’ be the indefinite
quaternion algebra over Q with discriminant Agf. We fix a Q-embedding ¢ : K — B’ and an
isomorphism ¢p pr : B® ~ B'® once and for all such that ¢ induces the composite map

RO _, g B8 pie)

w = (; :) (modz)}.

We put
Up(l) == Un+gpn = {u ceu
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Let Op, be the maximal order of Bj. Let U" be the open compact subgroup of B'* given by

U = pppUNOY,. (3.1)

Y4

We denote by My /q the Shimura curve attached to B’ of level U'. The complex uniformization
of My is given by R
My (C) = B”\(C~R) x B /U

For z € C~ R and ¥/ € B'*, denote by [2, V] the point of My (C) represented by (z,b').

3.2 f-adic uniformization of Shimura curves

There is an integral model My, of My ®q Q¢ over Z;, which is projective over Zj if U’ is
sufficiently small [BC91, Theorem (3.4)]. We review the description of the completion My of
My along the special fibre due to Cerednik [Cer76] and Drinfeld [Dri76]. Let H, be Drinfeld’s
(-adic upper half plane, which is a rigid analytic variety over Q, and an analytic subspace of
Paan The Cy-valued points of H, are Hy(Cy) = P1(Cy) ~ P1(Qy). Then My, is canonically
identified with

B\H;®z,Z}" x BO*/u®, (3.2)

where 7/-[\3 is a natural formal model of Hy and b € B* acts on ﬁg (respectively on 22‘”) via
the natural action of B* C B/ % GLy(Qy) on ngﬂ (respectively by Frobord"(N( ))) [BCOI1,

Theorem 5.2]. Denote by M} the rigid analytification of My ® Q. Then M} ~ M\u/ ® Qy, the
generic fibre of My, and

M = BX\H; ® q, Q)" x BO*/u®.
Since U®) > Z(Z)X,
My (Cy) = B*\Hy(Cy) x BO*ju®. (3.3)

3.3 Bad reduction of Shimura curves

Let 7, = V()| |E() be the dual graph of the special fibre of Hy, where V(%) and £(.%)
denote the set of vertices and edges of 7 respectively. Then .7, is the Bruhat—Tits tree of

B[ ~ GL2(Qq). Let ?(%) be the set of oriented edges. We have the identifications

V() = B JUQ), € (T) = BY JUo(£)eQ).

Let G = V(G)| |€(G) be the dual graph of the special fibre of My ®z, Ok,. The set V(G)
of vertices of G consists of the irreducible\components of My ®z, Fp2, and the set £(G) of edges
of G consists of the singular points in My ®z, Fp2. Let red, : My (Crp) — G = V(G) L E(G) be
the reduction map. By [Nek12, Proposition 1.5.5], (3.2) induces an identification

V(G) = BX\(V(Z) x Z/2Z x BY*ju®y = B*\(B)/UQ} x Z/2Z x BY* ju®)
S (BX\B*/U) x Z/2Z = Xp(U) x Z/2Z,
(3.4)
where the last isomorphism is given by

B* (b, 3, bOUDY > ([bb D]y, j + orde(N(be)))

876

https://doi.org/10.1112/50010437X14007787 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X14007787

ANTICYCLOTOMIC IWASAWA MAIN CONJECTURE FOR MODULAR FORMS

and
—

£(G) 5 (BX\B*Up(0)) x Z/2Z = Xp(Up(L)) x Z/2Z.
We will regard £(G) as a subset of ?(g) via

£(G) = XpUo(£)) 3 XpUp(0))x{0} — € (G). (3.5)

3.4 Bad reduction of the Jacobian of the Shimura curve

Let .J(M) be the Jacobian of the Shimura curve M. If L/Q is a field extension, let Div® M (L)
be the group of divisors on J (M )(L) of degree zero on each connected component of My ®q L.
For D € Div® My (L), denote by cl(D) € J(My)(L) the point represented by D. The prime-to-¢
Hecke algebra HO (B, U') acts on J(Myy) via the Hecke correspondence on My and Picard
functoriality (cf. [Nek12, §1.3.4]). The isomorphism ¢ pr : B® ~ B'® induces an isomorphism

ps t HO B Up(0)) 5 HOB™ U, Up()alho(0)] = [U'pp,pr(z)U'] (x € BO*).
We extend ¢, to a ring homomorphism
¢s : Tp(ENT,p") —» T (NT,p") = End(J (M) /q)

by defining ¢, (Uy) := [U'md'] for some 7, € By with N(m}) = /.
Let J be the Néron model of J(My), q, over Zy. The universal property of Néron models
induces a ring homomorphism

0. TE(ENT, ") — End(J(Myr) /q,) = End(J). (3.6)

Let Js be the special fibre J ®z, Fp2 and J,; be the connected component of the identity of 7.
Let @y, = Js/Js be the group of connected components of Js. Then @), , is an étale group
scheme over Fy2 with a natural Tg(¢ N, p")-module structure induced by (3.6). Let

re s J(My)(Ke) = @y,

be the reduction map.
We recall a description of @)y, in terms of the graph G. Define the source and target maps

s, t: ?(Q) — V(G) so that for each oriented edge e, s(e) € V(G) is the source of e and t(e) € V(G)
is the target of e. Define the morphisms

Z[E(Q) S ZV(@) ZV(G)) 5 ZE). (3.7)
Let Z[V(G)]o be the image of d, in Z[V(G)]. By [BLR90, §9.6, Theorem 1], we have a canonical
isomorphism
ds
Z[E(G)]/Imd* S Z[V(G)|o/Im dyd* ~ Py, (3.8)

such that the following diagram commutes:

Div® My (K¢) —— J (My) (o)

lw lw (3.9)

Z[V(9))o/Im d.d* —=— Dy,
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where ry : Div? My (K,) — Z[V(G)]o is the specialization map of divisors defined in [Nek12,
§1.6.6]. We briefly recall the definition of ry, as follows. For each D € Div® My (Ky), extending
D to a Cartier divisor D on My ®z, Ok, by taking closure, define

(D)= > (D-C)C € ZV(G), (3.10)
cev(9)

where (D - C) is the intersection number in My ®z, Ok,.

3.5 A description of the group of connected components
We review a description of @7, in terms of spaces of weight-two modular forms [BD05, §5.5].
Let a, B : Xp(Up(£)) — Xp(U) be the standard degeneracy maps given by
= [y = (@) = b, B(x) = [y Tu-
According to (3.4) and (3.5), the morphisms d, and d* in (3.7) are respectively identified with

6*:(—06*75*) 6*:—a*+5*
_—> _—>

SB(Uy(0),Z) SBU,z)®%, SBU,Z)%? SB(Uy(¢),Z).

Let (SB(U,Z)%?)y := ImJ, be the image of SB(Uy(¢),Z) via .. A direct computation shows

that
5.6 = (—aw, ) (0" — ") = (‘ET; b 1) € My(End(SP (U, 2))).

Define a ring homomorphism Tg(¢/N*t,p") — End(S? (U, Z)%?) by

t—1:(z,y) > (to,ty) ifteTWENT p) =TH N, p);
U= Up: (2,y) — (—ly, =+ Tpy).

This makes SP(U,Z)®? a Tg({NT,p")-module. Moreover, one can check that &, is indeed a
Tp(¢{NT,p")-module homomorphism.

PROPOSITION 3.1 [BD05, Proposition 5.13]. We have an isomorphism as Tg(¢{N T, p™)-modules
(SPU,Z)%2)o/ (T2 - )SPU, 2)* = By,
Proof. A direct computation shows that
ﬁf —1=60%07, 7(x,9) = (x+Try,y).

Since 7 is an automorphism of SB(U, Z)®?, we can deduce the proposition from the identification
between Z[E(G)] and SB(Uy(¢),Z) as Tp(¢N*,p")-modules combined with the canonical
isomorphism (3.8) and the compatibility of Hecke actions [Rib90, pp. 463-464] (cf. [BDO5,
Proposition 5.8] and [Nek12, §1.6.7]). O

3.6 CM points in Shimura curves

Take a point 2’ in C \ R fixed by i (K*) C GL2(R). The set of CM points by K unramified
at £ on the curve M, is defined as

CMSTY (M) = {[2, 0] | V' € B, b, = 1} € My (K®).
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Let reck : KX — Gal(K®/K) be the geometrically normalized reciprocity law. Then Shimura’s
reciprocity law says that

reck (a)[2', 6]y = [2/, ¥ (a)V |y (3.11)
This implies
Ly CM?UT(ML{/) — Mul(Kg).

Let CM%‘“T(MM)O be the subgroup of Div® M, (K,) generated by the degree-zero divisors
supported in CM’“"(Mjy). Then the specialization map ry : CM5&* (M) — Z[V(G)]o is
given by

rv (Z i [Z',bﬂu'> =2 ni [plp ()l (3.12)

4. Construction of the Euler system

4.1 The set-up
Let f € Si(T'o(N)) be an elliptic new form of level N with g-expansion at the infinity cusp

H@) =Y an(f)d"

n>0

Let Q(f) be the Hecke field of f, i.e. the finite extension of Q generated by {a,(f)}n. Let O be
a finite extension of Z,, containing the ring of integers of Q(f). Then it is well known that a,(f)
belongs to O. We set

ap(f) = the p-adic unit root of X2 —a,(f)X +p*1in Cp, a,(f):= aq(f)q(%k)/2 if ¢ # p.
We define an O-algebra homomorphism
A Tp(NT,p)o=Tp(N",p)®z0 - O

by A (T,) = ag(f),A\f(Sy) = 1if ¢ 1 pN and A\p(U,) = ay(f) if ¢ | pN, As((a)) = a*=2)/2 for
a€ZX.
p

4.2 Level-raising
Let n be a positive integer and let O,, = O/(w"). Recall that we have introduced the notion of
n-admissible primes for f in Definition 1.1.

DEFINITION 4.1. An n-admissible form D = (A, g) is a pair consisting of a square-free integer A
of an odd number of prime factors and a p-adic quaternionic eigenform g € SB(U N+ pn> On) for
the definite quaternion algebra B over Q of discriminant A such that the following conditions
hold:

(1) N~ | A and every prime factor of A/N~ is n-admissible;

(2) g(modw) # 0;

(3) gis a Tp(NT,p")-eigenform, and Ay = Ay (mod @"), where Ay : Tg(NT,p")p = Tp(NT,
") @70 — O, is the O-algebra homomorphism induced by g. Namely, we have the following
equalities in O,:

Ag(Ty) = aq(f) for g pNTA,  Ng(Uy) = ay(f) for ¢ | pN,
Ag((a)) = a*"D/2 fora € 2.
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We fix an n-admissible form D = (A, g) and an n-admissible prime ¢ { A with ¢ - oy =
£+ 1 (modw"), where ¢ is the sign as in (4) of Definition 1.1. Let B be the definite quaternion
algebra over Q of discriminant A. Write U = Upn+ ,» C B* for the open compact subgroup
defined in (2.2). Let T = Tg(N*,p")o and T = Tg(¢N*, p™)o. We extend A, to an O-algebra
homomorphism )\g ol s O,, by defining )\g } (Ug) = €. Let Z; (respectively Ig[f]) be the kernel

(4]

of Ag : T — O,, (respectively \g" : T — O,). The eigenform g gives rise to a surjective O-module
map

wg : SB(uv O)/Ig - Onv h— %(h) = <9:h>u-
PROPOSITION 4.2. Assume that (CR™) holds. Then we have an isomorphism
Ve SPU,0)/T, 5 O,

Proof. Let P, C T, be the ideal of T generated by {(a) —a*=2/2 | a € Z;}. Let e =lim, U;‘!
be Hida’s ordinary projector on the space of p-adic modular forms on B. Let Ry+ and R,y+ be

the Eichler orders of level N* and pN T in B. Let V = ﬁi;, L and Vo(p) = }?E;N .. By Hida’s theory

for definite quaternion algebras (the case ¢ = 0 in [Hid88, Corollary 8.2 and Proposition 8.3]),
we have
e.SE(U, 0,)[P] = e.SE Vo(p), On).

Taking the Pontryagin dual, we find that
e.SBU,0)/(=", P) = e.SFVo(p), 0)/(=™).

Let €° =limy, o T, 1?! be the ordinary projector on S,f (V, O). Moreover, the p-stabilization map
gives rise to an isomorphism

. SEW,0) 5 e.SE(Vu(p), 0), (4.1)

and induces a surjective map T — €°.Tp(V)o, which takes U, — u,, where u, is the unique unit
root solution of X2 — T, X + pF~1 in €. T5(V). Let m be the maximal ideal of T containing Z,.
Since U, — a,(f) € m with a,(f) € O, we find that

SPU, O/ (@", Pr) = S (Vo(p), O/ (@") = S (V, O/ (w").

By [CH12, Proposition 6.8], SZ(V, Q) is a cyclic Tg(N*, p")n-module, and hence SB(U, 0) /T,
is generated by some modular form h as a Tg(NT, p™)-module. Since v, is surjective and Hecke
operators in T are self-adjoint with respect to (, )y, it follows that ¢g(h) = (g, h)y € O) and
the annihilator of h in T is Z,. Therefore,

SBWu,0)/1, ~T/1, = O,.
This completes the proof. O

Let B’ be the indefinite quaternion algebra of discriminant Af¢ and let Mr[f] = My be the

Shimura curve attached to B’ of level Y’ introduced in §3.1. Let J0 = (My[f]) be the Jacobian

of Mq[f] and let ®¥ be the group of connected components of the special fibre of the Néron model
of JT[LK] over Ok, .

THEOREM 4.3. Let (I%] = dll @7 O©. We have an isomorphism

by
o)1l ~ 8B, 0)/1, 5 0O,
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Proof. Let m¥l be the maximal ideal of T containing Ig[,g]. Let S = SB(U, O) i) The embedding
S — 892 2+ (0,7) induces an isomorphism

S/(efTy—1—1) S 8692/([7@ — €).

It is shown in [Nekl12, Proposition 1.5.9(1)] that the quotient S (U,0)%2/(SE(U,0)¥?)q is
Eisenstein, so we find that S92 = ((SP(U, 0)%?)g) g (the ideal mlY is not Eisenstein). By
Proposition 3.1 we have a Tg(¢/N*t, p")-module isomorphism

(@) 0~ SP2/(TF — 1) = S¥2)(Uy — er) > S/ (efTy — £ —1).

In particular, we see that U, acts on @g by €,. Combined with Proposition 4.2, the theorem

follows. o

Denote by Tp(J,[f]) gl [p™](Q) the p-adic Tate module of o,

= lim
<—m

COROLLARY 4.4. We have an isomorphism as Gq-modules
Ty(Jo /T = Ty,

Proof. Let T .= T, p(J,[f ])@. The argument in [BD05, Theorem 5.17 and the remarks below],
(4]

based on the f-adic uniformization of J;'(Q¢) and the Eichler-Shimura congruence relation
(cf. [Nek12, §1.6.8]), yields TV /ml) ~ T | and the exact sequence

ol /Tl — H' (K, TV/TV) > HE (K, X5 /T, (4.2)

where X([f] = XU @70 and X is the character group of . In addition, by the proof of [BDO05,
Lemma 5.16], Theorem 4.3 implies that Tl /Igm contains a cyclic O-submodule of order w™.

Thus, we find that Tm/Igm ~ Of(w")er & Of(w")ex with r < n. Since the residual Galois
representation p is absolutely irreducible, we have an equality

7;(FIGq)) = Ends(Ty1) = Endo(T19/ml) (F = 0/(w)).
In particular, there exists an element h € ps(O[Gq]) such that
hes = ae1 +bes, a€ O, be O.
This implies that @w"e; = 0, and hence r = n. O

Let 77 : J (Km) — <I>£§ ® Oy 'y be the reduction map

7(D) = > ri(u(o(D)))o.

(J’GFm

THEOREM 4.5. (1) There is an isomorphism
0 ~
g 0 /T S Hg(Ke, Ty )

sing

which is canonical up to the choice of an identification of T)( Lﬂ) /Iy] with T ,.
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(2) There is a commutative diagram

T (K /T HY (K, Tt )

i ) O

P
01 /T ©0 OnlTim] 2 Hy (Ko, T )

where the top horizontal map arises from the natural Kummer map, and 0y is the residue map.
Moreover, there is a similar commutative diagram

- v ~
T K /T ——— BY(Koo, Ty )
T Op
w —~
o) /) ©0 Oull] 2> HL, (Koo, Ty )

Proof. This is a direct generalization of [BD05, Corollary 5.18]. See also [Nek12, §1.7.3]. In part
(2), the lower horizontal map is deduced from the map 4 in part (1) by using the identification
H. (Kme,Trn) 2 HL (Ko, Ttn) @0 On[Ti] as in Lemma 1.4. O

sing sing

4.3 Construction of the cohomology class kp(¥£)

In this section, we associate a cohomology class kp(f) in the Selmer group S/\elM(Koo,Tﬁn) to
an n-admissible form D = (A, ¢g) and an n-admissible prime ¢ { A.

4.3.1 Adelic Heegner points. Fix a decomposition NtTOx = M9+ once and for all. For
each ¢ | NT, define ¢, € GL2(Qq) by

Gg=0"" <? ?) € GLy(Ky) = GL2(Qq) if ¢ = ww is split with w | M. (4.3)

For each positive integer m, we define gz(,m) € GL2(Qp) as follows. If p = pp splits in K, we put

m 0 -1 o0
= () (%) € cratiy - cLa(@. (1
If p is inert in K, then we put
m)y_ (0 1\ (p™ O
We set
§(m) = §]()m) H Sq S GLQ(Q(pN+)) ~ E(;NJr) > EX. (46)
q|N+t

Let Ry, = Z + p Ok be the order of K of conductor p™. It is not difficult to verify immediately
that

M) TIRE™ C Ups o if m = 1. (4.7)
We define a map
T Pie Ry = KX\K™ /R, — XpU), K*aR}, = wm(a) = [as™]y.
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4.3.2 The construction. LetU' = ¢p p (Z/I(Z))ng C B and let M,L,ﬂ = M4 be the Shimura

curve of level U’. Let m be a non-negative integer. To each a € K X, we associate the Heegner
point P, (a) defined by

Pu(a) := [(z', op,p (@™ r))lr € M(C), (4.8)

where 7, € Eé N+ is the Atkin—Lehner involution defined in §2.4. Note that the level subgroup

Un+ pn contains the subgroup ix, so from (4.7) and Shimura’s reciprocity law (3.11), we deduce
that
Pm(a) € MYA(H,,) nCME (MY it m>n

and that Py, (b)? = Py, (ab) for 0 =reck(a) € Gy, = Gal(H,,/K).
Choose an auxiliary prime go f p/NTA such that 1+ gy — ag, € O*. We define

€40 : Div MU (H,) — JY(H,) o = JY(H,,) ©7 0,
P 51]0(]3) = Cl((l +qo — TQO)P) ® (1 +qo — O‘lJo)_l'

Let P, := P, (1). Define

D = > &Py e J(Ky)o.
o€Gal(Hp/Km)

Denote by Kum : T (Hm) ®z O — HY(H,, Tp(gL[f])@) the Kummer map. Define
kD (O = ap(f)™™ - Kum(Dy,) (mod ZY) € HY (K, Tp(J) 0 /T = HY (K, Tt ).

Note that kp(€),, is independent of the choice of the auxiliary prime gg. The following lemma
says that the collection of classes {kp(€)m, }m form a norm-compatible system.

LEMMA 4.6. CoerJ,-l/Km (Dm+1) = Up . D?’TL

Proof. This is a standard fact. For example, see Longo and Vigni [LV11, Proposition 4.8] (their
setting is slightly different, but the proof is identical). It is basically a consequence of Shimura’s
reciprocity law. O

Finally, define the cohomology class kp(f) associated to an n-admissible form D = (A, g)
and an n-admissible prime ¢ by

kp(l) = (kp(O)m)m € ﬁl(KomTf,n)'
PROPOSITION 4.7. The cohomology class kp(¢) belongs to S/\elM(Koo, Ttn).

Proof. This should be well known to experts. We sketch a proof here for the convenience of the
reader. We need to show that for each integer m > n:

(1) 04(kp(£)m) = 0 for q t pAL;
(2) resy(kp(O)m) € Hyq(Km.g, Tyn) for q | plA.

Part (1) follows from the fact that I has good reduction at primes ¢ { pA(NT and Lemma 1.4(1)
for ¢ | N*. If ¢ | ¢A, then part (2) is a standard consequence of the description of the g-adic

uniformization of J,[f] at toric reduction primes ¢ | Al. It remains to show part (2) for ¢ = p.
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Let Z = Ig[,f] and let m be the maximal ideal of T containing Z. Let T = T)y( if])@. Then the
localization T} at ml¥ is a direct summand of T', and we have maps as TI [Gql-modules

T — Tm[g] — Tm[e]/I = T/I =~ Tf,n.

Let E be the fractional field of O. The Ggq-module Vg = T,y ®o E is a direct sum of
p-adic Galois representations p, ® € attached to p-ordinary elliptic new forms g of weight two
and nebentype €2 with p; @€ = pr((2 — k)/2) (mod me). In addition, there is an exact sequence
as T [Gq,]-modules

0—> F;Vm[g] —>me —)Vm[z] /F;Vm[g] —>0

such that the inertia group of Ggq, acts on F, Vi (respectively V,u/F, Vy«) via ere
(respectively 51}1), where er : Gq, — (TY*, o (e(0)). Let F T := Ff Vg N Ty Then
it is not difficult to see that F;‘ To/L ~ F; Ttn as Gq,-modules. Consider the commutative
diagram

H' (K p, Tyie) ——= H' (Kp, Tt/ Ff Tt

m

| |

HY (Ko, Vi) —2 HY (Ko, Vigttt ) Ff Vi)

m

Let #(Dm)m be the image of k(Dy,) in H (K p, Thyie
show that a(k(Dpm)m) = 0.

By [BK90, Example 3.11|, B(k(Dy,)m) belongs to the local Bloch-Kato Selmer group
H}(Km’p,vmm), which in turn implies that x(D,,)m lies in the kernel of the composition
agof = " o« in view of [Nek06, Proposition 12.5.8]. On the other hand, the map f~ is
injective by (PO) (since HO(Ky,p, Ty /Ff Ty @0 E/O) = 0 in view of Lemma 1.8), so we
conclude that a(k(Dmp)m) = 0. O

). To prove the proposition, it suffices to

5. First and second explicit reciprocity laws

5.1 First explicit reciprocity law
Let D = (A, g) be an n-admissible form. Define

On(D) = ap(f)™™ Y glzm(a)alm € Ou[Gl.

[a]mEGm

Here [a]p, := reck(a)|m,, € G is the map induced by the geometrically normalized reciprocity
law. Then ©,,_1(D) coincides with the image of ©,,(D) under the natural quotient map G,, —
Gm—1, since g is a Up-eigenform with eigenvalue oy, (f). Let my, : G, — 'y, = Gal(K,,,/K) be
the natural quotient map and let

0 (D) = 1 (O (D)) € On[Ti],  050(D) = (01 (D))m € On[T]. (5.1)
THEOREM 5.1 (First explicit reciprocity law). For m > n > 0, we have
O (kp(£)m) = Om (D) € On[T].

Therefore,
Oi(kp(€)) = 00 (D) € O,[I].
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Proof. 1t follows from the commutative diagram (3.9) and (3.12) that

be(re(Dy)) = > (9, xm(ab)To)u = > g(xm(ab))

[BlmeGal(Hp, /Km) [b]lm €Gal(Hp, /Km)
(0 = mm([alm) € Gal(Km/K), a € K*).
Therefore, by Theorem 4.5,

Ou(kp(O)m) = D Ye(re(Dy))o
oel'm

= Y 9@n(@)mm(aln) = (D). .

[a]mEGm

Remark. This equality depends on the choices of the embedding ¢, : Q — C, and the
isomorphism Tp(J}f]) /Iw ~ Ty p. Different choices result in a unit factor in O[I'].

5.2 Thara’s lemma

In this subsection we retain the notation in §3. Thara’s lemma is the key ingredient in the
proof of the second explicit reciprocity law in [BD05]. We recall the following version of Thara’s
lemma due to Diamond and Taylor [DT94, Theorem 2|. Let B’ be an indefinite quaternion
algebra of discriminant Ap/. Let V be an open compact subgroup V of B’*. Let My be the
associated Shimura curve. For each p-adic ring A, let #(A) be the local system on My g,
attached to Li(A) and let Z4(V, A) = Hi (My ¢, , Fr(A)). Then %(V,F) = H} (My c,, F). If
q is a prime, let Vo(q) = V N Ry, where R is an Eichler order of level £ in B’. Let £ { pAp: be
a rational prime. Denote by F = O/(w) the residue field of O. Let m be the maximal ideal of
Te/(NT,p") ~Tg(¢{NT,p") containing the kernel of the ring homomorphism )\[; I defined below
Definition 4.1. Then m is an ordinary and non-Eisenstein maximal ideal.

THEOREM 5.2 (Thara’s lemma). If V is maximal at the prime p and ¢, then we have an injective
map
14n: gk(V,F)§2 — gk(VO(f),F)m,

where 1, is the degeneracy map at /.

We will need Thara’s lemma for the open compact subgroup U’. However, U" = U, L 18 0Ot
maximal at p, so we cannot apply Theorem 5.2 directly.

LEMMA 5.3. Suppose that (PO) holds. Then
LV, F)m =~ Z(Vo(p), F)m-
Proof. We first note that the assumption (PO) implies that the injective map

2 (V, Cp)m = Zx(Vo(p), Cp)m (5.2)
is an isomorphism. Indeed, by the Eichler—Shimura isomorphism, the cokernel C of the map (5.2)
k—2

is two copies of the space of ordinary modular forms on B’ which are new at p and hence Ug —p
annihilates C'. We thus conclude that the cokernel of the injective map

i1 L (V,0)m — Z.(Vo(p), O)m

is torsion. By [DT94, Lemma 4], for a sufficiently small open compact subgroup U, 2 (U, O)m
is torsion-free and 2 (U, O)m @ F = £ (U, F)p. This implies that ¢ is an isomorphism, and so is
tQF. a
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COROLLARY 5.4. Let U' = U, .. Suppose that (PO) holds. Then
14+n: XQ(U’,IF)m[Pk]@Z — fQ(Z/{{)(E),IF)m
is injective.

Proof. Let R\, be an Eichler order of level N in B’. Let V = ﬁ% .. By Hida theory for indefinite
quaternion algebras (the case ¢ = 1 in [Hid88, Corollary 8.2 and Proposition 8.3]), we have

LU F)u[Pr] = Z:(Vo(p), P, Lo(Up(0), F)w[Pr] ~ L5 (Vo(lp), F)m.
Combined with Theorem 5.2 and Lemma 5.3, the corollary follows immediately. ]

5.3 Second explicit reciprocity law

Let ¢1,¢2 + A be two n-admissible primes. Let B” be the definite quaternion algebra of
discriminant Agr = Al1fy. Let £ = ¢5. We briefly discuss the reduction of CM points P, €
M,QEI](Hm) modulo /¢, where M is the Shimura curve defined in the same manner in §4.3.2.
Let M%l] be the Kottwitz model of M#l] ®q Ky over Zp2 = Ok,. We recall that, for a Z2-algebra

R and a geometric point § in Spec R, M%l](R) consists of prime-to-£ isogeny classes of triples

[(A,¢,nU")], where:
— A is an abelian surface over R;
—  1:0p — End A ® Zy) satisfies the Kottwitz determinant condition;

— :B'O ~ v (4A5) = TO(A5) @ Q is an isomorphism of Og-modules in the sense that
n(bx) = v(b)n(x) for all b € Op,

and nU' = {n-u|uelU'} is a U'-equivalence class of isomorphisms. Here 7 - u(z) := n(za).
Now let £y, be an elliptic curve with CM by Ok defined over the Hilbert class field Hp of
K and let £ be the Néron model of E ®p, ,, Ky over Ok,. Let A= gx@Kgg and A; = AQ Fp2.
Then B” = End%, (Ay) is the commutant of B’ in End’(As) = Ma(D), where D is the definite
quaternion algebra ramified at ¢ and co. With a suitable endomorphism and level structure (¢ 4,
n4) on A, the CM point Py = [2/, 1]y is represented by [(A, t4, nald")] € M (Kp) = Mq[fl](OKé).
Let ¢pr pr : B"(0% ~ B/O% phe the unique isomorphism such that the following diagram
commutes.

DI x _~ 14
B'©® - VO (As)
right multiplication by ¢z pr(b”) b’

B/(0)x %> 1740 (As)

Let U" = gog},7B/ U)o

By C B"*. Henceforth, we will identify BlOx ~ Breif)x yig gog,l,ﬁ/ o
¥B,B’-

THEOREM 5.5 (Second explicit reciprocity law). Assume that (CR") holds. Then there exists
an n-admissible form D" = (Aly4s, g") such that

ve, (KD (l2)) = vey (kD(4)) = b (D) € On[I].
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Proof. Let

v XB// (U”) _ B//><\§//></u// _ (B//>< NO%

s VB U ) — MI(E )

be the map identifying X g~ (U") with the set of supersingular points in M% ﬂ(F@%) defined by
V(") = [(As, 5,15 - 7 5 (0 WU'))]
(v € B"* (A, 15,m5) = (A, 1a,m4) @ Fp2).

By the definition (4.8) of Heegner points, we have

Pm(a) = [(Av LA,TIA - @B,B’(xm(a)Tn)ul)]a

and hence
Py, (mod ¥) = vy(xpm(a)m).

(£

Let 711 — pic0 (621 5 - Then 7 in turn induces a T B,Q,) (N, p™)-module (via Picard functoriality)
£

Mypt/

map
ot ZIXpr(U")] = TE )0 /T, @ &,(1(2)) = ell(Tyy — g0 — V(@) @ (agy — 1~ )™

By a result of Thara [Tha99, Remark G, p. 19] and Ihara’s lemma (Corollary 5.4), v, is indeed
surjective. Therefore, we obtain a surjective map

Yot B XprU")] = TYNE )0 /T — HY, (K, Tp) ~ O,

Therefore, 7, gives rise to a unique modular form ¢’ € SB"(U”,©,) such that ~,(h) =
(h,g" )y for all h € Z[Xpn(U")] via the identification (2.13). By definition, ¢” is an eigenform
of ']I‘g,l,) (NT,p™). Moreover, by [BD05, Lemma 9.1], ¢’ is an eigenform of the Uy,-operator with
eigenvalue eg,. Define an O-algebra homomorphism )\Bfﬂh] : Tpr(NT,p")o = Oy by t — A¢(t)
if t € Tg},ez)(]\f*,p"), Uy, — €, and Uy, — €p,. Then we conclude that ¢” is an eigenform
of Tg(NT,p") such that t - g”" = )\Eflm(t)g”. Such an eigenform is unique up to OX, since
SE" (U, O)r is a cyclic Tgr (N, p")o-module by [CH12, Proposition 6.8]. By definition, we
verify that

v, (kD (€1)m) = Z V(T (@) )7 ([a]m)

[a]m eGm

= Y (en(@r g hrm(laln)

[a]m eGm

= Z 9" (wm(a))m([alm)-

[(l]m GGm

The rest of the assertions follow from the discussion in [BD05, pp. 61-62]. a
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6. Euler system argument

6.1 Preliminaries for Euler system argument B
In this subsection we assume (Irr), (PO) and (CR™3). Let H = p}(Gq) C GL2(F,) be the image
of the residual Galois representation p} = pf((2 — k)/2) (mod w).

LEMMA 6.1. The group H contains the scalar matrix —1.

Proof. Let Z be the centre of H. By (Irr), Z must be contained in the group IF‘; of scalar
matrices. If p | #H, then it is well known that H contains a conjugate of SLy(FF,) (cf. [Rib97,
Corollary 2.3]), and hence —1 € H. Assume that H has prime-to-p order; then H/Z must be
cyclic, dihedral, or the three exceptional groups Sy, A4, As. By (Irr), H/Z cannot be cyclic. Let
I,, be the image of an inertia group at the prime p in H/Z, which is a cyclic group of order
greater than 5 by the assumption #(F, )¥=1 > 51in (CRT1). This excludes the possibility of H/Z
being the other three exceptional groups. Therefore, H/Z is dihedral and I, is contained in the
cyclic group of even order (k — 1 is odd). This implies that the centre of H/Z is of order two or
four, from which it is easy to deduce that Z contains an element of order two. |

LEMMA 6.2. There exists an element h € H such that Tr(h) = det(h)+1 with det(h) # +1 € ).

Proof. If p does not divide £? — 1 for some ¢ | N~, then we can take h to be the Frobenius Froby.
Otherwise, py is ramified at at least one prime ¢ | N~ by (CR*3), so H contains the image of
an inertia group at ¢ whose order is divisible by p. We will show by arguments in [Rib97] that
H contains a conjugate of GL2(F,), and the lemma follows immediately. Since p | #H and H is
irreducible, we may assume H/Z C PGLy(F) C PGL2(F,) and H contains the group PSLy(F) for
some finite extension F'/IF;, by a well-known result of Dickson. In other words, H C FxGLy(F) and
SLa(F) C HF . In particular, H contains the commutator [H, H] D [SLa(F), SLa(F)] = SLa(F).
Let C := HNGL2(F) be a normal subgroup of H. Then SLy(F) C C C GLo(F'). Let v € H be a
generator of the image of an inertia group I, at the prime p. Then det v = u with u a generator
of ), and the trace Tr(o) = uk/? = k2) ¢ FX is non-zero as #(F))*~* > 2. On the other
hand, write v = v\ with 79 € GL2(F') and A € F);. Then A = Tr(vo)/Tr(y) € F*. We find that
v € C and det C' = F 7. From this analysis, we conclude that

C={hecGLy(F)|dethcF;} CH
and H contains GLa(F,). This completes the proof. O

THEOREM 6.3. Let s < n be positive integers. Let  be a non-zero element in H' (K, Ay ). Then
there exist infinitely many n-admissible primes ¢ such that 0y(x) = 0 and the map

ve + (k) — Hgy (Kp, Ays)
is injective, where () is the O-submodule of H'(K, A; ;) generated by k.

Proof. We follow the proof of [BD05, Theorem 3.2] with some modification. Suppose that (k) ~
O/w"O. Since the map H} (K¢, As1) — Hi (K, Afs) induced by the inclusion is injective for
all n-admissible primes ¢, replacing s by w’"_lke, we may assume s = 1 and Kk € H 1(K , Aﬁl)-
Let F,, = QKBT’D” be the finite extension cut out by p, := p} (modw") : Gq — Autp(Ay,) =
GL2(0O,,). Since p,, is unramified outside Np and (Dg, Np) = 1, K and F), are linearly disjoint.
Put M = KF. Let 7 be the non-trivial element in Gal(X/Q). Then Gal(M/Q) = Gal(K/
Q) x Gal(F,,/Q) can be identified with the subgroup of (7) x Autp(Ay,,). Therefore we may write
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an element of Gal(M/Q) as a pair (77, 0) with j € {0,1} and 0 € Auto(Ay,). By Lemma 6.1 the
image H contains the scalar matrix —1, which in turn implies that p,(Gal(F,/Q)) also contains
the scalar matrix —1. It follows that H'(M/K, As,,) = H'(F/Q, A ,,) = 0 [BD94, Lemma 2.13].
Therefore, the restriction map H' (K, As1) — H'(M, As1) = Hom (G, Ay1) is injective. Let M,
be the (non-trivial) extension on M cut out by the image % of k£ under the restriction to H' (M,
A¢q) =Hom(Gyr, Ag ). Let Cy := R(Gal(M,/M)) C A be an Fp[Gal(M/Q)]-submodule, and
dimg, C, = 2 by (Irr).
Assume without loss of generality that « belongs to an eigenspace for the action of 7 so that

Tk = 0k for some § € {£1}. Under this assumption, the extension M, /Q is Galois. Moreover,
Gal(M,/Q) is identified with the group A, x Gal(M/Q), where Gal(M/Q) acts on A, by the
rule (77, 0)(v) = 6 p1(o)v for (77,0) € Gal(M/Q) and v € A,. As —1 € p,(Gal(F,/Q)), it follows
from Lemma 6.2 that we can choose a triple (v, 7,0) as an element of Gal(M,/Q) such that:

(i) pn(o) € GL2(O,,) has eigenvalues §(= +1) and A, where A\ € (Z/p"Z)* is not equal to

+1 (mod p™) and the order of A is prime to p;

(ii) the element v # 0 € A, and belongs to the d-eigenspace for o.
By the Chebotarev density theorem, there exist infinitely many primes ¢ with ¢4 N such that ¢
is unramified in M, /Q and satisfies

Froby(M;/Q) = (v, 7,0).

Then Froby(M/Q) = (7,0) implies that ¢ is n-admissible. For each prime [ of M above ¢, let d
be the (even) degree of the residue field corresponding to [. Then we have

FI'Ob[(MH/M) = (’U,T,O’)d :U+(SUU+02'I}+-”—|—60’CI71 = dw.

Since d is prime to p, (Frob(M,/M)) = dr(v) # 0 and hence v¢(x) = (K(Frob(M, /M)))e # 0.

This finishes the proof. O
Let A be a square-free integer such that A/N~ is a product of n-admissible primes.

DEFINITION 6.4 (n-admissible set). A finite set S of primes is said to be n-admissible for f if:

(1) all £ € S are n-admissible for f;
(2) the map Sela (K, T},) = @yes Hi (Kr, Trr) is injective.

PROPOSITION 6.5. Any finite collection of n-admissible primes can be enlarged to an n-admissible
set.

Proof. This is a simple application of Theorem 6.3. a

6.2 Control theorem (II)
Let S be an n-admissible set for f. In this subsection we prove control theorems for the compact

—~ 3
Selmer group Sela (Ko, Tf,n). We begin with some preparations. Let L/K be a finite extension
in K.

LEMMA 6.6. The natural map

Sela(L, Tyn) = €@ Hin(Le, Tyn)
Les

is injective.
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Proof. Let C be the kernel of the map Sela(L,T},) — @Peg Hflin(L[,Tfm). If C is non-zero,
then there exists a non-trivial element x in C fixed by Gal(L/K) as Gal(L/K) is a p-group.
Thus, s belongs to Sela (K, Af.,) by Proposition 1.9, and the image of £ under the map Sela (K
Ttn) = Bpeg Hi o (Ko, Ty p) is zero. This contradicts the definition of n-admissible sets. O

LEMMA 6.7. We have an exact sequence
0 — Sela(L, Tyn) — SelX (L, Typ) = @D Hing(Le, Tfn) = Sela(L, Tfn)¥ — 0.
lesS

Proof. We have seen in Propositions 1.6 and 1.7 that the local conditions defining the Selmer
group Sela (L, Tt,,) and Sela (L, Af,,) are orthogonal complements of each other. Therefore, by
Poitou-Tate duality (cf. [Rub00, Theorem 1.7.3]) we have an exact sequence

0 — Sela(L, Typ) — SelA (L, Tf.n) = @D Hing (Lo, Tyn) — Sela(L, Agy)Y.
les

The last map is indeed surjective by Lemma 6.6. a

PROPOSITION 6.8. The O,[Gal(L/K)]-module SelX (L, T} ) is free of rank #S.

Proof. This is a direct generalization of the proof of [BD94, Theorem 3.2] after we replace [BD94,
Lemmas 2.19 and 3.1] with Proposition 1.9 and Lemma 6.7, respectively. O

Remark. 1f f is a new form attached to an elliptic curve E over Q, the assumption (PO) implies
that #E(k,) is prime to p for all places v in K above p, where k, is the residue field of K,, i.e.
p is anomalous for FE.

COROLLARY 6.9. If S is an n-admissible set for f, then:
(1) the natural map S/EEIA(KOO, Ttrn) — Sel(Kp, Tyy) is surjective;
5
(2) Selp(Koo,Tty) is free of rank #S over A/w"A

Proof. Part (2) is an easy consequence of part (1) and Proposition 6.8. Note that Proposition 6.8
implies that the corestriction map cor,, : Seli (Kms1,Ttpn) = Sel® (K, Ty r,) is surjective for all
m by a cardinality consideration. Part (1) follows. O

ProPOSITION 6.10. If S is an n-admissible set, then we have isomorphisms

—~ S —~ S —~. S —~. S
Selp (Koo, Ttn)/ma =~ Selpa (K, T71),  Selp (Koo, Ttn)/wA =~ Selp (Koo, Tt 1)-
Proof. This is a consequence of the combination of Proposition 6.8 and Corollary 6.9. a

6.3 Divisibility

6.3.1 Notation. Let ¢ : A — O, be an O-algebra homomorphism, where O, is a discrete
valuation ring of characteristic 0. Let @, be an uniformizer of O, and m,, the maximal ideal of
O,. If M is a finitely generated O, -module, for each x € M we define

ordg, () :=sup{m € Z>o | * € wy; M }.

It is clear that z = 0 if and only if orde,(z) = co. If M is a A-module, we let M ®, O,
M @7, O@.
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6.3.2 Proof of the main theorem. For a finitely generated A-module M, we denote the
characteristic ideal attached to M by chary(M). Recall the following result of Bertolini and
Darmon [BD05, Proposition 3.1].

LEMMA 6.11. Let M be a finitely generated A-module and L be an element of A. Suppose that
for any homomorphism ¢ : A — O,

lengthp (M ®p Oy) < orde, (p(L)).
Then L € chary (M).

Let n be a positive integer and let A > 1 be a square-free product of an odd number of
prime factors which satisfies Definition 4.1(1). For each n-admissible form D = (A, f,,) as in
Definition 4.1, we define two non-negative integers:

sp = lengthap Sela (Ko, Afm)v Ry Op;
tp = orde, 9(0s0(D))  (¢(00(D)) € OnlI'] ®, Op = Op /().
The following key proposition is the analogue of [PW11, Proposition 4.3]. The proof will be
given in §6.4.

PROPOSITION 6.12. Assume that (CRT) and (PO) hold. Let t* < n be a non-negative integer.
Let Dy = (A, foy=) be an (n + t*)-admissible form and let Dy = Dy (modw”") := (A,
fr+t+ (modw™)) be an n-admissible form. Suppose that tp, < t*. Then we have sp, < 2tp,.

Note that if D = (A, fu4e+) is an (n + t*)-admissible form, then D (modw") = (A,
fntt= (modw")) is an n-admissible form.

Let 7 be the unitary cuspidal automorphic representation of GL2(A) attached to the new
form f. Let

O = Ouo(m,1) € A

be the theta element with trivial branch character defined in [CH12, p. 21].
PROPOSITION 6.13. If A = N, there exists an n-admissible form D}, = (N—, fTTL’[kJ}) such that
(D)) =0, (modw™).

Proof. Let A = N~ and let B be the definite quaternion algebra of absolute discriminant N .
Let A} : Tg(N*) — O be the ring homomorphism defined by A\}(Ty) = aq(f), A}(Sy) =1 if
gt N and A\}(Ug) = aq(f) if ¢ | N. By the Jacquet-Langlands correspondence, there exists a
modular form f € S,f(fix O) such that f # 0(modw) and f is an eigenform of Tg(N ™) and

N+
tf = A3 (0)f for all t € Tp(NT). Let f1 € SB(R*, ., O) be the p-stabilization of f defined by

pNJf’
_o)/2 4— -1 0
£1(b) = £(b) —p=D/241 £ <b (po 1)) .

The theta element 6. is essentially constructed from the evaluation of ff at Gross points
(see [CH12, Definition 4.1]). Define TANGRRE SB(Un+ yn, On) by

£P2(0) o= /BT (X2 A0 (mod "),

Following the argument in the proof of [CH12, Theorem 5.7], one can show that f:b’[kﬁ] £
0 (mod @), and D}, := (N, fl’[k_Q]) is the desired n-admissible form. O
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We deduce our main theorem (Theorem 1) from the above propositions.

THEOREM 6.14. With the hypotheses (CR™) and (PO), we have
charpySel(Koo, Af) D (Lp(Koo, f)).

Proof. Let ¢ : A - O, be an O-algebra homomorphism. If ¢(L, (K, f)) = 0, then ¢(L, (K, f))
clearly belongs to Fitto,, (Sel(Koo, Af)Y @ O,). Therefore we may assume that ¢(L,(Koo, f)) #
0. Choose t* larger than the O -valuation of ¢(L,(K«, f)). For each positive integer n, consider
the (n+t*)-admissible form D,Jz =N, fl;[rli*_m) in Proposition 6.13. Applying Proposition 6.12
to D,{H* and Dj, = D£+t* (mod @), we find that (L, (K, f)) (mod w™) = gp(HOO(D,Ji)Q) belongs
to Fitto, (Sely- (Koo, Af )" @y Op) for all ¢ and n. By Lemma 6.11, Ly(Ks, f) belongs to
NS, Fitty Sely- (Koo, Afpn)¥ = Fitta Sely- (Koo, Af)Y. By [Vat03, CH12], L,(Kx, f) # 0, so
Sely- (Koo, Af) is A-cotorsion. The theorem thus follows from Proposition 1.3. O

COROLLARY 6.15. With the hypotheses (CR™) and (PO), if the central L-value L(f/K,k/2) is
non-zero, then the minimal Selmer group Sel(K, Ay) is finite. Assume, further, that py is ramified
at all ¢ | N~. Then

lengthy (Sel(K, Ay)) + Z tr(0) <ordw<
N+

L(f/K, k/2))
Qy ’

where t¢({) is the Tamagawa exponent at (.

Proof. Note that H!

ord

(K¢, Ay) = {0} for £ | N~, so we have an exact sequence

0 — Sel(K, Af) — Sely- (K, A;) — ] Hi. (K, Ay).
¢N+

By the interpolation formula (0.2) of L,(K«, f) at the trivial character 1 and the fact that
ep(f,1) is a p-adic unit under (PO), we find that

f/K, k/2)

1(Ly(Koo, f)) = u- l o for some u € O*.
!

By Proposition 1.9 and Theorem 6.14,

lengthy (Sely- (K, Af)) = ordg <L(f/g]:k/2)> < 00

In particular, Sely- (K, Ay) is finite, and by [Gre99, Proposition 4.13] the map + is surjective.
Therefore,

lengthe (Sely— (K, Ay)) =lengthy (Sel(K, Af)) + Y lengthe (Hg, (Ky, Ay))
¢N+

= lengtho (Sel(K, Af)) + > t4(0).
¢N+

This finishes the proof. |
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6.4 Proof of Proposition 6.12
We will prove Proposition 6.12 by induction on tp,. If tp, = 0o or sp, = 0 then sp, < 2¢p, holds
trivially. Therefore, without loss of generality, we may assume that:

- Ip, <00 = ¢(0x(Do)) # 0;
—  spy >0 <= Sela(Kw, Afpn) @, O is non-trivial.
We write t = tp,. Consider the (n + t)-admissible form

D = (A, fnie (mod ™).

Let ¢ be an (n+t)-admissible prime which does not divide A. Enlarge {¢} to an (n+t)-admissible
set S with (S,A) =1 and let

_ 5
kp(€) € Selae(Koo, Ttntt) C Selp (Koo, Trnit)

be the cohomology class attached to D and ¢ constructed in §4.3. By Corollary 6.9, the module

5
My, = Selp (Koo, Tt0) ®p Oy is free over O, /p(w™)O,, for all n. Denote by rp ,(¢) the image
of kp(¢) in My, 4+ and let

ep({) := ordg,, (kDo (£))

(which definition also depends on an auxiliary choice of S). It follows from Theorem 5.1 that
ep(f) < orde, (Orkp,p(€)) = orde, (9(00(D))) = orde, (¢(00(Do))) =1

Choose an element rp ,(¢) € M,4¢ which satisfies wzp(z) - kp,p(l) = kp(£). Note that kp ()
is well defined up to the kernel of the homomorphism M, 1+ - M,,. Let HIDM (¢) be the natural
image of the cohomology class kKp ,(¢) in M,,.

5
LEMMA 6.16. The cohomology class kp, ,(£) € Selp (Koo, Tfn) ®p O, satisfies the following
properties:
(1) ordww(ﬁa’p’ (0) =
(2) orde, (9p(kp , (£ ))) =t—ep(l);
(3) 9q(kp,(£)) =0 for all g AL;
(4) resq(rp ,(£)) ord(KoomTfm) ®y, O, for all q | AL.
Proof. By Proposition 6.10, the map M, ;/w,Mp4y - My /weM,, is an isomorphism, so
we have orde, (kp ,(€)) = orde, (Fp,(¢)) = 0. Part (1) follows immediately. Part (2) is a
direct consequence of Theorem 5.1. Part (3) and (4) follow from the fact that xp(¢) belongs

to S/\elM(KOO,T n+t) ®p Oy and the freeness result of the ordinary cohomology group at /¢ in
Lemma 1.5. O

LEMMA 6.17. Let 1y be the natural homomorphism
Hsmg(KM, Ttn) ®p Op = Sela (Koo, Apn)Y @y O,

sending r to 1e(k) : s — (k,ve(s))e. Then ny(0(kp ,(€))) = 0.

Proof. Let s € Sela (Koo, Afn)ker ¢]. By Lemma 6.16(3), (4), we see that (9,(kp ,(£)), vg(s))q =
0 for all ¢ # ¢. The lemma thus follows from the global reciprocity law (1.1). O

LEMMA 6.18. Ift =0, then sp, = 0, i.e. Sela (Koo, Afp)Y ®y Oy, is trivial.
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Proof. If t = 0, then ¢(0(Do)) is a unit in Op/(wy). By Theorem 5.1, this implies that

Or(kp,(f)) generates ﬁsling(Koo,Za T,) ®, O, for any admissible prime ¢. Therefore the map 7,

in the Lemma 6.17 is trivial for all admissible primes. Assume that Sela (Koo, Afy)Y ®, O, is
non-trivial. By Nakayama’s lemma,

(SelA(KOO, Af,n)v Ry (930)/111(9(/2 = (SelA(Koo, Af’n)[mADv Ry (’)W/mow

is non-zero. Let s be a non-trivial element in Sela (Koo, Afy)[ma]. By Proposition 1.9(1),
Sela (Koo, Afn)[ma] = Sela(K, Af1), so s can be viewed as an element in H'(K, As;). By
Theorem 6.3, we can choose an n-admissible prime ¢ { A such that dy(s) = 0 and wvy(s) # 0.
Since the local Tate pairing (, )¢ is perfect, 7, is non-zero. This is a contradiction. O

In view of Lemma 6.18, we may assume that ¢ > 0. Let II be the set of rational primes ¢
satisfying the following conditions:

(1) ¢1is (n+ t*)-admissible and ¢ 1 A;
(2) the integer ep(£) = orde, (Kp,,(£)) is minimal among £ satisfying the condition (1).
Then IT # @ by Theorem 6.3. Let e = ep(¢) for any ¢ € II.

LEMMA 6.19. We have e < t.

Proof. Suppose that e = ¢t. Then ep(¢) =t for all (n 4 t*)-admissible primes ¢ since ep(¢) < t.
By Proposition 1.9(1), HY (K, A1) — H'(K., A,)[ma] is an isomorphism. Hence there exists a
non-zero element

5 # 0 € Sela (Koo, Afp)[ma] € HY(K, A1) @, O.

By Theorem 6.3(1), there exists an (n + t*)-admissible prime ¢ such that vy(s) is non-zero in
H} (K, A1) ®, O,. On the other hand, by Lemma 6.16(4), the image of 9e(Kp ,(£)) in H(K,,
T,1)®, O, is non-zero. Moreover, by Lemma 6.17, the image of 0y (k7 ,(¢)) in HY (K, T11)®,0,
is orthogonal to vy(s) with respect to the local Tate pairing. Since the local Tate pairing

Hg (K, Af1) ®p Op x Hypo (K, Tp1) @ Op — Op[w,0,

sing

is perfect and H} (K, A1) ®, O, and Hsling(K ,Tr1) ®p O, are one-dimensional vector spaces

over O, /w,O,, this is a contradiction. O

Let ¢1 € Il and S be an (n+t*)-admissible set containing 1. Let x1 be the image of k7, ,(¢1)
in

5 —~5 1
Sela (Koo, Trn) ®p Op/wpOp = Selp (Koo, Tyn)/mn @p Op = H (K, Ty,1) ®¢ O,

where the last map induced by the corestriction is injective by Proposition 6.10. Hence, ki is
a non-zero element in H'(K,Ts;) ®, O,. By the first part of Theorem 6.3, there exists an
(n 4 t*)-admissible prime ¢ { A such that dp, (k1) = 0 and

viy (k1) # 0 € Hi (K, Tr1) @ O

It follows from the fact that vy, (x1) # 0 and the minimality of e = ep(¢1) = orde,, (kp,,(f1))
that

orde,, (Ve, (Kp,e(£1))) = orde, (Kp,p(£1)) < orde, (kp,,(¢2)) < orde,, (ve, (KD, (f2)))

894

https://doi.org/10.1112/50010437X14007787 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X14007787

ANTICYCLOTOMIC IWASAWA MAIN CONJECTURE FOR MODULAR FORMS

(the last inequality is due to the fact that vy, is a homomorphism). By the second explicit
reciprocity law (Theorem 5.5), there exists an (n+¢*)-admissible form Dj. = (Al1£a, gn4+) such
that

Ve, (kD (01)) = gy (kD (£2)) = 00 (DY) (DY = (Alila, gnge- (mod w"™H))).
In particular, orde,, (ve, (KD, (£2))) = orde, (ve, (kD (¢1))). We thus conclude that
orde, (ve, (kp,p(f1))) = ep(f1) = ep(f2) =e and £z € 1L
Let Df := (Al1la, gntt= (mod w™)). Then we have
tpy = orde, (p(00(Dp))) = e <t =tp, < t".

Therefore, we can apply the induction hypothesis to Dj. and conclude that spy < 2tpy. To finish
the proof, it suffices to show that

5Dy & spy + 2(t — tD(’)’)' (6.1)

Let Sjg, ¢,) denote the subgroup of Sela (K, T,,) consisting of classes which are locally trivial
at the primes dividing ¢ and ¢5. By definition, there are two exact sequences of A-modules:

Ao (Koo, Trn) ® H g (Koot Tyn) —=> Sela (Koo, Apn)Y = Sigy — 0 (6.2)
and
Hi (Koo, Trn) @ Hiy (Koot Trn) — Selay e, (Kooy Apn)” = Sif g = 0, (6.3)

where 1, and 7y are induced by the local pairing (, )¢, ® (, )s,. Let ng (respectively n?) denote
the map induced from 7, (respectively nf) after tensoring with O, via ¢. Fixing an isomorphism

D7, ﬁsling(Koo,Ein,n) ®yp Op ~ OF?, from Lemma 6.17 we deduce that 7{ factors through the
quotient

O/ (01, (K, (11))) © Op / (01, (Kp 4 (£2)))-
Moreover, by Lemma 6.16(4), we have
t—tpy = Ordww(agllilp?w(fl)) = orde,, (8&/{'&@(62)).
Hence, from (6.2) we obtain the exact sequence

t—t
D

(Os@/(ww

LEMMA 6.20. The kernel of njf contains the elements (0, v, (kp ,(¢1))) and (vg, (Kp ,(£2)),0).

(%]
))©2 LN Sela (Koo, Ag )Y @, Oy — 5[\[{142] ®p Op — 0. (6.4)

Proof. Let s € Selag, s, (Koo, Afn)ker ¢]. By Lemmas 1.7 and 6.16(3), (4), we have

(0q(Kp o (£1)),vq(s))g =0 for ¢t ALy and  (resy, (Kp ,((1)),Tesy, (s))e, = 0.

By the global reciprocity law, we find that (v, (kp ,(¢1)), ress,(s))e, = 0. The same argument
shows that (vg, (K ,(£2)), rese, (s))e, = 0. This completes the proof. O
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Fixing an isomorphism @?:1 ﬁén(K&gin’n) ®yp Op =~ (9%2, from (6.3) and Lemma 6.20 we
deduce the exact sequence

,'7%9
O/ (v, (Kp (1)) ® O/ (ve, (Rp (£2))) —> Selacyts (Koos Afn)¥ ®p Op = Sif 1, ®p O — 0.

Note that

orde, (ve, (KD, (£1))) = orde, (vr, (kD 4 (£2))) = tpy — € =0.

We thus find that

SelMng (Koo, Afyn)v Ry O(p 5 S[\éﬂz] Ry Otp' (6.5)

Now it is clear that (6.1) follows from (6.4) and (6.5).
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