CORRESPONDENCE.

REPLY TO "A CHALLENGE".

To the Editor of the Mathematical Gazette.

Dear Editor,-This reply to "Wrangler's" challenge in the current number of the Gazette is sent off post-haste, as I believe that the acceptors of such challenges strove to be first in the field.

To find p the probability that a man of age a reaches age b, multiply ($b-a$) by the mean of the reciprocals of the expectations of life from a to \bar{b}, add the logarithm of the expectation at b and subtract the logarithm of the expectation at a, thus obtaining the logarithm of $1 / p$ (natural logarithms are to be used or the product should be multiplied by μ).

If $f(x)$ is the chance that a man of age a reaches the age $a+x$, and $\phi(x)$ the expectation of life at that age,

$$
\phi(x)=\frac{1}{f(x)} \int_{x}^{\infty} f(x) d x
$$

or if $f(x)$ is the derivative of a function $F^{\prime}(x)$,

$$
\begin{equation*}
\frac{1}{\phi(x)}=\frac{f(x)}{F(\infty)-F^{\prime}(x)}, \tag{i}
\end{equation*}
$$

and, integrating, we have

$$
\int_{0}^{x} \frac{d x}{\phi(x)}=-\log \frac{F(\infty)-F(x)}{c},
$$

where c is a constant. Thus making use of (i),

$$
\int_{0}^{x} \frac{d x}{\phi(x)}=-\log \frac{f(x) \cdot \phi(x)}{c} .
$$

As $f(0)=1$, we have $c=\phi(0)$ and

$$
\log f(x)=\log \phi(0)-\log \phi(x)-\int_{0}^{x} \frac{d x}{\phi(x)}
$$

For example, if the expectations of life at yearly intervals from 50 to 60 are
then $20 \cdot 3,19 \cdot 5,18 \cdot 9,18 \cdot 2,17 \cdot 6,16 \cdot 9,16 \cdot 2,15 \cdot 6,15 \cdot 0,14 \cdot 4,13 \cdot 8$,

$$
\log \phi(0)-\log \phi(x)=\log 20 \cdot 3-\log 13 \cdot 8=\cdot 7080-.3221,
$$

while for the integral Simson's rule gives $\cdot 5979$, so that $\log p: \overline{1} \cdot 7880$ and $p=\frac{4}{5}$ approximately. Consequently the chance that two men of 50 reach 60 is about $\frac{16}{2}$, that neither do so about $\frac{1}{25}$, and that one only does so about $\frac{8}{25}$.
C. H. Hardingham.

July 3, 1932.

IS THE EARTH ROUND OR FLAT ?

To the Editor of the Mathematical Gazette.
Str,-Has the above question any meaning? If it is not possible for human beings to prove that the Earth is either round or flat, surely the question becomes meaningless. I give below reasons for thinking that we cannot answer the question one way or the other.

Let us take a system of three unit vectors, e_{1}, e_{2}, e_{3}, at right angles to each other and use spherical polar coordinates, viz. ϕ for the co-latitude measured from e_{3}, θ for the meridian angle measured from e_{1}, r for the radius vector.

