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Biprojectivity and Biflatness for
Convolution Algebras of Nuclear Operators

A. Yu. Pirkovskii

Abstract. For a locally compact group G, the convolution product on the space N(Lp(G)) of nuclear

operators was defined by Neufang [11]. We study homological properties of the convolution alge-

bra N(Lp(G)) and relate them to some properties of the group G, such as compactness, finiteness,

discreteness, and amenability.

1 Introduction

Let G be a locally compact group and let H = L2(G). In [11], M. Neufang defined
a new product on the space N(H) of nuclear operators on H making it into a Ba-

nach algebra. While the usual product on N(H) can be viewed as a noncommutative
version of the pointwise product on ℓ1, this new product is an analogue of the con-
volution product on L1(G). The resulting Banach algebra S1(G) = (N(H), ∗) shares
many properties with L1(G) [11]. In particular, the group G can be completely recon-

structed from S1(G) (compare with the classical result of Wendel [16] about L1(G)).
Some important theorems of harmonic analysis (e.g., a theorem of Hewitt and Ross
[4, 35.13] characterizing multipliers on L∞(G) for a compact group G) also have
their counterparts for S1(G). Further, S1(G) (like L1(G)) has a right identity if and

only if G is discrete, it always has a right b.a.i., and it is a right ideal in its bidual if
and only if G is compact. A closed subspace of S1(G) is a right ideal if and only if it is
invariant with respect to a certain natural action of G. Other examples showing that
S1(G) behaves in much the same way as L1(G) can be found in [11].

The aim of this paper is to study some homological properties of S1(G), specifi-
cally, biprojectivity and biflatness. (For a detailed exposition of the homology theory
for Banach algebras we refer to [7]; some facts can also be found in [8], [1], and
[12]). Recall that L1(G) is biprojective if and only if G is compact [5, 6], and is biflat

if and only if G is amenable [9, 6]. Thus it is natural to ask whether similar results
hold for S1(G). We show (Theorem 4.3) that the latter result concerning the biflat-
ness of L1(G) is also true for S1(G). On the other hand, it turns out (Theorem 3.7)

that S1(G) is biprojective if and only if G is finite. We also show that properties of G

such as discreteness and compactness are equivalent to projectivity of certain S1(G)-
modules.

Remark 1.1 Perhaps it is appropriate to note that S1(G) is never amenable (except
for the trivial case G = {e}) because it has a nontrivial right annihilator (see [11] or

Section 2 below).
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2 Preliminaries

Let G be a locally compact group equipped with a left Haar measure, and let 1 < p <
∞. Given t ∈ G, denote by Lt : Lp(G) → Lp(G) the left translation operator defined
by (Lt f )(s) = f (ts). For a function f on G we set, as usual, f̌ (t) = f (t−1) and

f̃ (t) = ∆(t−1) f (t−1), where ∆ is the modular function on G. For each h ∈ L∞(G)
we denote by Mh : Lp(G) → Lp(G) the multiplication operator f 7→ h f . The trace
duality between the space of bounded operators, B(Lp(G)), and the space of nuclear
operators, N(Lp(G)), will be denoted by the brackets 〈 · , · 〉.

The convolution product ∗ on N(Lp(G)) introduced by Neufang [11] is defined as

follows. First consider the bilinear map

(1) B(Lp(G)) × N(Lp(G)) → L∞(G), (T, ρ) 7→
(

t 7→ 〈ρ, Lt TLt−1〉
)

.

Next consider the representation

(2) L∞(G) → B(Lp(G)), h 7→ Mh .

Composing (1) and (2), we obtain a bilinear map

B(Lp(G)) × N(Lp(G))
⊙
−→ B(Lp(G)), (T, ρ) 7→ T ⊙ ρ .

For every ρ ∈ N(Lp(G)) the map T 7→ T ⊙ ρ is weak∗ continuous [11]. Therefore

we have a well-defined bilinear map

N(Lp(G)) × N(Lp(G))
∗
−→ N(Lp(G)),

〈T, ρ ∗ τ 〉 = 〈T ⊙ ρ, τ 〉 for each T ∈ B(Lp(G)).

Neufang [11, Satz 5.2.1 and Prop. 5.4.1], proved that (N(Lp(G)), ∗) is an associative
Banach algebra with a right b.a.i. We shall denote this algebra by Np(G). (Note
that the algebra N2(G) is denoted by S1(G) in [11], and the dual module S∗

1 (G) =

B(L2(G)) is denoted by S∞(G) in order to emphasize a relation with the Schatten
classes.)

The algebra Np(G) can be considered as an extension of L1(G) in the following
way. Consider the map ι1 : L∞(G) → B(Lp(G)) defined by the rule ι1(h) = Mȟ. This

map is continuous with respect to the weak∗ topologies determined by the dualities〈
L∞(G), L1(G)

〉
and

〈
B(Lp(G)), N(Lp(G))

〉
. Hence there exists the predual map

σ : N(Lp(G)) → L1(G). Neufang [11, Satz 5.3.1], proved that σ is a Banach algebra
homomorphism from Np(G) onto L1(G). Furthermore,

(3) Ker σ = {ρ ∈ N
p(G) ; 〈ρ, Mh〉 = 0 ∀ h ∈ L∞(G)} .

Therefore (see [11, Satz 5.3.4]) we have an extension

(4) 0 → I → N
p(G)

σ
−→ L1(G) → 0
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of Banach algebras. Note also that the definition of the product in Np(G) together
with (3) implies that Np(G)I = 0.

We shall need a more explicit description of σ. Take q ∈ (1, +∞) such that
1
p

+ 1
q

= 1, and recall that there exists an isometric isomorphism

(5) Lp(G) ⊗̂ Lq(G) ∼−→ N(Lp(G)), f ⊗ g 7→ (h 7→ 〈g, h〉 f ).

Here the brackets 〈 · , · 〉 denote the usual Lp-Lq duality. Identifying an elementary

tensor f ⊗ g ∈ Lp(G) ⊗̂ Lq(G) with the corresponding rank-one operator, we see that

〈σ( f ⊗ g), h〉 = 〈 f ⊗ g, Mȟ〉 = 〈Mȟ( f ), g〉 = 〈ȟ f , g〉
∫

G

h(t−1) f (t)g(t) dt =

∫

G

∆(t−1)h(t) f (t−1)g(t−1) dt = 〈( f g)∼, h〉

for every h ∈ L∞(G). Therefore,

(6) σ( f ⊗ g) = ( f g)∼ ( f ∈ Lp(G), g ∈ Lq(G)) .

Consider the algebra homomorphism ε : L1(G) → C given by ε( f ) =
∫

G
f dµ. It

is clear from (6) that εσ = Tr. Thus C can be viewed as a L1(G)-module via ε and as
a Np(G)-module via Tr. We shall denote these modules by Cε and CTr, respectively.

Recall some notation and some definitions from the homology theory of Banach

algebras (for details, see [7, 8]). Let A be a Banach algebra. The category of left
(resp. right) Banach A-modules is denoted by A-mod (resp. mod-A). If B is another
Banach algebra, then A-mod-B stands for the category of Banach A-B-bimodules.
Spaces of morphisms in the above categories are denoted by Ah(X,Y ), hA(X,Y ), and

AhB(X,Y ), respectively. The space of continuous linear operators between Banach
spaces X and Y is denoted by B(X,Y ). For each left Banach A-module X denote by
A · X ⊂ X the closed linear span of {a · x ; a ∈ A, x ∈ X}. If A · X = X, then X is
said to be essential.

A sequence X• = (0 → X1 → X2 → X3 → 0) of left Banach A-modules is called
admissible (resp. weakly admissible) if it splits as a sequence of Banach spaces (resp. if
the dual sequence X∗

• = (0 → X∗
3 → X∗

2 → X∗
1 → 0) splits as a sequence of Banach

spaces). A left Banach A-module Y is said to be projective (resp. injective) if for each

admissible sequence X• in A-mod the induced sequence Ah(Y, X•) (resp. Ah(X•,Y ))
is exact. A left Banach A-module Y is called flat if for each admissible sequence X•

in mod-A the induced sequence X• ⊗̂A Y is exact. Recall that each projective module
is flat, and that Y ∈ A-mod is flat iff the dual module, Y ∗, is injective in mod-A

[8, 7.1], [7, VII.1]. If the canonical morphism π : A ⊗̂Y → Y, a ⊗ y 7→ a · y is a
retraction in A-mod (i.e., if there exists an A-module morphism ρ : Y → A ⊗̂Y such
that πρ = 1Y ), then Y is projective. The converse is true provided Y is essential [7,
IV.I].

Remark 2.1 Let A → B be a Banach algebra homomorphism with dense range.
Assume Y ∈ B-mod is projective (resp. injective, resp. flat) in A-mod. Then Y is
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projective (resp. injective, resp. flat) in B-mod. To see this, it suffices to observe that

Ah(X,Y ) = Bh(X,Y ) for each X ∈ B-mod, and that X ⊗̂A Y ∼= X ⊗̂B Y for each

X ∈ mod-B. See also [7, IV.I].

Projective and flat right A-modules and A-bimodules are defined similarly.

A Banach algebra A is called biprojective (resp. biflat) if A is a projective (resp. flat)
Banach A-bimodule. Recall that A is biprojective (resp. biflat) iff the product map
πA : A ⊗̂A → A, a ⊗ b 7→ ab is a retraction in A-mod-A (resp. iff the dual map

π∗
A : A∗ → (A ⊗̂A)∗ is a coretraction in A-mod-A); see [7, IV.5 and VII.2].

A Banach algebra A is said to be contractible (resp. amenable) if the first Hochschild
cohomology group, H1(A, X), is trivial for each (resp. for each dual) Banach

A-bimodule X. Recall that A is contractible iff it is biprojective and unital, and is
amenable iff it is biflat and has a b.a.i. [8, 7.1].

Following Selivanov [15], we say that a Banach algebra A is superbiprojective (resp.

superbiflat) if it is biprojective (resp. biflat) and H
2(A, X) = 0 for each (resp. for each

dual) Banach A-bimodule X. Selivanov proved that A is superbiflat iff it is biflat and
has a one-sided b.a.i. On the other hand, if A is biprojective and has a one-sided
identity, then it is superbiprojective [15].

3 Biprojectivity

Lemma 3.1 Let

(7) 0 → I → A
σ
−→ A → 0

be an extension of Banach algebras such that AI = 0. Assume there exists an antiho-

momorphism β : A → A and a linear continuous map α : A → A such that β2
= 1A

and βσ = σα. Suppose also that A is essential and projective as a right A-module via

σ. Then (7) is admissible.

Proof Denote by π : A ⊗̂A → A the right action of A on A determined by σ, i.e.,
π(a⊗u) = aσ(u). Since A is essential and projective in mod-A, there exists a right A-
module morphism ρ : A → A ⊗̂A such that πρ = 1A [7, IV.1]. Next observe that the

condition AI = 0 implies that A has a natural structure of right Banach A-module.
Indeed, the product map A×A → A vanishes on A× I and hence determines a right
action A × A = A × (A/I) → A by the rule (u, a) 7→ u · a = uv where v ∈ σ−1(a).
The corresponding linear map A ⊗̂A → A, u ⊗ a 7→ u · a will be denoted by φ.

Define κ̃ : A → A as the composition

A
ρ
−→ A ⊗̂A

τ
−→ A ⊗̂A

α⊗β
−−−→ A ⊗̂A

φ
−→ A

where τ stands for the flip a ⊗ u 7→ u ⊗ a.

Let us compute σκ̃. For every u ∈ A, a ∈ A, and v ∈ σ−1(a) we have

(σφ)(u ⊗ a) = σ(uv) = σ(u)σ(v) = σ(u)a .
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In other words, σφ = πop, where πop : A ⊗̂A → A is the left action of A on A

determined by σ. Next,

(
πop ◦ (α ⊗ β)

)
(u ⊗ a) = πop

(
α(u) ⊗ β(a)

)
= σ(α(u))β(a)

= β(σ(u))β(a) = β(aσ(u)) = (βπ)(a ⊗ u) = (βπτ )(u ⊗ a) .

Hence πop ◦ (α ⊗ β) = βπτ . Finally,

σκ̃ = πop ◦ (α ⊗ β)τρ = βπττρ = βπρ = β .

Since β2
= 1A, we conclude that the map κ = κ̃β satisfies σκ = 1A. Therefore (7) is

admissible.

Recall (see, e.g., [3, 10]) that a Banach space E is said to have the Radon-Nikodým

property (RNP for short) if for each finite measure space (X, µ) every µ-continuous
E-valued measure of finite variation is differentiable with respect to µ. For our pur-

poses, the following properties of the RNP will be important.

(a) The RNP is inherited by closed subspaces.
(b) If E and F are reflexive Banach spaces one of which has the approximation prop-

erty, then the space N(E∗, F) of nuclear operators from E∗ to F has the RNP [2].
In particular, N(Lp(X, µ)) has the RNP for every measure space (X, µ).

(c) If (X, µ) is a measure space, then L1(X, µ) has the RNP if and only if µ is purely
atomic [3, III.1].

Lemma 3.2 Let G be a locally compact group and let 1 < p < ∞. Then the following

conditions are equivalent:

(i) Extension (4) is admissible;

(ii) Extension (4) splits;

(iii) G is discrete.

Proof (ii)⇒(i): obvious.
(i)⇒(iii). If G is nondiscrete, then L1(G) does not have the RNP (see (c) above).

Since Np(G) = N(Lp(G)) has the RNP (see (b) above), we conclude that L1(G) is not

isomorphic to a subspace of N
p(G). Hence extension (4) is not admissible.

(iii)⇒(ii). If G is discrete, then the map

κ : ℓ1(G) → N
p(G), f 7→ M f̌

is a continuous right inverse to σ : Np(G) → ℓ1(G) (see [11, Satz 5.3.7]). It is easy to
check that κ is an algebra homomorphism. To see this, for each t ∈ G let δt denote
the function which equals 1 at t and 0 elsewhere. We claim that Mδs

∗ Mδt
= Mδts

for

each s, t ∈ G. Indeed, for each T ∈ B(ℓp(G)) we have

〈T, Mδs
∗ Mδt

〉 = 〈T ⊙ Mδs
, δt ⊗ δt〉 = 〈(T ⊙ Mδs

)(δt ), δt〉 = 〈δs ⊗ δs, Lt TLt−1〉

= 〈TLt−1 (δs), Lt−1 (δs)〉 = 〈T(δts), δts〉 = 〈T, δts ⊗ δts〉 = 〈T, Mδts
〉 .
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Therefore Mδs
∗ Mδt

= Mδts
for each s, t ∈ G, and so

κ(δs ∗ δt ) = κ(δst ) = Mδ
t−1s−1

= Mδ
s−1

∗ Mδ
t−1

= κ(δs) ∗ κ(δt ) .

Thus we see that κ is an algebra homomorphism. Next,

σκ(δs) = σ(δs−1 ⊗ δs−1 ) = δs,

i.e., σκ = 1ℓ1(G) (see also [11, Satz 5.3.7]). Therefore extension (4) splits.

Lemma 3.3 Let (7) be an extension of Banach algebras such that AI = 0. Assume

that (7) splits and A has a left identity. Then A is projective in mod-A.

Proof As in Lemma 3.1, denote by π : A ⊗̂A → A the right action of A on A given
by π(a ⊗ u) = aσ(u). Let κ : A → A be a homomorphism such that σκ = 1A. Take
a left identity e of A and define the map ρ : A → A ⊗̂A by the rule ρ(a) = e ⊗ κ(a).

Evidently, πρ = 1A. Since AI = 0, we see that vu = vκ(σ(u)) for each u, v ∈ A.
Hence

ρ(a · u) = ρ(aσ(u)) = e ⊗ κ(aσ(u)) = e ⊗ κ(a)κ(σ(u)) = e ⊗ κ(a)u = ρ(a) · u

for each a ∈ A and each u ∈ A. This means that ρ is a morphism in mod-A. Since
πρ = 1A, we conclude that A is projective in mod-A.

Theorem 3.4 Let G be a locally compact group and let 1 < p < ∞. Then the

following conditions are equivalent:

(i) L1(G) is projective in mod-Np(G);

(ii) G is discrete.

Proof (i)⇒(ii). For each 1 ≤ r ≤ ∞ define the map αr : Lr(G) → Lr(G) by
αr( f )(t) = ∆(t−1)1/r f (t−1). It is easy to check that αr is an isometry and α2

r =

1Lr (G). Now let β = α1 : L1(G) → L1(G) and α = αp ⊗ αq : Np(G) → Np(G).

Evidently, β is an antihomomorphism. For each f ∈ Lp(G) and each g ∈ Lq(G) we
have

σ(α( f ⊗ g))(t) = σ(αp( f ) ⊗ αq(g))(t) = ∆(t−1)αp( f )(t−1)αq(g)(t−1)

= ∆(t)−1
∆(t)1/p f (t)∆(t)1/qg(t) = f (t)g(t) .

On the other hand,

β(σ( f ⊗ g))(t) = ∆(t−1)σ( f ⊗ g)(t−1) = ∆(t)−1
∆(t) f (t)g(t) = f (t)g(t) .

Hence βσ = σα. Finally, L1(G) is an essential Np(G)-module since σ is surjective

and L1(G) has a b.a.i. By Lemma 3.1, extension (4) is admissible. Now Lemma 3.2
shows that G is discrete.

(ii)⇒(i). If G is discrete, then extension (4) splits by Lemma 3.2. Since L1(G) is
unital in this case, Lemma 3.3 implies that L1(G) is projective in mod-Np(G).
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Lemma 3.5 Let G be a compact group and let 1 denote the function that is identically 1
on G. Then (1 ⊗ 1) ∗ a = Tr a · 1 ⊗ 1 for each a ∈ Np(G).

Proof For each T ∈ B(Lp(G)) we have T ⊙ (1 ⊗ 1) = Mh, where

h(t) = 〈1 ⊗ 1, Lt TLt−1〉 = 〈Lt TLt−1 (1), 1〉 = 〈TLt−1 (1), Lt−1 (1)〉 = 〈T(1), 1〉

for each t ∈ G. Hence Mh = 〈T(1), 1〉1Lp(G), and for each a ∈ N
p(G) we have

〈T, (1 ⊗ 1) ∗ a〉 = 〈T ⊙ (1 ⊗ 1), a〉 = 〈T(1), 1〉〈1Lp(G), a〉

= 〈T(1), 1〉Tr a = 〈T, Tr a · 1 ⊗ 1〉,

as required.

Theorem 3.6 Let G be a locally compact group and let 1 < p < ∞. Then the

following conditions are equivalent:

(i) CTr is projective in mod-Np(G);

(ii) G is compact.

Proof (i)⇒(ii). If CTr is projective in mod-Np(G), then Cε is projective in
mod-L1(G) (see Remark 2.1). This means exactly that G is compact (see [6] or [7,
IV.5]).

(ii)⇒(i). First observe that the canonical morphism

π : CTr ⊗̂N
p(G) → CTr, λ ⊗ u 7→ λ · u,

is identified with Tr : N
p(G) → CTr. Define ρ : CTr → N

p(G) by ρ(λ) = λ · 1 ⊗ 1.
It is clear that πρ = 1C, and Lemma 3.5 implies that ρ is a right Np(G)-module
morphism. Hence CTr is projective in mod-Np(G).

Theorem 3.7 Let G be a locally compact group and let 1 < p < ∞. Then the

following conditions are equivalent:

(i) Np(G) is biprojective;

(ii) N
p(G) is superbiprojective;

(iii) G is finite.

Proof (ii)⇒(i). Obvious.

(iii)⇒(ii). If G is finite, then L1(G) = C[G] is contractible. Furthermore, all the
algebras in the extension (4) are finite-dimensional. Hence (4) splits, and so Np(G)
is isomorphic to the semidirect product L1(G) ⊕ I. Since L1(G) · I = 0, we conclude
that Np(G) is superbiprojective by [15] (see also Lemma 4.2 below).

(i)⇒(iii). If N
p(G) is biprojective, then both L1(G) and CTr are projective in

mod-Np(G) since they are essential and Np(G) has a right b.a.i. (see [13] or [8,
7.1.60]). Now it remains to apply Theorems 3.4 and 3.6.
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4 Biflatness

Lemma 4.1 Let

(8) 0 → I → A
σ
−→ A → 0

be a weakly admissible extension of Banach algebras such that AI = 0 and A2
= A.

Then the following conditions are equivalent:

(i) A is biflat and has a right b.a.i.;

(ii) A is biflat and has a right b.a.i.

Proof (i)⇒(ii). Since A has a right b.a.i., we have IA = I. Hence A = A/(IA) is

biflat by [14]. It is also clear that A has a right b.a.i.
(ii)⇒(i). As in Lemma 3.1, the condition AI = 0 implies that A is a right Banach

A-module in a natural way. First we note that A has a right b.a.i. Indeed, let {eν} be
a bounded net in A such that {σ(eν)} is a right b.a.i. in A. Then for every u, v ∈ A

we have

‖uveν − uv‖ = ‖u · σ(veν) − u · σ(v)‖ ≤ ‖u‖‖σ(v)σ(eν) − σ(v)‖ → 0 ,

because {σ(eν)} is a right b.a.i. in A. Since {eν} is bounded, and since A2
= A, we

conclude that {eν} is a right b.a.i. in A.

Let πA : A ⊗̂A → A be the product map. Since A is biflat, the dual map π∗
A is a

coretraction in A-mod-A. Applying the functor hA(A, ?), we see that

hA(A, π∗

A) : hA(A, A∗) → hA(A, (A ⊗̂A)∗)

is a coretraction in A-mod-A. Using the adjoint associativity isomorphisms [7, II.5],
we can identify the latter map with (1A ⊗ πA)∗ : (A ⊗̂A A)∗ → (A ⊗̂A(A ⊗̂A))∗.

Therefore (1A ⊗ πA)∗ is a coretraction in A-mod-A.
Now let πA,A : A ⊗̂A → A, u ⊗ a 7→ u · a denote the right action on A on A.

Evidently, πA,A induces the morphism κ : A ⊗̂A A → A, u ⊗ a 7→ u · a. We have the

following commutative diagram in A-mod-A:

(9)

A ⊗̂A A ⊗̂A
1A⊗πA−−−−→ A ⊗̂A A

κ⊗1A

y
yκ

A ⊗̂A
πA,A

−−−−→ A

The vertical arrows in the diagram are isomorphisms in A-mod-A, because A2
= A

and A has a right b.a.i. [7, II.3]. Consider now the dual diagram. We already know
that (1A ⊗ πA)∗ is a coretraction in A-mod-A. Hence so is π∗

A,A.

Since (8) is weakly admissible, σ∗ is an admissible monomorphism in A-mod.
On the other hand, since A is biflat, it follows that A is flat in mod-A, and hence
A∗ is injective in A-mod (see, e.g., [7, VII.1]). Therefore σ∗ is a coretraction in
A-mod, and so B(A, σ∗) : B(A, A∗) → B(A, A∗) is a coretraction in A-mod-A.
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Identifying B(A, A∗) with (A ⊗̂A)∗ and B(A, A∗) with (A ⊗̂A)∗, we conclude that
(1A ⊗ σ)∗ : (A ⊗̂A)∗ → (A ⊗̂A)∗ is a coretraction in A-mod-A.

It is easy to see that the product map πA : A ⊗̂A → A decomposes as πA =

πA.A ◦ (1A ⊗ σ). Hence π∗

A
= (1A ⊗ σ)∗ ◦ π∗

A.A. But we already know that both
(1A ⊗ σ)∗ and π∗

A.A are coretractions in A-mod-A. Hence so is π∗

A
.

To complete the proof, it remains to show that π∗

A
is actually a coretraction in

A-mod-A. To this end, note that for each f ∈ A
∗ and each u, v ∈ A we have

〈u · f , v〉 = 〈 f , vu〉 = 〈 f , v · σ(u)〉 = 〈σ(u) · f , v〉 ,

i.e., u· f = σ(u)· f for each f ∈ A∗ and each u ∈ A. Similarly, u·g = σ(u)·g for each
g ∈ (A ⊗̂A)∗. This implies that every left A-module morphism between (A ⊗̂A)∗

and A
∗ is in fact a left A-module morphism. In particular, a left inverse of π∗

A
in

A-mod-A is a morphism in A-mod-A. Therefore π∗

A
is a coretraction in A-mod-A.

This completes the proof.

Lemma 4.1 has the following “predual” counterpart, which is a slight generaliza-

tion of an unpublished result of Selivanov [15].

Lemma 4.2 Let

(10) 0 → I → A
σ
−→ A → 0

be an admissible extension of Banach algebras such that AI = 0 and A
2

= A. Then the

following conditions are equivalent:

(i) A is biprojective and has a right b.a.i. (resp. a right identity);

(ii) A is biprojective and has a right b.a.i. (resp. a right identity).

As a corollary, A is superbiprojective provided A is contractible.

Proof The proof is similar to that of Lemma 4.1.

(i)⇒(ii). Since A has a right b.a.i., we have IA = I. Hence A = A/(IA) is

biprojective by [13]. Evidently, if A has a right b.a.i. (resp. a right identity), then so
does A.

(ii)⇒(i). As in Lemma 3.1, the condition AI = 0 implies that A is a right Banach
A-module in a natural way. Arguing as in the proof of Lemma 4.1, we conclude that

any bounded preimage of a right b.a.i. (resp. of a right identity) in A is a right b.a.i.
(resp. a right identity) in A.

Since A is biprojective, the product map πA : A ⊗̂A → A is a retraction in
A-mod-A. Hence 1A ⊗ πA : A ⊗̂A(A ⊗̂A) → A ⊗̂A A is a retraction in A-mod-A.

As in Lemma 4.1, we can identify the latter morphism with πA,A : A ⊗̂A → A (see
diagram (9)). Therefore πA,A is also a retraction in A-mod-A.

Since (10) is admissible, σ is an admissible epimorphism in mod-A. On the other
hand, since A is biprojective, it follows that A is projective in mod-A. Hence σ is a
retraction in mod-A, and so 1A ⊗ σ : A ⊗̂A → A ⊗̂A is a retraction in A-mod-A.
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It is easy to see that the product map πA : A ⊗̂A → A decomposes as πA =

πA.A ◦ (1A ⊗ σ). But we already know that both 1A ⊗ σ and πA.A are retractions in

A-mod-A. Hence so is πA.

Finally, the condition AI = 0 implies that uv = u · σ(v) and w · v = w · σ(v)
for each u, v ∈ A and each w ∈ A ⊗̂A. Hence every right A-module morphism
between A ⊗̂A and A is in fact a right A-module morphism. In particular, a right
inverse of πA in A-mod-A is a morphism in A-mod-A. Therefore πA is a retraction

in A-mod-A, i.e., A is biprojective. This completes the proof.

Theorem 4.3 Let G be a locally compact group and let 1 < p < ∞. Then the

following conditions are equivalent:

(i) Np(G) is biflat;

(ii) N
p(G) is superbiflat;

(iii) CTr is flat in mod-Np(G);

(iv) G is amenable.

Proof (i) ⇐⇒ (ii). Clear, because Np(G) has a right b.a.i.

(i)⇒(iii). If Np(G) is biflat, then CTr is flat in mod-Np(G) since CTr is essential
and Np(G) has a right b.a.i. (see [8, 7.1.60]).

(iii)⇒(iv). If CTr is flat in mod-Np(G), then Cε is flat in mod-L1(G) (see Re-
mark 2.1). By [6] (see also [7, VII.2]), this happens if and only if G is amenable.

(iv)⇒(i). Recall that G is amenable if and only if L1(G) is amenable (see, e.g.,
[9, 6, 7]). Since L∞(G) = L1(G)∗ is an injective Banach space (see, e.g., [17]), we see
that extension (4) is weakly admissible. Therefore Np(G) is biflat by Lemma 4.1.

Remark 4.1 M. Neufang has kindly informed the author that he has also proved the

equivalence of conditions (i), (ii) and (iv) of Theorem 4.3.

Acknowledgments. The author is grateful to A. Ya. Helemskii and Yu. V. Selivanov
for valuable discussions.
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