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Small viscous effects in high-Reynolds-number rotational flows always accumulate
over time to have a leading-order effect. Therefore, the high-Reynolds-number limit
for the Navier–Stokes equations is singular. It is important to investigate whether
a solution of the Euler equations can approximate a real flow at large Reynolds
number. These facts are often overlooked and, as a result, the Euler equations are
used to simulate laminar rotational flows at large Reynolds number. Based on the
Fredholm alternative, an asymptotic perturbation theory is described to establish secularity
conditions determined by viscosity for an inviscid solution to approximate a real viscous
fluid. Four important classical inviscid solutions are investigated using the theory with
the following conclusions. The Stuart cats’ eyes and Mallier–Maslowe vortices are
inconsistent with any real fluid at high Reynolds number; whereas Hill’s spherical vortex
is confirmed to be consistent with a steady state in the spherical core region and the
Lamb–Chaplygin dipole is found to be consistent with a quasi-steady state in the circular
core region. These solutions have been widely used for analysing the stability of vortex
flows and wakes, and their interactions with shock waves or bubbles. Serendipitously, we
have revealed an original exact solution of the Navier–Stokes equations which is time
dependent, has non-zero nonlinear convective terms and is restricted to a finite domain
with the decay rate depending on dipole radius.

Key words: vortex dynamics, Navier–Stokes equations

1. Introduction

Surprisingly, no general method exists to establish whether or not an exact inviscid
steady state solution approximates the behaviour of a real viscous fluid at high Reynolds
number. This may be due to the widely held view that viscous effects are either a regular
perturbation or a singular perturbation in the form of an interior or boundary layer. In
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fact, viscous effects always represent a singular perturbation for rotational flows even
in the absence of interior/boundary layers. In the high-Reynolds-number limit, small
viscous terms in the Navier–Stokes equations accumulate over time to have a leading-order
effect. Therefore, the amplitude of the rotational flow must satisfy secularity conditions
determined by viscosity. The absence of research on this topic is in stark contrast to other
fields, such as wall-bounded shear flows at high Reynolds number. Boundary-layer theory
has achieved significant success in wall-bounded shear flows, for example, uniform flow
over a semi-infinite plate (Smith & Burggraf 1985; Smith, Doorly & Rothmayer 1990),
Hagen–Poiseuille flow (Smith & Bodonyi 1982) or vortex–wave interaction theory (Hall
& Smith 1991).

In this paper, we will investigate whether or not a steady rotational solution of the Euler
equations can approximate a real flow at large Reynolds number. The techniques described
in this article are irrelevant for irrotational flows, because irrotational flows are exact
solutions of the full Navier–Stokes equations. Exact inviscid steady state solutions can
provide valuable physical insight and serve to validate the accuracy of numerical solutions,
but they are of greatest interest when they approximate the behaviour of a real fluid in
the high-Reynolds-number limit. Physical inviscid steady state solutions may approximate
either steady states or quasi-steady states of the Navier–Stokes equations, a quasi-steady
state being defined to be a leading-order solution which only varies on a long time scale.
We will investigate both situations due to the following considerations. Stable steady
states are of the greatest interest, but unstable steady states also play an important role
as intermediate states in flow evolution. Long-lived quasi-steady states have been shown
to be the destination of two-dimensional turbulence in a periodic domain (Matthaeus et al.
1991a,b; Montgomery et al. 1992), so these solutions are also of physical significance. In
order to be a quasi-steady state, an exact inviscid steady state solution must have at least
one free parameter.

Vortices are present everywhere in nature and technology. As examples, vortical
structures are relevant to the understanding of atmospheric and oceanic circulations,
mesoscale vortices being found everywhere in the atmosphere and the oceans which cover
the Earth. The most common vortices in geophysical fluid dynamics are monopoles and
dipoles. Therefore, it is important to study isolated vortices (Wu, Ma & Zhou 2006).

Many exact inviscid steady states have been found by many methods (Saffman 1992;
Meleshko & van Heijst 1994; Wu et al. 2006). However, certain fundamental solutions of
the Euler equations, such as the point vortex and the straight line vortex, are not susceptible
to our analysis. In this article, we consider four exact inviscid steady states with the first
two being considered together due to their similarity.

• Stuart (1967) determined an exact inviscid solution in the form of a steady single
vortex row with finite cores. Each core resides in a two-dimensional rectangular
domain which is periodic in the streamwise direction and infinite in the lateral
direction. Mallier & Maslowe (1993) presented the corresponding result for a
steady row of counter-rotating vortices. Both of these exact solutions have a single
free parameter, so they could represent quasi-steady states of the Navier–Stokes
equations.

• Hill (1894) discovered an exact inviscid solution in the form of an axisymmetric
steady vortex ring enclosed within a sphere. With the addition of a pressure
correction, the exact inviscid solution may be converted to an exact solution of the
Navier–Stokes equations (Saffman 1992). The addition of an appropriate correction
is one of the few existing methods to establish that an exact inviscid steady state
solution approximates the behaviour of a real viscous fluid. Unfortunately, in almost
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all other cases, it is impossible to determine whether or not a first correction exists.
Hill’s spherical vortex will be used to check our more general approach. Moffatt
(1969) extended Hill’s spherical vortex to allow for non-zero azimuthal velocity, but
this solution of the Euler equations will not be considered in this article. Moffatt
& Moore (1978) and Protas & Elcrat (2016) investigated the stability of Hill’s
spherical vortex to axisymmetric disturbances. Crowe, Kemp & Johnson (2021)
recently predicted the decay of the vortex speed and radius of Hill’s spherical vortex
in a weakly rotating flow due to the radiation of inertial waves.

• Lamb (1895) and Chaplygin (1903) independently found an exact inviscid solution
in the form of a vortex dipole enclosed within a circle. The vortex profiles have been
shown to be in good agreement with numerical solutions of the two-dimensional
Navier–Stokes equations (Couder & Basdevant 1986). This exact solution has a
free parameter, so it could also represent a quasi-steady state of the Navier–Stokes
equations.

These and other classical Euler solutions have been widely used to analyse the stability
of vortex flows and wakes (Pierrehumbert & Widnall 1982; Dauxois, Fauve & Tuckerman
1996; Julien, Chomaz & Lasheras 2002), the interaction of a vortex and a bubble (Higuera
2004) or a shock wave (Pirozzoli 2004). They are also associated with the study of coherent
structures in turbulence, which has fostered the hope that the study of vortices will also
lead to a better understanding of turbulent flows (Saffman 1992). As such, it is important
to know if they describe real viscous fluid flows.

For many years, expansions in terms of the amplitude have been used to investigate
oscillations in fluid mechanics. For example, Stuart (1960) produced seminal work on the
weakly nonlinear analysis of waves in plane Poiseuille flow. More recently, quasi-steady
states of finite amplitude have been studied in fluid mechanics using the asymptotic
techniques employed in this article. Kuzmak (1959) introduced the strongly nonlinear
analysis of ordinary differential equations. His technique has recently been applied to the
Rayleigh–Plesset equation in order to model the viscous decay of oscillating spherical
bubbles (Smith & Wang 2017) and to the Keller–Miksis equation in order to describe the
radiative decay of oscillating spherical bubbles (Smith & Wang 2018). Kuzmak’s method
has also been applied to the three-dimensional Navier–Stokes equations to successfully
predict the viscous decay of an oscillating drop (Smith 2010). Kuzmak’s method has not
been previously applied to steady states in fluid mechanics or in any other field.

Our study is based on the asymptotic analysis of the Navier–Stokes equation in terms of
the reciprocal of the Reynolds number. The leading-order solutions are the steady Euler
equations. By exploring the existence of the solutions to the first-correction equations, we
establish the form of the solvability conditions (modulation equations) which control the
amplitude of steady states (quasi-steady states) at high Reynolds number. For travelling
waves in two-dimensional plane Poiseuille flow and two-dimensional Kolmogorov flow,
the modulation equations have been shown to be single equations for averaged momentum
and energy and a family of equations for averaged powers of vorticity (Smith & Wissink
2015, 2018). Modulation equations are a property of the equations and not of the solutions
being considered, so these modulation equations apply whenever the leading-order
problem is a two-dimensional travelling wave. These equations will also control the
amplitude of two-dimensional steady states and quasi-steady states. The question is
whether or not there exist additional solvability conditions (modulation equations) when
we consider steady states (quasi-steady states).

The contents of the paper will now be outlined. Stuart cats’ eyes and Mallier–Maslowe
vortices are studied in § 2, Hill’s spherical vortex in § 3 and the Lamb–Chaplygin dipole in
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Figure 1. Streamlines for the (a) Stuart cats’ eyes (2.13) and (b) Mallier–Maslowe vortices (2.18).

§ 4. In each of these three sections, asymptotic analysis based on the Fredholm alternative
is applied to determine whether or not viscous corrections exist. Finally, § 5 gives a brief
discussion of the results.

2. Stuart cats’ eyes and Mallier–Maslowe vortices

Stuart cats’ eyes (Stuart 1967) and Mallier–Maslowe vortices (Mallier & Maslowe 1993)
are two exact solutions to the Euler equations describing a row of vortices. Their
streamlines are displayed in figure 1, with Stuart cats’ eyes being a row of co-rotating
vortices and Mallier–Maslowe vortices being a row of counter-rotating vortices. The two
classical solutions have been widely used to analyse the stability of the von Kármán vortex
street, a repeating pattern of swirling vortices which appear in the wake of an object placed
in a flowing stream of fluid (Pierrehumbert & Widnall 1982; Dauxois et al. 1996; Julien
et al. 2002). We will discuss if these two classic solutions approximate solutions to the
Navier–Stokes equation.

2.1. Introduction
In this subsection, we will describe the mathematical model for Stuart cats’ eyes and
Mallier–Maslowe vortices. We consider the two-dimensional Navier–Stokes equations and
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the continuity equation for incompressible Newtonian fluids in the form

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ ∂p
∂x

= −ε ∂ω
∂y
, (2.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ ∂p
∂y

= ε
∂ω

∂x
, (2.1b)

∂u
∂x

+ ∂v

∂y
= 0, (2.1c)

in which (x, y)T are Cartesian coordinates, t is time, (u, v)T is the velocity vector, p is the
pressure, ω is the vorticity given by

ω = ∂v

∂x
− ∂u
∂y
, (2.2)

ε = 1/Re is the reciprocal of the Reynolds number Re and 0 < ε � 1 for
high-Reynolds-number flows. The periodic boundary conditions in the streamwise
direction are

[u, v, p](0, y, t) = [u, v, p](2π, y, t). (2.3)

The far-field boundary conditions in the lateral direction for Stuart cats’ eyes are

u → ±1 as y → ±∞, v → 0 as y → ±∞, (2.4a,b)

and for Mallier–Maslowe vortices are

u → 0 as y → ±∞, v → 0 as y → ±∞. (2.5a,b)

2.2. The leading-order solution
We will first perform the perturbation procedure on the nonlinear system (2.1)–(2.3) with
(2.4a,b) or (2.5a,b). The solutions for Stuart cats’ eyes and Mallier–Maslowe vortices will
then be obtained in §§ 2.2.1 and 2.2.2, respectively. We introduce expansions of the form

u ∼ u0 + εu1, v ∼ v0 + εv1, p ∼ p0 + εp1, ω ∼ ω0 + εω1, (2.6a–d)

as ε → 0. At leading order, for the quasi-steady state, we obtain

L̄u0 + ∂p0

∂x
= 0, L̄v0 + ∂p0

∂y
= 0,

∂u0

∂x
+ ∂v0

∂y
= 0, (2.7a–c)

with the differential operator

L̄ = u0
∂

∂x
+ v0

∂

∂y
. (2.8)

We take the x-derivative of the second equation in (2.7a–c) minus the y-derivative of
the first equation in (2.7a–c) to find that L̄ω0 = 0. A streamfunction ψ is defined by the
equations

u0 = ∂ψ

∂y
, v0 = −∂ψ

∂x
, (2.9a,b)

so that the third equation in (2.7a–c) is automatically satisfied and the vorticity equation
may be rewritten as

∂ψ

∂y
∂ω0

∂x
− ∂ψ

∂x
∂ω0

∂y
= 0. (2.10)
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2.2.1. Stuart cats’ eyes
The Stuart cats’ eyes correspond to the solution of (2.10) given by ω0 = − exp{−2ψ}, so
that ψ satisfies the partial differential equation

∂2ψ

∂x2 + ∂2ψ

∂y2 = exp{−2ψ} (2.11)

with the boundary conditions

ψ(0, y, t̃) = ψ(2π, y, t̃), ψ → ±y as y → ±∞. (2.12)

The Stuart cats’ eyes are a solution of this boundary value problem in the form

ψ(x, y, t̃) = log[C(t̃) cosh( y)+ A(t̃) cos(x)], (2.13)

where C(t̃) > 1, A(t̃) = (C(t̃)2 − 1)1/2 > 0 and t̃ = εt. The streamlines for C(t̃) = 1.1 are
shown in figure 1(a). We deduce that

u0 = C(t̃) sinh( y)
C(t̃) cosh( y)+ A(t̃) cos(x)

, v0 = A(t̃) sin(x)
C(t̃) cosh( y)+ A(t̃) cos(x)

. (2.14a,b)

The leading-order kinetic energy is given by E0 = (u2
0 + v2

0)/2. We note that ψ , v0 and ω0
(u0) are even (odd) in y about y = 0. At leading order, the Bernoulli function, H, may be
written in the form

H(ψ) = p0 + E0 = 1
2 {1 − e−2ψ }. (2.15)

2.2.2. Mallier–Maslowe vortices
The Mallier–Maslowe vortices correspond to the solution of (2.10) given by ω0 = (1 −
B2) sinh{2ψ}/2, so that ψ satisfies the partial differential equation

∂2ψ

∂x2 + ∂2ψ

∂y2 = −(1 − B2)

2
sinh{2ψ} (2.16)

with the boundary conditions

ψ(0, y, t̃) = ψ(2π, y, t̃), ψ → 0 as y → ±∞, (2.17)

where 0 < B(t̃) < 1 and t̃ = εt. The Mallier–Maslowe vortices are a solution of this
boundary value problem in the form

ψ(x, y, t̃) = log
[

cosh(B(t̃)y)− B(t̃) cos(x)
cosh(B(t̃)y)+ B(t̃) cos(x)

]
= −2arctanh

[
B(t̃) cos(x)
cosh(B(t̃)y)

]
. (2.18)

The streamlines for B(t̃) = 1/2 are shown in figure 1(b). We deduce that

u0 = 2B(t̃)2 cos(x) sinh(B(t̃)y)

cosh2(B(t̃)y)− B(t̃)2 cos2(x)
, v0 = − 2B(t̃) sin(x) cosh(B(t̃)y)

cosh2(B(t̃)y)− B(t̃)2 cos2(x)
. (2.19a,b)

We note that ψ , v0 and ω0 (u0) are even (odd) in y about y = 0. Furthermore, these
solutions are such that ψ , u0 and ω0 (v0) are odd (even) in x about zeros of u0. At leading
order, the Bernoulli function, H, may be written in the form

H(ψ; B) = p0 + E0 = −(1 − B2)

4
cosh{2ψ}. (2.20)
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2.3. The first correction
We now derive the linear problem for the first correction and the conditions (2.30) under
which it may have a solution. At the next order, we have

Lz =

⎛
⎜⎜⎜⎝

−∂u0

∂ t̃
− ∂ω0

∂y

−∂v0

∂ t̃
+ ∂ω0

∂x
0

⎞
⎟⎟⎟⎠ , (2.21)

in which

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

L̄ + ∂u0

∂x
∂u0

∂y
∂

∂x
∂v0

∂x
L̄ + ∂v0

∂y
∂

∂y
∂

∂x
∂

∂y
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, z =

⎛
⎝u1
v1
p1

⎞
⎠ , (2.22)

with the periodic and far-field boundary conditions

[u1, v1, p1](0, y, t̃) = [u1, v1, p1](2π, y, t̃), (2.23a)

u1 → 0 as y → ±∞, v1 → 0 as y → ±∞. (2.23b)

A general solution to the linear problem for the first correction (2.21)–(2.23) is very
difficult to find. Therefore, we investigate the adjoint problem in order to determine the
conditions under which the problem for the first correction has a solution. Following the
analysis in Smith (2007), we have an equation with the right-hand side in divergence form

rTLz − zTL∗r = ∂

∂x
[u0{au1 + bv1} + ap1 + cu1]

+ ∂

∂y
[v0{au1 + bv1} + bp1 + cv1], (2.24)

in which the adjoint operator L∗ and vector r are given by

L∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−L̄ + ∂u0

∂x
∂v0

∂x
− ∂

∂x
∂u0

∂y
−L̄ + ∂v0

∂y
− ∂

∂y

− ∂

∂x
− ∂

∂y
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, r =

⎛
⎝a

b
c

⎞
⎠ . (2.25)

Equation (2.24) may be integrated to yield

〈rTLz − zTL∗r〉 = 0, (2.26)

where

〈 . 〉 =
∫ 2π

x=0

∫ ∞

y=−∞
. dy dx, (2.27)
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provided that the following conditions are satisfied

[a, b, c](0, y, t̃) = [a, b, c](2π, y, t̃), (2.28a)

b → 0 as y → ±∞. (2.28b)

It follows from (2.26) that if
L∗r = 0, (2.29)

subject to the conditions (2.28), then our linear problem for the first correction
(2.21)–(2.23) can only have a solution if〈

−a
[
∂ω0

∂y
+ ∂u0

∂ t̃

]
+ b

[
∂ω0

∂x
− ∂v0

∂ t̃

]〉
= 0, (2.30)

for any r = (a, b, c)T in the null space of the adjoint problem. It remains to find the linearly
independent solution vectors r and substitute them into (2.30).

Two linearly independent solutions of the adjoint problem (2.29) and (2.28) are

r1 = (0, 0, 1)T, r2 = (1, 0, u0)
T. (2.31a,b)

One infinite family of linearly independent solutions is given by

r3 =
(
∂

∂y
(ωn−1

0 ),− ∂

∂x
(ωn−1

0 ),−(n − 1)
n

ωn
0

)T

, (2.32)

for n > 1 and n ∈ IR. The vorticity is finite for these flows. The function ωn
0 is thus

continuous on [−ωmax, ωmax], where ωmax bounds the values of vorticity. Given this
condition, the Weierstrass approximation theorem ensures that a polynomial

p(ω0) = a0 + a1ω0 + · · · + aqω
q
0, (2.33)

exists with ai real constants and q a non-negative integer, which uniformly approximates
ωn

0 on [−ωmax, ωmax]; that is,

p(ω0)− ε̂ < ωn
0 < p(ω0)+ ε̂, (2.34)

for any ε̂ > 0. We note that a0 = 0 in this case and consider the vector space of
polynomials p(ω0) over the field of real numbers. If we construct a basis for this space
of polynomials {ωn

0 | n ∈ IN}, then all functions in {ωm
0 | m ∈ IR, m > 1} are uniformly

approximated by our basis. Hence, it is sufficient to construct modulation equations for
the basis, taking the powers to be natural numbers. A countably infinite family of linearly
independent solutions of the adjoint problem (2.29) and (2.28) have been deduced; that is,
r3 for n in the natural numbers.

A further infinite family of linearly independent solutions is given by

r4 =
(

f (ψ)u0, f (ψ)v0,

∫ ψ

f (s)H′(s) ds
)T

, (2.35)

where f (s) is a differentiable function. As f (s) is not defined on a bounded interval, the
Weierstrass approximation theorem does not apply in this case.

2.4. Modulation equations
The first solution to the adjoint problem, r1, corresponds to a trivial modulation equation.
The second solution results in a degenerate modulation equation due to the parity in y
of both the Stuart cats’ eyes and Mallier–Maslowe vortices. Only the third and fourth
solutions correspond to physical modulation equations to be described in the following.
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2.4.1. Vorticity to the power n modulation equations
If we substitute the third vector r3 into (2.30), then we obtain our first secularity conditions〈

− ∂

∂y
(ωn−1

0 )

[
∂ω0

∂y
+ ∂u0

∂ t̃

]
− ∂

∂x
(ωn−1

0 )

[
∂ω0

∂x
− ∂v0

∂ t̃

]〉
= 0. (2.36)

After integration by parts in both x and y, we derive〈
ωn−1

0
∂

∂y

[
∂ω0

∂y
+ ∂u0

∂ t̃

]
+ ωn−1

0
∂

∂x

[
∂ω0

∂x
− ∂v0

∂ t̃

]〉
= 0. (2.37)

This may be rewritten as the modulation equations

d
dt̃

〈
ωn

0
〉 =

〈
nωn−1

0

[
∂2ω0

∂x2 + ∂2ω0

∂y2

]〉
, (2.38)

for n ∈ IN.

2.4.2. Generalized energy modulation equations
If we substitute the fourth vector r4 into (2.30), then we obtain the further secularity
conditions 〈

f (ψ)u0

[
−∂ω0

∂y
− ∂u0

∂ t̃

]
+ f (ψ)v0

[
∂ω0

∂x
− ∂v0

∂ t̃

]〉
= 0. (2.39)

This may be rewritten as 〈
f (ψ)

[
∂E0

∂ t̃
+ u0

∂ω0

∂y
− v0

∂ω0

∂x

]〉
= 0. (2.40)

Equations (2.38) and (2.40) are termed as the vorticity to the power n modulation equations
and the generalized energy modulation equations, respectively. They are necessary
conditions for the solutions of the Euler equations to approximate the solutions for the
Navier–Stokes equation.

2.5. Inconsistency of the steady state
We consider the energy solvability condition for the steady state by taking ∂E0/∂ t̃ = 0 and
f (ψ) = 1 in (2.40); that is, 〈

v0
∂ω0

∂x
− u0

∂ω0

∂y

〉
= 0. (2.41)

We will show that both Stuart cats’ eyes and Mallier–Maslowe vortices do not satisfy this
steady solvability condition (2.41) in §§ 2.5.1 and 2.5.2, respectively. Thus, they do not
approximate a steady state of the Navier–Stokes equations.

2.5.1. Stuart cats’ eyes
If we substitute for the leading-order solution (2.13)–(2.15), the solvability condition (2.41)
becomes ∫ 2π

x=0

∫ ∞

y=−∞
−2{A2 sin2(x)+ C2 sinh2( y)}

[C cosh( y)+ A cos(x)]4 dy dx = 0. (2.42)

The left-hand side of this solvability condition is non-zero and the solvability condition
is not satisfied. The problem for the first correction (2.21)–(2.23) does not have a
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solution by the Fredholm alternative. Stuart cats’ eyes are solutions to the steady Euler
equations, but are not a leading-order solution to the steady Navier–Stokes equations for
high-Reynolds-number flows. As such, Stuart cats’ eyes do not approximate a steady state
of the Navier–Stokes equations.

2.5.2. Mallier–Maslowe vortices
If we substitute for the leading-order solution (2.18)–(2.20), the solvability condition (2.41)
becomes ∫ 2π

x=0

∫ ∞

y=−∞
−(1 − B2)E0 cosh(2ψ) dy dx = 0. (2.43)

The left-hand side of this solvability condition is non-zero and the solvability condition is
not satisfied. The problem for the first correction (2.21)–(2.23) does not have a solution by
the Fredholm alternative. Mallier–Maslowe vortices are the solutions to the steady Euler
equations, but do not approximate a steady state of the Navier–Stokes equations.

2.6. Inconsistency of the quasi-steady state
We will show that both Stuart cats’ eyes and Mallier–Maslowe vortices do not satisfy
the modulation equations (2.38) in §§ 2.6.1 and 2.6.2, respectively. Thus, they do not
approximate quasi-steady states of the Navier–Stokes equations.

2.6.1. Stuart cats’ eyes
We substitute the leading-order solution (2.13)–(2.15) into the vorticity modulation
equations (2.38) to obtain

dC
dt̃

=
A

〈
1 − 2

{
A2 sin2(x)+ C2 sinh2( y)

}
[C cosh( y)+ A cos(x)]2n+2

〉
〈

A cosh( y)+ C cos(x)
[C cosh( y)+ A cos(x)]2n+1

〉 , (2.44)

for n ∈ IN. These equations are inconsistent for different values of n because they contain
different terms, figure 2(a) representing an example of the solution for an arbitrary initial
condition. The problem for the first correction (2.21)–(2.23) does not have a solution by
the Fredholm alternative. Stuart cats’ eyes do not approximate a quasi-steady state of the
Navier–Stokes equations. This result could have been anticipated because changes in C
only correspond to a redistribution of vorticity (Wu et al. 2006).

2.6.2. Mallier–Maslowe vortices
We substitute the leading-order solution (2.18)–(2.20) into the vorticity modulation
equations (2.38) to yield

dB
dt̃

= 〈ωn
0[8E0 − (1 − B2) cosh(2ψ)]〉〈

ωn−1
0

∂ω0

∂B

〉 , (2.45)

where n is an even positive integer. If n is an odd positive integer, then 〈ωn
0〉 = 0 because

of the parity in x of ω0. Therefore the vorticity modulation equations (2.45) are degenerate
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Figure 2. Solutions of the vorticity modulation equations using different values of integer n for (a) Stuart
cats’ eyes (2.44) and (b) Mallier–Maslowe vortices (2.45).

when n is odd with the numerator in (2.45) being zero and the denominator in (2.45) being
non-zero. Equations (2.45) are inconsistent for different even values of n because they
contain different terms, figure 2(b) representing an example of the solution for an arbitrary
initial condition. The problem for the first correction (2.21)–(2.23) does not have a solution
by the Fredholm alternative. Mallier–Maslowe vortices do not approximate a quasi-steady
state of the Navier–Stokes equations.

3. Hill’s spherical vortex

Hill’s spherical vortex (Hill 1894) provides one of the best-known examples of a steady
rotational solution to the Euler equations. It is axisymmetric with the streamlines being
displayed in figure 3. This classical solution has been used extensively for studying the
motion of liquid drops, their stability and shape changes (Harper 1972; Pozrikidis 1989)
and vortex rings (Protas 2019). In this section, we will study whether Hill’s spherical
vortex approximates a steady state of the Navier–Stokes equation.
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Figure 3. Streamlines for Hill’s spherical vortex (3.12) in the meridional plane y = 0 with the z-axis being
the axis of rotation.

3.1. Introduction
In this subsection, we will describe the mathematical model for Hill’s spherical vortex. In
order to avoid an excessive number of suffices, the same notation as in § 2 will be used for
a number of the quantities; these are defined anew in this section. We adopt a spherical
polar coordinate system in which r ≤ R is the radial coordinate, θ is the polar angle and R
is the radius of a sphere. The radial and polar coordinates of velocity are given by u and v,
respectively. We denote the pressure by p and the vorticity ω by

ω = 1
r
∂

∂r
(rv)− 1

r
∂u
∂θ
. (3.1)

The axisymmetric continuity and Navier–Stokes equations for incompressible Newtonian
fluids in spherical polar coordinates become

1
r2
∂

∂r
(r2u)+ 1

r sin(θ)
∂

∂θ
(v sin(θ)) = 0, (3.2)

u
∂u
∂r

+ v

r
∂u
∂θ

− v2

r
+ ∂p
∂r

= − ε

r sin(θ)
∂

∂θ
(sin(θ)ω), (3.3a)

u
∂v

∂r
+ v

r
∂v

∂θ
+ uv

r
+ 1

r
∂p
∂θ

= ε

r
∂

∂r
(rω), (3.3b)

where ε = 1/Re is the reciprocal of the Reynolds number and 0 < ε � 1. The boundary
conditions are

u(R, θ) = 0, v(R, θ) = C sin(θ), (3.4a,b)

in which C is a negative constant. Hill’s spherical vortex corresponds to C = −3U/2,
where U is the far-field velocity of the surrounding flow.

3.2. The leading-order solution
We will first perform the perturbation procedure on the nonlinear system (3.3)–(3.4a,b)
and obtain the solution for Hill’s spherical vortex. We introduce expansions of the form

u ∼ u0 + εu1, v ∼ v0 + εv1, p ∼ p0 + εp1, ω ∼ ω0 + εω1, (3.5a–d)
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as ε → 0. At leading order, we obtain

L̄u0 − v2
0
r

+ ∂p0

∂r
= 0, (3.6a)

L̄v0 + u0v0

r
+ 1

r
∂p0

∂θ
= 0, (3.6b)

1
r2
∂

∂r
(r2u0)+ 1

r sin(θ)
∂

∂θ
(v0 sin(θ)) = 0, (3.6c)

with the differential operator

L̄ = u0
∂

∂r
+ v0

r
∂

∂θ
(3.7)

and the boundary conditions

u0(R, θ) = 0, v0(R, θ) = C sin(θ). (3.8a,b)

Using (3.6a)–(3.6b), the vorticity equation becomes L̄(ω0/r sin(θ)) = 0. Henceforth, we
assume a solution of this equation of the form ω0 = αr sin(θ), where α is a constant to be
determined shortly. The Stokes streamfunction is defined by

u0 = 1
r2 sin(θ)

∂ψ

∂θ
, v0 = − 1

r sin(θ)
∂ψ

∂r
, (3.9a,b)

so that (3.6c) is automatically satisfied. The streamfunction ψ satisfies the following
partial differential equation

∂2ψ

∂r2 + sin(θ)
r2

∂

∂θ

[
1

sin(θ)
∂ψ

∂θ

]
= −αr2 sin2(θ) (3.10)

for r < R with the boundary conditions

ψ(R, θ) = 0,
∂ψ

∂r
(R, θ) = −CR sin2(θ). (3.11a,b)

Hill’s spherical vortex corresponds to the solution of this problem in the form

ψ(r, θ) = Cr2

2

(
1 − r2

R2

)
sin2(θ) (3.12)

for r ≤ R and provided that α = 5C/R2. The streamlines for C = −1 and R = 1 are shown
in figure 3. We deduce that the velocities are

u0 = C
(

1 − r2

R2

)
cos(θ), v0 = −C

(
1 − 2r2

R2

)
sin(θ). (3.13a,b)
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3.3. The first correction
We now derive the linear problem for the first correction and the conditions (3.23) under
which it may have a solution. At next order, we obtain

Lz =

⎛
⎜⎜⎜⎝

− 1
r sin(θ)

∂

∂θ
(sin(θ)ω0)

1
r
∂

∂r
(rω0)

0

⎞
⎟⎟⎟⎠ , (3.14)

in which

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

L̄ + ∂u0

∂r
1
r
∂u0

∂θ
− 2v0

r
∂

∂r
1
r
∂

∂r
(rv0) L̄ + 1

r
∂v0

∂θ
+ u0

r
1
r
∂

∂θ

∂

∂r
+ 2

r
1
r
∂

∂θ
+ cot(θ)

r
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, z =

⎛
⎝u1
v1
p1

⎞
⎠ , (3.15a,b)

with the boundary conditions

u1(R, θ) = 0, v1(R, θ) = 0. (3.16a,b)

Saffman (1992) stated one solution to the linear problem for the first correction
(3.14)–(3.16a,b). By the Fredholm alternative, there is either a unique solution or an infinite
number of solutions. We study the adjoint problem to check our approach and to establish
how many solutions exist to this important problem. Following a modified version of the
analysis in Smith (2010), we have an equation with the right-hand side in divergence form

rTLz − zTL∗r = 1
r2
∂

∂r
[r2u0{au1 + bv1} + r2ap1 + r2cu1]

+ 1
r sin(θ)

∂

∂θ
[sin(θ)(v0{au1 + bv1} + bp1 + cv1)], (3.17)

in which the adjoint operator L∗ and vector r are given by

L∗ =

⎛
⎜⎜⎜⎜⎜⎝

−L̄ + ∂u0

∂r
1
r
∂

∂r
(rv0) − ∂

∂r
1
r
∂u0

∂θ
− 2v0

r
−L̄ + 1

r
∂v0

∂θ
+ u0

r
−1

r
∂

∂θ

− ∂

∂r
− 2

r
−1

r
∂

∂θ
− cot(θ)

r
0

⎞
⎟⎟⎟⎟⎟⎠ , r =

⎛
⎝ a

b
c

⎞
⎠ . (3.18a,b)

Equation (3.17) may be integrated to yield

〈rTLz − zTL∗r〉 = 0, (3.19)

where

〈 . 〉 =
∫ π

θ=0

∫ R

r=0
. r2 sin(θ) dr dθ, (3.20)

provided that the following condition is satisfied on the boundary of the sphere:

a(R, θ) = 0. (3.21)
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It follows from this that if

L∗r = 0, (3.22)

subject to the condition (3.21), then our linear problem for the first correction
(3.14)–(3.16a,b) can only have a solution if

〈
− a

r sin(θ)
∂

∂θ
(sin(θ)ω0)+ b

r
∂

∂r
(rω0)

〉
= 0, (3.23)

for any r = (a, b, c)T in the null space of the adjoint problem. It remains to find the linearly
independent solution vectors r and substitute them into (3.23).

A linearly independent solution of the adjoint problem (3.22) and (3.21) is

r1 = (0, 0, 1)T. (3.24)

An infinite family of linearly independent solutions is given by

r2 =
(

f (ψ)u0, f (ψ)v0,−α
∫ ψ

f (s) ds
)T

. (3.25)

The function f (ψ) is differentiable on the domain [CR2/8, 0]. Given this condition, the
Weierstrass approximation theorem ensures that a polynomial,

p(ψ) = a0 + a1ψ + · · · + aqψ
q, (3.26)

exists with ai real constants and q non-negative integer which uniformly approximates
f (ψ) on the domain [CR2/8, 0]. We consider the vector space of polynomials p(ψ) over
the field of real numbers. If we construct a basis for this space of polynomials {ψn | n ∈
IN ∪ {0}}, then all functions f (ψ) are uniformly approximated by our basis. Hence, it is
sufficient to construct solvability conditions for the basis. A countably infinite family of
linearly independent solutions of the adjoint problem (2.29) and (2.28) have been deduced;
that is, f (ψ) = ψn for n in the non-negative integers.

A family of vorticity equations are required for Stuart cats’ eyes, Mallier–Maslowe
vortices, travelling waves in two-dimensional plane Poiseuille flow (Smith & Wissink
2015) and two-dimensional Kolmogorov flow (Smith & Wissink 2018). However, in the
case of Hill’s spherical vortex, there are no solutions corresponding to vorticity.

3.4. Solvability conditions
Only the second solution corresponds to physical solvability conditions. The
corresponding solvability conditions are

〈
− ψnu0

r sin(θ)
∂

∂θ
(sin(θ)ω0)+ ψnv0

r
∂

∂r
(rω0)

〉
= 0, (3.27)

where n is a non-negative integer. In the remainder of this subsection, the leading-order
solution will be shown to satisfy this countably infinite set of solvability conditions.
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We substitute the leading-order solution (3.12)–(3.13a,b) into the left-hand side of the
solvability conditions (3.27) to yield〈

− ψnu0

r sin(θ)
∂

∂θ
(sin(θ)ω0)+ ψnv0

r
∂

∂r
(rω0)

〉

= −40
R2

(
C
2

)n+2 ∫ R

r=0
r2n+2

(
1 − r2

R2

)n+1

dr
∫ π

θ=0
sin2n+1(θ) cos2(θ) dθ

− 40
R2

(
C
2

)n+2 ∫ R

r=0
r2n+2

(
1 − r2

R2

)n (
1 − 2r2

R2

)
dr

∫ π

θ=0
sin2n+3(θ) dθ. (3.28)

The second term on the right-hand side may be rewritten〈
− ψnu0

r sin(θ)
∂

∂θ
(sin(θ)ω0)+ ψnv0

r
∂

∂r
(rω0)

〉

= −40
R2

(
C
2

)n+2 ∫ R

r=0
r2n+2

(
1 − r2

R2

)n+1

dr
∫ π

θ=0
sin2n+1(θ) cos2(θ) dθ

− 40
R2

(
C
2

)n+2 ∫ R

r=0
r2n+2

(
1 − r2

R2

)n+1

dr
∫ π

θ=0
sin2n+3(θ) dθ

+ 40
R4

(
C
2

)n+2 ∫ R

r=0
r2(n+2)

(
1 − r2

R2

)n

dr
∫ π

θ=0
sin2n+3(θ) dθ. (3.29)

Using the two identities involving definite integrals in Appendix A, we find that〈
− ψnu0

r sin(θ)
∂

∂θ
(sin(θ)ω0)+ ψnv0

r
∂

∂r
(rω0)

〉

= −40
R2

(
C
2

)n+2 ∫ π

θ=0
sin2n+1(θ) dθ

×
{∫ R

r=0
r2n+2

(
1 − r2

R2

)n+1

dr − 2n + 2
(2n + 3)

1
R2

∫ R

r=0
r2(n+2)

(
1 − r2

R2

)n

dr

}
.

(3.30)

If we apply integration by parts to the first of the two integrals in the curly brackets, then
the first integral is shown to be equal and opposite to the second integral. Therefore, all of
the solvability conditions are satisfied. Provided that there are no further solutions to the
adjoint problem (3.21)–(3.22), the problem for the first correction (3.14)–(3.16a,b) does
have an infinite family of solutions by the Fredholm alternative. In fact, one member
of this infinite family of solutions of (3.14)–(3.16a,b) is given by u1 = v1 = 0 and
p1 = −2αr cos(θ), which was described by Saffman (1992). Hill’s spherical vortex has
been confirmed to be consistent with the Navier–Stokes equations. We now consider a
graphical interpretation in the case of Hill’s spherical vortex. Equations (3.27) represent
a manifold in infinite-dimensional phase space for steady states of the Navier–Stokes
equations, which is denoted by an (orange) surface in figure 4. The leading-order solution
(3.12) is represented by a (green) dot in figure 4, which resides on the manifold. In the case
of Stuart cats’ eyes or the Mallier–Maslowe vortices, the manifold is given by the steady
version of (2.38)–(2.40) and the leading-order solutions are (2.13) and (2.18), respectively.
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Figure 4. A schematic of the structure of infinite-dimensional phase space for steady states of the
Navier–Stokes equations. The (orange) surface denotes the viscous manifold for asymptotic solutions of the
Navier–Stokes equations in the high-Reynolds-number limit. The (green) dot represents the leading-order
solution in the case of Hill’s spherical vortex and the (red) cross represents the leading-order solution for
either the Stuart cats’ eyes or the Mallier–Maslowe vortices.
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Figure 5. Streamlines for the Lamb–Chaplygin dipole (4.13).

However, these leading-order solutions are now represented by the (red) cross in figure 4,
which do not reside on the appropriate manifold.

4. Lamb–Chaplygin dipole

The Lamb–Chaplygin dipole (Lamb 1895; Chaplygin 1903) describes a dipolar vortex
structure within a circle of constant radius. When placed in an irrotational flow, this dipole
will propagate without deformation and at a constant flow speed through the fluid. It is a
planar solution to the Euler equations with its streamlines being illustrated in figure 5.
The Lamb–Chaplygin dipole has been applied to analyse the dynamics of vortices in
atmospheric and oceanographic flows (Billant & Chomaz 2000; Suzuki, Hirota & Hattori
2018). In this section, we will investigate whether or not the Lamb–Chaplygin dipole
approximates a steady state or quasi-steady state of the Navier–Stokes equations.

4.1. Introduction
In this subsection, we will describe the mathematical model for the Lamb–Chaplygin
dipole. In order to avoid an excessive number of suffices, the same notation as in §§ 2 and
3 will be adopted for a number of the quantities; these are defined anew in this section.
The system of dimensionless equations to be studied are now introduced. We consider the
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two-dimensional Navier–Stokes equations for incompressible Newtonian fluids in plane
polar coordinates

∂u
∂t

+ u
∂u
∂r

+ v

r
∂u
∂θ

− v2

r
+ ∂p
∂r

= −ε
r
∂ω

∂θ
, (4.1a)

∂v

∂t
+ u

∂v

∂r
+ v

r
∂v

∂θ
+ uv

r
+ 1

r
∂p
∂θ

= ε
∂ω

∂r
, (4.1b)

and the continuity equation of the form

1
r
∂

∂r
(ru)+ 1

r
∂v

∂θ
= 0, (4.2)

in which r < R is the radial coordinate, R is the radius of the circle, θ is the azimuthal
coordinate, t is time, u is the radial velocity component, v is the azimuthal velocity
component, p is the pressure, ω is the vorticity given by

ω = 1
r
∂

∂r
(rv)− 1

r
∂u
∂θ
, (4.3)

ε = 1/Re is the reciprocal of the Reynolds number and 0 < ε � 1. The boundary
conditions are

u(R, θ, t) = 0, v(R, θ, t) = C(εt) sin(θ),
[u, v, p](r, 0, t) = [u, v, p](r, 2π, t),

}
(4.4)

in which C(εt) is a non-zero slowly varying function. The Lamb–Chaplygin dipole
corresponds to C = −2U, where U is the far-field velocity of the surrounding flow.

4.2. The leading-order solution
We will first perform the perturbation procedure on the nonlinear system (4.1)–(4.4) and
obtain the solution for Lamb–Chaplygin dipole. We introduce expansions of the form

u ∼ u0 + εu1, v ∼ v0 + εv1, p ∼ p0 + εp1, ω ∼ ω0 + εω1, (4.5a–d)

as ε → 0. At leading order, for the quasi-steady state, we obtain

L̄u0 − v2
0
r

+ ∂p0

∂r
= 0, (4.6a)

L̄v0 + u0v0

r
+ 1

r
∂p0

∂θ
= 0, (4.6b)

1
r
∂

∂r
(ru0)+ 1

r
∂v0

∂θ
= 0, (4.6c)

where the differential operator

L̄ = u0
∂

∂r
+ 1

r
v0
∂

∂θ
. (4.7)

We take the radial partial derivative of (4.6b) in the form

u0
∂

∂r
(rv0)+ v0

∂v0

∂θ
+ ∂p0

∂θ
= 0 (4.8)
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Pitfalls of the Euler equations

minus the azimuthal partial derivative of (4.6a) to obtain the vorticity equation L̄ω0 = 0.
A streamfunction ψ is defined by the equations

u0 = 1
r
∂ψ

∂θ
, v0 = −∂ψ

∂r
, (4.9a,b)

so that (4.6c) is automatically satisfied and the vorticity equation may be rewritten as

∂ψ

∂θ

∂ω0

∂r
− ∂ψ

∂r
∂ω0

∂θ
= 0. (4.10)

The Lamb–Chaplygin dipole corresponds to the solution of (4.10) given by ω0 = k2ψ with
k being an arbitrary constant, so that ψ satisfies the partial differential equation

∂2ψ

∂r2 + 1
r
∂ψ

∂r
+ 1

r2
∂2ψ

∂θ2 = −k2ψ (4.11)

for r < R with the boundary conditions

ψ(R, θ, t̃) = 0,
∂ψ

∂r
(R, θ, t̃) = −C(t̃) sin(θ), ψ(r, 0, t̃) = ψ(r, 2π, t̃), (4.12a,b)

in which t̃ = εt is the slowly varying time scale. The Lamb–Chaplygin dipole corresponds
to the solution of this boundary value problem in the form

ψ(r, θ, t̃) = −C(t̃)J1(kr) sin(θ)
kJ0(kR)

, (4.13)

for r ≤ R. The first zero of the Bessel function J1(kR) = 0 fixes kR ≈ 3.8317. The
streamlines for C(t̃) = 1 and R = 1 are shown in figure 5. We deduce that the velocities
are given by

u0(r, θ, t̃) = −C(t̃)J1(kr) cos(θ)
krJ0(kR)

, v0(r, θ, t̃) = C(t̃)J′
1(kr) sin(θ)
J0(kR)

. (4.14a,b)

4.3. The first correction
We now derive the linear problem for the first correction and the conditions (4.24) under
which it may have a solution. At next order, we obtain

Lz =

⎛
⎜⎜⎜⎝

−∂u0

∂ t̃
− 1

r
∂ω0

∂θ

−∂v0

∂ t̃
+ ∂ω0

∂r
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−∂u0

∂ t̃
− k2u0

−∂v0

∂ t̃
− k2v0

0

⎞
⎟⎟⎟⎠ , (4.15)

in which

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

L̄ + ∂u0

∂r
1
r
∂u0

∂θ
− 2v0

r
∂

∂r
1
r
∂

∂r
(rv0) L̄ + 1

r
∂v0

∂θ
+ u0

r
1
r
∂

∂θ

∂

∂r
+ 1

r
1
r
∂

∂θ
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, z =

⎛
⎝u1
v1
p1

⎞
⎠ , (4.16)
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with the boundary conditions

u1(R, θ, t̃) = 0, v1(R, θ, t̃) = 0,
[u1, v1, p1](r, 0, t̃) = [u1, v1, p1](r, 2π, t̃).

}
(4.17)

A general solution to the linear problem for the first correction (4.15)–(4.17) is very
difficult to find. Therefore, we study the adjoint problem in order to determine the
conditions under which the problem for the first correction has a solution. Following
a modified version of the analysis in Smith (2007), we have the following divergence
formulation:

rTLz − zTL∗r = 1
r
∂

∂r

[
ru0{au1 + bv1} + rap1 + rcu1

]
+ 1

r
∂

∂θ

[
v0{au1 + bv1} + bp1 + cv1

]
, (4.18)

in which the adjoint operator L∗ and vector r are given by

L∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−L̄ + ∂u0

∂r
1
r
∂

∂r
(rv0) − ∂

∂r
1
r
∂u0

∂θ
− 2v0

r
−L̄ + 1

r
∂v0

∂θ
+ u0

r
−1

r
∂

∂θ

− ∂

∂r
− 1

r
−1

r
∂

∂θ
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, r =

⎛
⎝a

b
c

⎞
⎠ . (4.19)

Equation (4.18) may be integrated to yield

〈rTLz − zTL∗r〉 = 0, (4.20)

where

〈 . 〉 =
∫ 2π

θ=0

∫ R

r=0
. r dr dθ, (4.21)

provided that the following periodicity conditions and boundary condition on the radius
of the circle are satisfied:

[a, b, c](r, 0, t̃) = [a, b, c](r, 2π, t̃), (4.22a)

a(R, θ, t̃) = 0. (4.22b)

It follows from this that if

L∗r = 0, (4.23)

subject to the conditions (4.22), then our linear problem for the first correction
(4.15)–(4.17) can only have a solution if〈

a
[
−∂u0

∂ t̃
− k2u0

]
+ b

[
−∂v0

∂ t̃
− k2v0

]〉
= 0, (4.24)

for any r = (a, b, c)T in the null space of the adjoint problem. It remains to find the linearly
independent solution vectors r and substitute them into (4.24).
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Pitfalls of the Euler equations

Two linearly independent solutions of the adjoint problem (4.23) and (4.22) are

r1 = (0, 0, 1)T, r2 = (0, r, rv0)
T. (4.25)

An infinite family of linearly independent solutions is given by

r3 =
(

f (ψ)u0, f (ψ)v0,−k2
∫ ψ

sf (s) ds
)T

. (4.26)

The function f (ψ) is differentiable on [−ψmax, ψmax], where ψmax is the bound on the
streamfunction. Given this condition, the Weierstrass approximation theorem ensures that
a polynomial,

p(ψ) = a0 + a1ψ + · · · + aqψ
q, (4.27)

exists with ai real constants and q non-negative integer which uniformly approximates
f (ψ) on [−ψmax, ψmax]. We consider the vector space of polynomials p(ψ) over the field
of real numbers. If we construct a basis for this space of polynomials {ψn | n ∈ IN ∪ {0}},
then all functions f (ψ) are uniformly approximated by our basis. Hence, it is sufficient
to construct solvability conditions for the basis. A countably infinite family of linearly
independent solutions of the adjoint problem (4.23) and (4.22) have been deduced; that
is, f (ψ) = ψn for n in the non-negative integers. We note that there are no linearly
independent solutions corresponding to vorticity.

4.4. Modulation equations
The first solution to the adjoint problem, r1, corresponds to a trivial modulation equation.
Only the second and third solutions correspond to physical modulation equations, which
are described in the following subsections.

4.4.1. Angular momentum modulation equation
If we substitute the second vector r2 into (4.24), then we obtain our first secularity
condition 〈

− ∂

∂ t̃
(rv0)− k2rv0

〉
= 0. (4.28)

This may be rewritten as the modulation equation

d
dt̃

〈rv0〉 = −k2〈rv0〉. (4.29)

4.4.2. Generalized energy modulation equations
If we substitute the third vector, r3, into (4.24) with f (ψ) = ψn, then we obtain the further
secularity condition〈

ψnu0

[
−∂u0

∂ t̃
− k2u0

]
+ ψnv0

[
−∂v0

∂ t̃
− k2v0

]〉
= 0. (4.30)

This may be rewritten as 〈
ψn

[
∂E0

∂ t̃
+ 2k2E0

]〉
= 0, (4.31)

for n in the non-negative integers.
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4.5. Inconsistency of the steady state
Using (4.31) when n = 0, we have the solvability condition

〈E0〉 = 0. (4.32)

The left-hand side of this solvability condition is positive and the solvability condition is
not satisfied. The problem for the first correction (4.15)–(4.17) does not have a solution
by the Fredholm alternative. The Lamb–Chaplygin dipole is a solution to the steady Euler
equations, but it is not a leading-order solution to the steady Navier–Stokes equation for
high-Reynolds-number flows. As such, the Lamb–Chaplygin dipole does not approximate
a steady state of the Navier–Stokes equations.

4.6. Consistency of the quasi-steady state
If we substitute the leading-order solution (4.13)–(4.14a,b) into (4.29), then we have
a trivial identity. Substitution of the leading-order solution (4.13)–(4.14a,b) into (4.31)
produces the equation 〈

ψnE0

[
d
dt̃
(C2)+ 2k2C2

]〉
= 0, (4.33)

for n in the non-negative integers. This may be rewritten as

〈ψnE0〉
[

dC
dt̃

+ k2C
]

= 0. (4.34)

These modulation equations are all satisfied providing

C(t̃) = C0 e−k2 t̃, (4.35)

where C0 is a constant of integration. Provided that there are no further solutions to the
adjoint problem (4.22)–(4.23), the problem for the first correction (4.15)–(4.17) does have
an infinite family of solutions by the Fredholm alternative. In fact, one member of this
infinite family of solutions of (4.15)–(4.17) is given by u1 = v1 = p1 = 0. Furthermore,
our leading-order solution turns out to be an exact solution of the Navier–Stokes equations
as described below.

4.7. An exact solution
If we rewrite the leading-order solution (4.13)–(4.14a,b) in terms of the original
dimensionless variables, we obtain

u(r, θ, t) = −C0 e−k2εtJ1(kr) cos(θ)
krJ0(kR)

, v(r, θ, t) = C0 e−k2εtJ′
1(kr) sin(θ)

J0(kR)
, (4.36a,b)

ω(r, θ, t) = −k2C0 e−k2εtJ1(kr) sin(θ)
kJ0(kR)

, p(r, θ, t) = − ω2

2k2 − 1
2
(u2 + v2), (4.37a,b)

for r ≤ R. This is an original exact solution of the Navier–Stokes equations (4.1)–(4.4)
provided that C(εt) = C0 e−k2εt.

This exact solution can be seen to be one of the most important because it is time
dependent; it has non-zero nonlinear convective terms; it is restricted to a finite domain;
and it has a decay rate dependent on the dipole radius. We do not know of another
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Figure 6. Decay rate of the exact solution of the Navier–Stokes equations (4.36a,b)–(4.37a,b) as a function of
the dipole radius R for three values of the Reynolds number.

exact solution with this combination of properties (Drazin & Riley 2006). Numerical and
experimental evidence also exists which indicate that it is linearly stable (see Couder &
Basdevant 1986).

The decay rate may be written in the form(
3.8317

R

)2

ε. (4.38)

The decay rate varies with the reciprocal of the Reynolds number, ε = 1/Re, and with the
reciprocal of the square of the dipole radius R (see figure 6). The decay rate increases
rapidly as the dipole radius decreases. If the dipole radius R � ε1/2 = Re−1/2, then
the dissipation is exponentially fast. If the dipole radius R ∼ ε1/2 = Re−1/2, then the
exponential decay is order one. Larger values of the dipole radius, R � ε1/2 = Re−1/2,
result in an exponentially slow dissipation rate and the solution may easily be mistaken for
a steady state.

The long time scale viscous evolution of symmetric two-dimensional dipoles has been
studied elsewhere in which the domain of rotational flow was not restricted to a circle.
Kizner, Khvoles & Kessler (2010) have shown that viscosity first takes the dipole to an
intermediate asymptotic state and then slowly moves away. Kizner et al. (2010) claim
that, in the limit of vanishing viscosity (large Reynolds number), a unique elliptical dipole
solution is selected with a separatrix aspect ratio of 1.037. Our exact solution of the full
Navier–Stokes equations has shown that there is an alternative evolution when the domain
of rotational flow is restricted to a circle.

5. Conclusions

An asymptotic technique has been introduced to establish whether or not an exact inviscid
steady state solution approximates the behaviour of a real viscous fluid at high Reynolds
number. The viscous terms in the Navier–Stokes equations are much smaller than the
terms in the Euler equations in this limit, but the small viscous terms have a cumulative
effect. First, if an exact inviscid steady state is to approximate a viscous steady state, then
solvability conditions for the amplitude must be satisfied. Second, if an exact inviscid
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Exact inviscid solution Consistent with a steady state Consistent with a quasi-steady state
of the Navier–Stokes equations of the Navier–Stokes equations

Stuart cats’ eyes No No
Mallier–Maslowe vortices No No
Hill’s spherical vortex Yes Not applicable
Lamb–Chaplygin dipole No Yes

Table 1. Classification of exact inviscid solutions.

steady state is to approximate a viscous quasi-steady state, then modulation equations
for the amplitude envelope must be satisfied. The solvability conditions (modulation
equations), which govern steady states (quasi-steady states), require a family of equations
for generalized energy in addition to those already known for travelling and standing
waves. These conditions are very restrictive. Therefore, the vast majority of rotational
exact inviscid steady states do not approximate a real viscous flow.

Employing this new technique in singular perturbation theory, we have analysed
four exact inviscid steady states, which are widely used in stability analysis of vortex
flows. Stuart cats’ eyes and Mallier–Maslowe vortices have been shown to be neither
approximate steady states nor quasi-steady states of the Navier–Stokes equations. Hill’s
spherical vortex has been confirmed to be a leading-order approximation to a steady state
of the Navier–Stokes equations in the core spherical region. Contrary to expectations,
the Lamb–Chaplygin dipole has been shown not to approximate a steady state of the
Navier–Stokes equations in the core circular region. These results are summarized in
table 1.

Couder & Basdevant (1986) have shown that the vortex profiles for the Lamb–Chaplygin
dipole are in good agreement with numerical solutions of the two-dimensional
Navier–Stokes equations. Our results have validated this well-established view (Wu et al.
2006). The Lamb–Chaplygin dipole is a leading-order approximation to a quasi-steady
state of the Navier–Stokes equations, which provides an explanation for the numerical
results of Couder & Basdevant (1986). This result is also incorporated in table 1.

Serendipitously, the quasi-steady state, which follows from the Lamb–Chaplygin dipole,
turns out to be an original exact solution of the Navier–Stokes equations, as given
by (4.36a,b)–(4.37a,b). This exact solution is time dependent, has non-zero nonlinear
convective terms and is restricted to a finite domain with the decay rate depending on
dipole radius. To the best of our knowledge, this is the only exact solution with these
properties. This solution demonstrates that the viscous decay is exponential and the decay
rate increases rapidly as the dipole radius decreases.

In general, the Euler equations cannot describe the leading-order behaviour of viscous
rotational flows. Two of the four exact inviscid steady states, which have been studied in
this article, have illustrated how the amplitude or amplitude envelope is inconsistent with
the high-Reynolds-number limit.

Declaration of interests. The authors report no conflict of interest.
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Warren R. Smith https://orcid.org/0000-0002-0778-3226;
Qianxi Wang https://orcid.org/0000-0002-0664-5913.

927 A42-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

80
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-0778-3226
https://orcid.org/0000-0002-0778-3226
https://orcid.org/0000-0002-0664-5913
https://orcid.org/0000-0002-0664-5913
https://doi.org/10.1017/jfm.2021.805
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Appendix A. Two definite integrals

We outline the derivation of two identities involving definite integrals which arise whilst
studying the solvability conditions for Hill’s spherical vortex. First, we note that

d
dθ

{sin2n+2(θ) cos(θ)} = (2n + 2) sin2n+1(θ) cos2(θ)− sin2n+3(θ)

= (2n + 2) sin2n+1(θ)− (2n + 3) sin2n+3(θ). (A1)

Second, we integrate the above equation from 0 to π to find that

[sin2n+2(θ) cos(θ)]π0 = (2n + 2)
∫ π

0
sin2n+1(θ) dθ − (2n + 3)

∫ π

0
sin2n+3(θ) dθ = 0.

(A2)
Therefore, we establish the identity∫ π

0
sin2n+3(θ) dθ = 2n + 2

2n + 3

∫ π

0
sin2n+1(θ) dθ. (A3)

Using this identity, it is straightforward to deduce the following identity∫ π

0
sin2n+1(θ) cos2(θ) dθ = 1

2n + 3

∫ π

0
sin2n+1(θ) dθ. (A4)
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